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Time-dependent resonant tunneling of wave packets in the tight-binding model
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We consider the dynamics of resonant tunneling through a double barrier within a simple one-
dimensional tight-binding model. High-frequency experiments on double-barrier semiconductor struc-
tures have motivated theoretical studies of the various time scales that exist in a resonant-tunneling pro-
cess. Numerical results involving wave packets have shown that the transient process of building up a
resonant state in a double-barrier well is qualitatively different from the exponential decay out of the
well. These results are confirmed in the present paper. We investigate how the transient buildup de-
pends on barrier and initial-state parameters, and find the perhaps surprising result that, for opaque bar-
riers, the particle density inside the well evolves in time essentially independently from barrier width and
height. In our opinion, this shows that one cannot use the concept of a classical velocity for particles
moving through classically forbidden regions of space. Also, we find that the buildup time mainly
rejects the spatial extent of the incoming wave packet. Our conclusion is, therefore, that the limiting
factor for a maximum operating frequency is either due to properties of the incoming electrons, in par-
ticular, their spatial extent, or due to inelastic-scattering or external-circuit effects, not incorporated in
our simple model.

I. INTRODUCTION

The physics of resonant tunneling has been known
since the early days of quantum mechanics. The
phenomenon is treated in every introductory textbook, '

and is usually discussed with reference to a one-
dimensional double-barrier potential structure (DBS).

Such systems can be manufactured today, utilizing ep-
itaxial growth techniques like molecular-beam epitaxy
(MBE) or metallo-organic chemical-vapor deposition
(MOCVD). One of the most common semiconductor
structures consists of Al„Gal As barrier layers with
GaAs in the well and the contacts. Because of the
difference in band gaps between these materials, an elec-
tron moving in the conduction band of GaAs will
efFectively come under the inhuence of the scattering po-
tential of Fig. 1 when approaching the Al„Gal As lay-
ers.

The resonant behavior in the transmission coefficient
makes the DBS interesting for device applications. In
particular, the DBS is a strong candidate for very-high-
speed oscillator components. In 1983, Sollner et al. re-
ported resonant current response at a frequency of 2.5
THz in a DBS consisting of 50-A A1Q 3GaQ 7As barriers
separated by a 50-A GaAs well. This indicates that the
charge transport mechanism is at least as fast asr- 1/f =4 X 10 ' s. Clearly, this experiment raises
questions of a fundamental nature: What is the frequen-
cy limit of such a DBS7 What time scales exist in a
resonant-tunneling process, and which is the decisive one
for the maximum operating frequency?

The resonant-state lifetime ~d is a well-established
quantity in this context. The transmission coefficient in
Fig. 1 has a Lorentzian line shape close to the resonances
E, and E2, with widths I, and I 2, respectively. An elec-

tron with energy E, (z~ initially placed inside the quan-
tum well will then escape at a rate proportional to
exp( —I, ~2~t/fi) thus having a lifetime rdl (d2) A/I I (2).
Clearly, the resonant-state lifetime represents the relevant
time scale in several types of experiment. For example,
when electrons are photoexcited from the valence band to
a resonant state in the quantum-well conduction band,
time-resolved photoluminescence spectroscopy gives de-
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FIG. 1. A symmetric double barrier with two resonant levels
below the barrier edge. An electron with energy E scatters off
the structure. The transmission spectrum shown corresponds to

0
a CxaAs-A10 3Gao 7As structure with two 50-A barriers enclosing
a 70-A well. The barrier height 6 is 230 meV.
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cay times in good agreement with calculated lifetimes.
Another example is the time delay for an electron tunnel-
ing through a DBS on resonance. All calculations give a
result that essentially equals the resonant-state lifetime.

However, when the DBS is placed in an ac circuit, as
was the case in Sollner's experiment, it is not clear that
the decay time ~d is the relevant time scale. In that and
other experiments ' the metastable state in the well has
initially a higher energy than all the available charge car-
riers and is therefore completely empty. When a voltage
is applied across the DBS, the metastable state is pulled
below the Fermi level of, say, the left contact, thus ena-
bling electrons to tunnel resonantly through the DBS. As
argued by Ricco and Azbel, under such conditions a
transient time is required for the electrons to enter the
state in the well. In order to have a current response
reAecting the resonant features of the DBS under high-
frequency conditions, the electrons should at least be
given time to enter the resonant state on a time scale set
by the period of oscillation. In Ref. 8 it is suggested that
this transient time is of the same order as the resonant-
state lifetime. The argument is simply that the time re-
quired to fill the resonant state should be the same as that
required to empty it. Let us see what this proposal im-
plies for the limiting frequency in the Sollner experiment.
Assuming a barrier height b =230 meV, there is only one
resonant level in the well with energy E„,-60 meV. We
take the barrier and well effective masses to be
mb*=0. 09m, and m„*=0.067m„respectively, where m,
is the bare electron mass. The decay time is then
rd =A/I =wu, „'exp(2x„P)=5 ps. In this expression
U„,=6k„,/m* is the electron velocity on resonance,
x„,= [2mb*(h —E„,)]' /R, and w and b are the well and
barrier width, respectively, in this case m =b =50 A.
Assuming ~d to be the speed-limiting factor, one finds a
maximum frequency of about 200 GHz. Clearly, this is
not compatible with the 2.5 THz observed in the experi-
ment.

The observation above shows that the process of enter-
ing the resonant state may take place on a time scale,
hereafter denoted the buildup time ~b, considerably
shorter than the decay time rd. In order to study the
buildup time in a simple model, Jauho and Guo et aI. '

solved the time-dependent Schrodinger equation for an
electron, described by a wave packet, tunneling through a
DBS. Their conclusions can be summarized as follows:
Jauho finds a ~b substantially shorter than ~d. Guo et al.
find that w& can be shorter than, equal to, or longer than
~d, depending on the barrier parameters. For parameters
corresponding to the Sollner experiment, ~I, & ~d is found
by both groups.

The following questions arise naturally: What deter-
mines, quite generally, the buildup time ~b. How does it
depend on the barrier parameters, and to what extent is it
determined by the incoming wave packet? References 9
and 10 give only partial answers to these questions. The
purpose of the present paper is to clarify these points as
far as possible. Like Refs. 9 and 10 we start from the
premise that only an explicitly time-dependent solution of
the problem can give reliable information on the dynam-

ics of the resonant-tunneling process. Unlike those au-
thors, who worked with continuum effective-mass theory,
we shall base our discussion on a simple tight-binding
(TB) Hamiltonian.

An advantage of this model is the built-in discretiza-
tion of real space, making numerical implementation
quite straightforward. In addition, the finite bandwidth
of the TB model is in better correspondence with reality
than is the infinite bandwidth of the effective-mass ap-
proximation. When interpreting numerical results, how-
ever, one must be careful to sort out effects caused by the
finite bandwidth and the presence of bound states from
the transient buildup and decay in which we are primari-
ly interested. To prevent confusion, we have, therefore,
included a discussion of these extraneous effects, illustrat-
ed with numerical examples.

In the limit of a bandwidth large compared with the
barrier heights and the energy spread of the wave packet,
the TB model reproduces the effective-mass results. This
limit involves wave packets with a large spatial extent.
With such wave packets, the observed time dependence
of tunneling to a large extent rejects the shape of the
wave packet in real space. In an attempt to avoid such
effects, we shall mainly study wave packets narrow in real
space.

Our model is an extremely idealized one. Effects of in-
elastic scattering, caused by coupling to phonons and
other electrons, have been disregarded. In addition,
transport is taken to be strictly one dimensional (1D),
which assumes perfect translational invariance in the la-
teral dimensions. Finally, effects of the external circuit
have not been taken into account. In a real experiment
the assumptions underlying such idealizations are violat-
ed to a higher or lesser degree, and this may significantly
affect the temporal behavior of resonant tunneling. Nev-
ertheless, we believe that thorough investigations of sim-
ple models should precede more realistic, and therefore
more complex, calculations.

A surprisingly simple conclusion from our work is the
following: For opaque barriers (i.e., for most barriers of
practical interest) the buildup time is found to be essen-
tially independent of the barrier parameters. The buildup
process is almost exclusively determined by the shape of
the incoming wave packet in our simple model. Thus,
factors limiting the frequency of oscillators based on reso-
nant tunneling must be sought, either among those that
determine the shape of the incoming wave packets or
among effects neglected in our simple elastic one-electron
picture.

We have organized the paper as follows. In Sec. II we
define the tight-binding Hamiltonian and show how to in-
troduce a double-barrier potential in the 1D lattice. A
recursive Green-function method is used to derive the
transmission and reAection coe%cients for the DBS, and
to illustrate the appearance of bound states associated
with the scattering potential. In Sec. III we derive an ex-
act expression in terms of the Green function for the time
evolution of an arbitrary initial state. It is shown how to
construct an initial state that has the minimum uncer-
tainty Gaussian wave packet as its continuum limit. In
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Sec. IV we present numerical results that serve to illus-
trate some of the basic features of the model. Examples
of these are the exponential decay of resonant states, in-
terference between resonant and bound states, and e6'ects
of a finite bandwidth. Section V is devoted to a study of
the buildup time ~b, and we investigate its dependence on
barrier and wave-packet parameters. Our conclusions
are collected in Sec. VI.
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II. STATIONARY PROPERTIES
OF THE TIGHT-BINDING MODEL

Here the (Wannier) states
l
i ) form a complete,

g; li ) & i
l

= 1, orthonormal, & ilj ) =5,.~, set of atomiclike
orbitals centered at the sites i, which form a regular lat-
tice with interatomic spacing a. The nearest-neighbor
hopping elements u are, for simplicity, taken to be real
quantities, independent of position. In the translationally
invariant case, c; =op and H =Hp. Here Hp corresponds
to the free-particle Hamiltonian with eigenfunctions of
the Bloch type,

lk)=y, ki
lj ) (2.2)

We reserve the notation
l
k ) with the letter k for momen-

tum eigenstates, whereas other letters will be used to
denote the localized orbitals of (2.1). The dispersion rela-
tion associated with these Bloch states reads

E(k)= so+2cuos(ka), (2.3)

i.e., the model has an energy band, extending from
Eo

—l2ul to ED+ l2u, with the first Brillouin zone span-
ning the k interval [ vr ia, n /a ] —The choic.e of
Ep= —2u for the trivial parameter Ep ensures that k =0
corresponds to the bottom of the band. Furthermore, the
choice u = —A /2m*a sees to it that the results of the
present model close to the bottom of the band will coin-
cide with those of eIITective-mass theory.

A double-barrier structure is included in the model in a
very natural way. The atoms in the barrier layers are
given a higher value of the local energy E„, the addition
A„corresponding to the barrier height in position x =na.
An arbitrary scattering potential is shown in Fig. 2. We
shall mainly be concerned with the symmetric DBS
where the two barriers have equal width b =Xba and
equal, constant height A. In an Alp 3Gap 7As GaAs
structure 6 will be about 230 me V, which is the
conduction-band offset between GaAs and Alp 3Gap 7AS.
Typically, the electron effective mass in the barriers is
different from that in the well and in the contacts. (We
shall refer to the homogeneous regions outside the DBS

The tight-binding model is described in every introduc-
tory textbook on solid-state physics, and the reader is re-
ferred to the literature" for an extensive discussion of the
motivation behind the model and its physical ingredients.
We will describe the noninteracting conduction-band
electrons with the simplest form of a 1D nearest-neighbor
TB HamiltoIlian,

II=Q[li)e;&il+u( i)&t'+ll+ i)&i —Il)] . (2.1)

FIG. 2. An arbitrary scattering potential in a one-
Limensional lattice. The potential profile V(j)=co+AJ extends
across N lattice constants.

as "contacts" or "leads. ") This could easily be modeled
by using a different hopping energy in the barriers. The
quantitative efFects of ignoring the space dependence of
m * may be quite large for certain quantities, like the ex-
ponential decay time ~d,

' but qualitatively our results
remain unchanged. Thus, we shall assume a constant I *

and use the same value of u throughout the lattice.
With reference to Fig. 2, the stationary scattering

problem is solved by finding the scattering eigenstates
with positive k,

eik/a+r(k)e —ikJa j (0
t(k)e'"I' j~X+ I,~li ( )=' (2.4)

and those with negative k,

eikJa+r(k)e —ikja j)~+1
~k J t(k) ikja
" (')= '- (2.5)

G (z)(z H) —= 1, — (2.6)

where z is an energy variable. In the energy representa-
tion (2.6) becomes

These wave functions describe plane-wave electrons ap-
proaching the scattering potential from x = —~ and
x =+ ~, respectively, with transmission and reAection
amplitudes t (k) and r(k) for k )0, and t(k) and r(k) for
k (0. In (2.4) and (2.5) there is no voltage drop between
the two contacts, which have equal and constant poten-
tial cp. A voltage drop V across the structure would sim-

ply require that Ep be replaced by cp —eV in the low-
voltage contact. Clearly, arbitrary depletion and accu-
mulation layers may also be taken into account (at least
in a quasistatic approximation), but such effects will not
be considered here.

In order to derive expressions for the transmission and
reAection amplitudes, we shall use a recursive Green-
function technique. This method has been applied in
several di6'erent contexts, and examples are the study of
the conductivity of a disordered linear chain' and trans-
port through quantum wires with geometrical scattering
centers. ' The relation between the Green function 6
and the 5 matrix for scattering in leads has been given by
Fisher and Lee, ' and was generalized to an arbitrary
scattering structure by Stone and Szafer. ' For clarity,
and to introduce a notation convenient for our purposes,
we go through the necessary steps in the Appendix. The
Green function' is defined through
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a Z Ca
(2.7)

where Ia) is the complete set of energy eigenstates, with
Hl a ) = s

I a ) . The real space matrix elements of 6 (z)
are defined as

6;~.(z) = & iIG(z)l j ) (2.8)

Here li ) and Ij ) are the states of Eq. (2.1). The transmis-
sion and reAection amplitudes are now given by

t (k) = —2iu sin(ka)e ' + '6 (k)

r(k)= —2iu si n(ka)G oo(k) —1,
(2.9)

In the presence of a scattering potential there are, in ad-
dition to the scattering states g& ) and

leak

), always one
or more bound states lb ) localized in the vicinity of the
scattering center. This is a well-known result for a 1D at-
tractive potential, but in the present model there are also
bound states when the potential is repulsive. Close to the
upper edge of the continuum band, the efFective mass is
negative, and for the same reason as a bound state is
formed below the band in an attractive potential, a repul-
sive potential will form a bound state above the band.
From Eq. (2.7) it is clear that bound states will appear at
energies corresponding to simple poles in the Green func-
tion. The presence of bound states will have implications
on the discussion of the time dependence of tunneling.
We will come back to this later.

The resonant states Ig„) will be of particular impor-
tance in our discussion. They have features in common
with the localized bound states in the sense that the am-
plitude of the wave function g„(j) is enhanced in the well
of the DBS. On the other hand, lg„) does not go to zero,
but reduces, except for a phase factor, to the unperturbed
Bloch wave lk ) on the far side of the DBS. In the con-
text of 1D tunneling the resonant behavior manifests it-
self through peaks in the transmission coefFicient
T(k)=It(k)l . As is well known, even a single barrier
exhibits resonances when the electron is transmitted with
energy higher than the barrier potential A. If the barrier
is modeled with one atom only, there is no resonant
structure in T(k). A single, isolated atom gives rise to a
single state, and when coupled to the two contacts, this
appears as a bound state above the continuum band. A
barrier with more atoms, however, creates several locally
enhanced states, some of which may be degenerate with
the continuum band and appear as resonant states. ' In

with similar expressions for t(k) and r(k). Here 6;~.(k)
means 6; (z) evaluated in z =E(k). Note that Eq. (2.9) is
based on using the retarded Green function, by which it
is meant that (z H) sh—ould be understood as
lim +(z H+i g—)

In the case of free particles, the eigenstates lk ) of Eq.
(2.2) constitute a complete, orthogonal set. Since the lo-
calized orbitals

Ij ) are taken to be normalized to unity,
one has the following 5-function normalization for the
plane waves:

(2.10)
Zb

2
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r
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FICx. 3. A double barrier with three atoms in the well and
one in each barrier. The barrier height is 6= I2.0u I. There are
five locally enhanced states. Two of them appear as truly bound
states, with energies zb and z&. There are three resonant levels,
and the two lowest lie below the barrier edge. Through these
levels electrons can tunnel resonantly. Since the structure is
symmetric, there is full transmission, T = l, on resonance.

general, a barrier consisting of Nb atoms will give rise to
Xb states in the energy range ( so+ & —

I
2u I, so+ b +

I 2u
I )

The value of b, determines how many of these will be res-
onant states, degenerate with the continuum band
(Eo—I2u I, Eo+ I2u I ), and how many will be bound states
with energies zb )Eo+ I 2u I.

In the single-barrier case the transmission peaks always
occur above the barrier edge. This is no longer true when
we introduce a second barrier. An isolated well with
8' atoms has 8' energy states in the range
(so —I2ul, so+ I2ul) (assuming E~ =Eo is the same in the
well as in the contacts). When the well is coupled to the
contacts through potential barriers, these states, all de-
generate with the continuum band, give rise to 8'reso-
nances. Some of them may lie below the barrier edge, and
through these states an electron will tunnel resonantly
(see Fig. 3).

The limiting symmetric case of very high barriers of
width b =Nba enclosing a well consisting of a single
atom will be used later in the discussion of the time
dependence of the trapped wave function inside the well.
In this case, with 6 larger than the bandwidth 8, there is
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zb=C0+5+u /6,
(2.11)

zi, =Eo+&+3u /b —8u /6 +44u /b, +
whereas the resonant level energy and width are

E„=Eo—2u /6+4u /6, +
r„=4Iul'/a'+

(2.12)

one resonance, and the number of bound states equals the
total number 2Kb of barrier atoms. In the simplest case,
with one atom in each barrier, the bound-state energies
are

is analytic, except for a branch cut along the real z axis,
corresponding to the continuum band of H, and possibly
one or more simple poles on the real z axis, correspond-
ing to the discrete eigenvalues of the bound states of H.
Thus, we may choose any real y )0 in Eq. (3.5). Further-
more, since t ~ 0, we may close the integration contour in
the lower half-plane. Then, by Cauchy's theorem, it may
be deformed to any contour enclosing the branch cut and
the poles of G(z). An example, suitable for numerical
solution of the integral, is shown in Fig. 4.

The initial state I+(0)) is usually constructed as a
minimum-uncertainty Gaussian wave packet. In a con-
tinuum model it has the form '

As expected, the resonance is narrow and lies close to c0,
the energy of an isolated atom. Increasing the barrier
thickness to two atoms yields

E„=c0—2u /6+ 2u /6 +
(2.13)

%(x;t =0)—(bx) ' exp

2
x —(x(0))

25x

+i(k)x (3.6)

The position of the resonance is almost unchanged, but
the width is reduced in a manner consistent with ex-
ponential dependence on barrier thickness. Both results
are consistent with earlier calculations within the WKB
approximation.

III. PROPAGATION OF WAVE PACKETS
IN THE 1d TIGHT-BINDING CHAIN

In this section we shall study how the time evolution of
an initial state IV(t =0) ) is given by the Green function.
For all times t )0 the state I%'(t) ) must be a solution of
the Schrodinger equation

(3.1)

Here, the Hamiltonian 0 is independent of time, and we
choose units in which fi= 1. We perform a Laplace trans-
formation on (3.1),

where hx is a measure of the real space extent of the ini-
tial wave packet, and (x (0) ) and ( k ) denote the mean
position and wave number, respectively. For this initial
state one has AxAk =

—,'.
The tight-binding model is not continuous in real

space, so we cannot use the form (3.6) directly. Instead,
we shall construct the initial state on the 10 chain as a
linear combination of the states j ),

I +(0) &
=ge) Ij & . (3.7)

(& —1)t

(S —1+j)!(—j)t2
(3.8)exp(iaj) .C. =J

The complex coefficients c =
I
c

I
exp(i a, ) determine the

shape of the wave packet through their absolute values,
and its mean group velocity (U ) through their phases.
We choose the coe%cients so that a minimum-
uncertainty Gaussian wave packet is reproduced in the
continuum limit. Such an initial state, occupying the S
sites from j = —5+ 1 to j =0, has expansion coe%cients

1/2

(3.2)

since we are interested in %(t)) for positive times only.
Apply partial integration on the first term in (3.2). Then,
with the definition

This choice yields a wave packet normalized to unity, and
the linear dependence of the phase on position ensures an
initial state with no cross-correlation between velocity
and position, i.e.,

Ie(s)&—:f dte "I'k(t)&,

and changing variable s ~—iz, we obtain

I4( —t'z) ) =(z H) 't ll'(0) ) =iG(z)'I'Il—(0) ) .

(3.3)

(3.4)

Im

Re=

The time-dependent state I+(t)) is the inverse Laplace
transform of I4), given in terms of the Mellin inversion
integral. In the present notation one has

« —l'2 tt I

2-'b

IV(t)) =f e '"iG(z)IV( )0),—oo +i y 277
(3.5)

where the integration line lies above all the singularities
of G (z) in the complex z plane. We have seen that G (z)

FIG. 4. Integration contour for the integral in Eq. (3.5). The
contour encloses the branch cut between eo —I2u

I
and so+ I2u I,

corresponding to the continuum band, and all bound-state ener-
gies, in this example zb and z&.
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—,'((bvhx+bxbv ) ) =0 .

The group velocity is

v = BE(k)
ak

= —2ua sin(ka),

(3.9)

(3.10)

and the mean velocity of the packet follows from o. as

( v ) = —2uaF (S)sina . (3.11)

The value of F(S) lies between 0.5 and 1.0, and is close to
1.0 except for very small S. This is just as expected, since
the Fourier transform of

I %(0 ) ) peaks at ka =a. A
broad wave packet (large S) has a sharp k distribution,
and the mean velocity will be close to the value given by
(3.10), ( v ) = —2ua sinu. Obviously, F (S) & 1.0, since
v „=—2ua.

Equation (3.5) is an exact expression for the time evolu-
tion of a given initial state I%'(0) ). It is computationally
quite ef5cient, given the procedure in the Appendix for
calculating the Green function. However, we will also
consider the standard approach of expanding I%'(0))
directly in the eigenstates of the system. In our case the
complete, orthonormal set consists of the scattering
states of Eqs. (2.4) and (2.5) and the bound states Ib ).
Thus,

Ie(0)) = f d(k)Igk)

+ f d(k)IQk)+ gdbIb), (3.12)
b

d(k)= gc t *(k)e
J

d„=pc (bjI)=pc, b,
* .

(3.13)

Here we have assumed that the particle is initially on the
left side of the scattering potential. The time evolution of
4'(0)) is then

Iq(t))= f d(k)Iq, )e-' '""
0 27T

+ f d(k)Iq ) iE(k)t-
—v/a 2'

+yd, Ib)e (3.14)

As mentioned in Sec. II, the presence of bound states
may inhuence the time-dependent tunneling process. As-
sume that we want to study how the trapped wave func-
tion in the well of a DBS evolves in time. If the particle
was initially very far away from the DBS, the overlap be-
tween IW(0)) and the bound states is very small, and

(t):—QJ~,&i( jI%'(t) ) is accurately described in terms
of the scattering states of the system. However, if I'Ii(0) )
is a narrow wave packet, initially localized close to the

where d (k), d(k), and db are the expansion coefficients,
given by

I
e i kj a + r e—

( k )e ikj a
]

J

where the expansion coefficients P(k) are the Fourier
components of the initial state, and the positive k eigen-
states Ipk ) are analytically continued to negative values
of k. The equivalence between (3.14) and (3.15) is a
consequence of particle conservation and time-reversal
symmetry, which lead to the relations (A23) between the
S-matrix elements.

Under circumstances where contributions from bound
states n1ay be neglected, the most e%cient approach is
usually to evaluate the integral in (3.15). However, the
exact expression in (3.5) may still be preferable, especially
when the resonances are extremely narrow. In that case
the numerical integral is easier to perform along a con-
tour with Imz&0, since that yields a less sharply peaked

integ rand.

IV. SOME NUMERICAL ILLUSTRATIONS

The main application of the formalism presented up to
now will be a study of the transient behavior of resonant-
ly tunneling wave packets. Before we get to that subject,
we will present numerical exan1ples in order to highlight
some implications of the discussion in Secs. II and III.

A. Effects of a finite bandwidth

The finite bandwidth of the tight-binding model
8 = I4u

I
has consequences for the time evolution of an in-

itial state
I
%(0)). Let us look at free-particle motion, for

which analytic results are easily obtained. In this case
there are no bound states, and the integral in (3.15) is an
expansion in the plane waves Ik ) of Eq. (2.2). If we have
an arbitrary initial state

I
%(0) ) =g c

I j ), the amplitude
at a given site m will evolve as

(t) —f y(k)(mIk &e—m. /a 277

0 ~ ik(m —j)a —2iut cos(ka)

J
—~/a 2'

e ''g c i I '~l, (12ult),
a J

(4.1)

where J„(x) is the Bessel function of nth order. In Fig. 5

we have plotted Iqi2(t)I for wave packets of initial widths
hx =0.5a and 4.0a. The narrow packet oscillates strong-
ly in time with period T-2m/B, reAecting the interfer-
ence of only two Bessel functions in (4.1). The width in k

DBS, a substantial fraction of 4' (t) may be due to the
bound states. This will be illustrated with numerical ex-
amples in the next section.

Note that in order to have a complete set of scattering
states, one must solve both stationary scattering prob-
lems, i.e., with particles coming from left (k )0) and
right (k &0). The expansion coefficients are then calcu-
lated as in (3.13). However, one can show that there is a
simpler but equivalent form of (3.14), namely,

Iq(t)&= f" ""y(k)Iqk&e-' '""+yd, Ib&e "",
b

(3.15)
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FIG. 5. The time evolution (in units of
~ u~ ') of freely propa-

gating wave packets. We have plotted the particle density (i.e.,
the absolute square of the wave function) on site 2. The hop-
ping amplitude is u = —1.0. At t =0 the wave packets were
centered around site —32. The solid and dashed lines represent
packets initially occupying 2 and 6S sites, respectively, having
initial spatial widths b x =0.5a and 4.0a.

space of ~'Pl0) ), b,k —1/a, is of the same order as the to-
tal bandwidth Bk =2m/a, and large deviations from an
eff'ective-mass approach (with infinite B) are observed.
The broad packet, on the other hand, has
b, k —1/Sa &&Bk, and the resulting ~%'z(t)~ is a smooth
function, simply refiecting the shape of ~%(0)) in real
space. At this point one should note that in order to
have Ax ~10—20 lattice constants, one needs an initial
state occupying more than 1000 sites. As a result, the
numerics becomes exceedingly time consuming. Howev-
er, our choice of initial state reduces to a Gaussian for
broad packets. Under such circumstances one may use
the exact Gaussian form of (3.6) as a good approximation
and save considerable amounts of computer time.

B. KfFects of bound states and resonances

As discussed in Sec. II, one or more potential barriers
will have localized states and resonances associated with
them. We shall now see how these states inhuence the
propagating wave packet.

In Fig. 6 we have plotted ~%2(t) ~
when a single barrier

is located on site 1, and the initial state occupies two sites
to the left of the barrier. When the wave packet starts
close to the barrier (solid line), the overlap with the
bound state is large, and a substantial fraction of the par-
ticle density is trapped in this state forever. However, if
one takes the initial state and the bound state farther
apart (dashed line), ~%2(t)~ is totally dominated by the
contribution from the scattering states. One can show
that the amplitude of the bound states decreases exponen-
tially with the distance R from the scattering center.
Thus, one may neglect the presence of bound states when
the overlap integrals ( %II (0)

~
b ) —exp( —R /RI, ) are

small compared with the scattering-states contribution.

FIG. 6. Time evolution of the particle density on site 2 when
a single barrier of height b, = ~1.25u

~
is located on site 1. The

hopping amplitude is u = —1.0. The initial wave packet occu-
pies the two sites —1,0 (solid line) and —11,—10 (dashed line).
Ni is the number of sites between barrier and initial packet.
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FIG. 7. Time evolution of tunneling through a double bar-
rier. The barriers have height 6= ~4.0u

~
and are located on

sites 1 and 3. The initial wave packet occupies the two sites —1

and 0. The hopping amplitude is u = —1.0. (a) Particle density
inside the well (site 2). (b) Transmitted particle density (site 4).

Here Rb is the localization length of ~b). When, as in
the next section, only the scattering states are of interest,
one must locate the particle initially a distance larger
than Rb away from the barriers.

The final example is a double barrier of height
b, = ~4.0u~ located on sites 1 and 3; see the insets of Fig.
7. In Fig. 7(a) we observe the temporal evolution inside
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the well, whereas in Fig. 7(b) we look at the transmitted
wave on site 4. In this case we have a resonance with en-
ergy eigenvalue E„=En—~0.45u~ and width I = ~0. 20u~,
as well as two bound states at z&=Eo+~4. 25u~ and

z& =so+ ~4. 65u
~

[cf. Eqs. (2.11) and (2.12)]. In both
figures there is an exponential decay exp( t—/rz), with

rd =1/I =5.0~u~ '. Since rd is so short, the exponential
behavior is barely observable. The rapid oscillations cor-
respond to interference between the resonance and a
bound state. They start as soon as the resonance is built
up, and exhibit the strongest oscillations for t-25~u
in Fig. 7(a), when the amplitudes of the two states are ap-
proximately equal. Eventually, the resonant state is emp-
ty, and the rapid oscillation disappears. Then, for
t ~ 20~u~

' in Fig. 7(b), the interference between the two
bound states comes into play. Note, however, that
~'Pz(t)~ in Fig. 7(a) simply goes to a constant value,
whereas

~ %4(r) ~
in Fig. 7(b) oscillates with period

T =2m /(z& —zs ) = 15.7
~
u

~

'. This can be understood as
follows: Because one of the bound states has odd parity,
it has vanishing amplitude on the well site. Therefore,
~%z(t)~ only depends on the even-parity bound state and
decays to a constant value, as in Fig. 6. On site 4, howev-
er, both bound states have nonzero amplitude, and
~%'4(t)

~

oscillates with frequency according to the energy
splitting of the two levels.

V. TRANSIENT BEHAVIOR
OF RESONANT TUNNELING

This section is devoted to a study of the buildup time
~b, which is the time it takes to establish the resonant
state in double-barrier tunneling. We shall, somewhat ar-
bitrarily, define rb as the time required for ~'P (t)~ to in-
crease from 1% to 100% of its maximum value. We have
chosen this definition simply because a function f starts
to become discernible from zero around the value
0.01f,„ in a linear plot on a normal-size paper. As men-
tioned in the Introduction, the buildup time is believed to
be important for determining the frequency limit of
resonant-tunneling devices.

The exponential decay law receives most of the atten-
tion in textbook treatments of time-dependent resonant
tunneling. However, the transient process is sometimes
mentioned, and even explicitly stated to occur within a
time much shorter than the decay time. This should be
contrasted with the conjecture in Ref. 8 that ~b and wd

are both connected to the energy width of the resonance
via the uncertainty relation as ~b ——~d-—A'/I . The latter
is clearly based on the assumption that only wave-packet
components with energies in a range of order 1" around
the resonant energy participate in the buildup process.
We will now show that this is, in fact, not the case. We
start with a qualitative argument that will eventually be
supported by numerical calculations.

Assume that we have a symmetric double barrier with
very high barriers such that exp( vb) «1. The wav—e
number ~ measures the difference between barrier height
and particle energy (see Sec. I), and b is the thickness of
each barrier. Close to resonance the value of the wave
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0.000 0'
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FIG. 8. Time evolution of the particle density inside the well

(on site 2) of a double barrier located on sites 1 and 3. The hop-

ping amplitude is u = —1.0. The initial wave packet occupies
the two sites —11 and —10, making the overlap integrals
(%(0)~b ) between the initial state and bound states negligible.
The solid line is the exact result, where we have included all the
scattering states in the first Brillouin zone. The long- and
short-dashed lines are results of integrating over k intervals

k„,+2.5I"k and k„,+25I k, respectively. Here k„, is the wave
number on resonance, and I k is the width of the resonance in k
space. In this case I k-—1.2X10 Bk, where Bk=2~/a is the
total width of the first Brillouin zone.

function inside the well is g„~-exp(ab), whereas far
from resonance it is ~g~ -exp( —ab ). We assume a width
b, k =O(1) of the initial wave packet. However, the reso-
nance width in k space is I k -exp( 2—ab) T.his implies
that the time-dependent state inside the well %'„(t) is
made up of a resonant and an off-resonant part, each con-
tributing with weight

~
fdkg~-exp( ~b—). Clearly, one

cannot ignore the off-resonant contribution.
In Fig. 8 we illustrate the dramatic effect of only in-

cluding states close to resonance. The solid curve is the
exact result for ~% (t)~, where we have integrated over
the whole Brillouin zone. Bound states can be ignored in
this example, since the overlap integrals (%(0)~b ) are
very small. The long-dashed line results from integrating
over a k interval (k„,—2.51 k, k„,+2.5I k). The build-

up time, in reality very short in this case, seems to be of
the same order as the exponential decay time. The
short-dashed line includes a ten-times-larger k interval,
extending over 50 resonance widths, but the deviations
from the exact result are still substantial. Note, however,
that all three curves merge after a long time. This exam-
ple shows that the exponential decay is indeed described
by the resonance properties of the DBS, whereas the
transient behavior, in general, is not. It is described by a
complicated interplay between resonant and off-resonant
wave-packet components.

In the previous example we found a buildup time much
shorter than the resonant-state lifetime, consistent with
the prediction in Ref. 23 and the numerical work of Refs.
9 and 10. However, in Ref. 10 it was shown that ~d could
become smaller than ~b when the barriers were made

sufficiently thin. We shall argue that this is a conse-
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quence of the spatial extent of the initial wave packet.
When the packet approaches the DBS, it moves more or
less like a free particle with mean velocity ( U ). (There is
self-interference in front of the barrier causing deviations
from free-particle motion; see Ref. 6.) It seems rather ob-
vious, then, that the width Ax of the wave packet will
provide a lower bound on the time required to establish
the resonance, simply because different parts of the pack-
et arrive at different times. In fact, we would expect
rb hx I( U ), assuming there are negligible position-
velocity cross-correlations in the wave packet [see Eq.
(3.9)]. This is exactly what we observe in Fig. 9, where
we have plotted ~& as a function of the initial width
hx =[(S—1)/4]' a. The initial state occupies S sites
and hits the DBS with mean velocity on resonance. The
buildup time increases linearly with Ax. Note the devia-
tion from linear behavior for hx 6a. In this region the
decay out of the well has become significant before the
whole packet has arrived, and as a result, ~V (t)~
reaches its maximum somewhat earlier than expected
from a linear dependence of ~b on hx.

When the barriers are made thinner, and the wave-
packet width is kept fixed, the major effect is to reduce
the decay time. In addition, ~& will decrease, since a
smaller ~d makes the decay process start earlier, as ex-
plained above. However, the latter is a much smaller
effect than the decrease in decay time, since ~d depends
exponentially on barrier thickness. Thus, one expects to
find ~d )~b for thick barriers, but as the barrier thickness
is reduced, and the resonance width I" eventually be-
comes comparable to the energy spread of the wave pack-
et, one should find ~d & ~&. This is exactly what was ob-
served in Ref. 10.

It is important to realize that from the discussion
above one cannot draw any conclusions about the speed
of the tunneling process into the well; i.e., we cannot
determine the single-barrier "tunneling time, " a quantity
that has been extensively discussed in the literature. We
have excluded the possibility that this process is of the

2Q s & a» y & s

12-

f i I i I i i i

0 1 2 3 4 5 6 7 8 9 'to
Ax/a

FIG. 9. The buildup time ~b as function of initial wave pack-
et width Ax. The double barrier is located on sites 1 and 3 and
has height 6= ~4. 0u~. We use u = —1.0. The initial packet is
located close to the left edge of the DBS.

same nature as the decay out of the resonant state. How-
ever, it may well take place on a very short time scale,
since the lower bound on ~b found above only rejects
wave-packet motion outside the DBS. In an attempt to
discuss the time scale for the tunneling process itself, we
shall investigate propagation of wave packets that are
narrow in real space. As we have seen, broad packets will
have a large ~b, which makes it difficult to resolve small
variations as one varies the barrier parameters. Clearly,
these variations are best resolved when the initial state
occupies only a few sites. Furthermore, we shall be using
high barriers to eliminate the possibihty of the particle
passing above them without actually tunneling. Also, we
use a narrow well, on a single site, in order to have a sim-
ple system with one resonance only. Finally, at this stage
we want to look at propagation via scattering states only.
This is accomplished by starting the wave packet
sufficiently far away from the DBS, to make the contribu-
tion from bound states negligible.

The present setup is clearly not very realistic for typi-
cal transport in semiconductors, and certainly not for the
structure in Fig. 1. In that case the barriers are low, and
the transport takes place near the bottom of the GaAs
condUction band. Representative wave packets are be-
lieved to have a width comparable to the electron mean-

0
free path, typically around 500 A in CxaAs. ' In contrast,
our parameters will correspond to barriers higher than
the bandwidth, and wave packets initially localized on a
few sites, thus having an energy spectrum extending
across the whole band. However, one might follow
Hyldgaard and Jauho and let the model describe trans-
port within a miniband of an imperfect superlattice,
where the DBS represents two barriers that are higher
than those of the superlattice. In such a structure the
bandwidth, typically between 10 and 100 meV, could
easily become smaller than the height of the two particu-
lar barriers, and it is certainly possible to imagine the ini-
tial state as localized to within a few superlattice wells.

Next we shall see how the buildup time depends on
barrier thickness. We use a wave packet initially local-
ized on two sites, and starting a distance of N& =20 sites
from the left edge of the DBS. The barriers have equal
height b, =16~u~. In Fig. 10 we have plotted )4 (t)~ for
barrier widths Lb=1, 10, and 20 sites. The results re-
quire a couple of comments. First, one observes oscilla-
tions in the probability density. This is the finite-
bandwidth effect discussed in Sec. IV A. Due to a wide
momentum distribution, the wave packet has developed
rather strong cross-correlations when it hits the DBS,
i.e., the high-velocity components arrive first. Thus,
the first oscillation "period" in

~
4 (t)

~
(for

10
~
u

~

' ~ t ~ 16
~
u ' ), corresponding to the leading

"pulse" of the packet (see Fig. 11), had a mean velocity
outside the barrier somewhat larger than that of the full
packet. Second, one finds an almost constant buildup
time, rb ——3.7

~
u ~, independent of barrier thickness.

This is not surprising, since the shape of the wave packet
immediately before impact (Fig. 11) is also almost in-
dependent of Xb. As discussed earlier, this shape essen-
tially determines the value of ~b. However, we find it
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FIG. 10. Time evolution of the particle density inside the
well of a DBS for different barrier widths [and normalized with

2Nb
respect to the single-barrier tunneling factor (b, /u) ]. As
usual, u = —1.0. The well consists of a single atom. The initial
wave packet occupies two sites at a distance of NI=20 sites
from the left barrier. The barrier height is 6= ~16u ~. Solid
line: Nb = 1. Short-dashed line: Xb = 10. Long-dashed line:
Nb =20. The horizontal bars indicate the expected delays of the
peak when increasing Xb from 1 to 20, assuming the single-
barrier tunneling process can be described with free-particle
motion (long bar) or "Buttiker-Landauer velocity" (short bar).

surprising that ~% (t)~ reaches its maximum value at
practically the same instant for every value of Nb. In
other words, the time required for the wave packet to
travel a certain distance, partly in a classically allowed
region and partly in a classically forbidden one, is, within
numerical uncertainty, independent of the classically for-
bidden distance traveled. Consequently, we cannot as-
cribe a finite velocity to the tunneling process, which
seems to take place in essentially zero time. (Since we use
a nonrelativistic model, there is no paradox in finding
infinite speed. ) This is certainly not a result that appeals
to one's intuition, and it illustrates how classical ways of
thinking may fail completely when one deals with purely
quantum-mechanical phenomena.

Possible candidates for a finite "tunneling velocity"
might be Ut„, = —2ua sin(ka), corresponding to free-
particle motion, and v~L, corresponding to the so-called
traversal time proposed by Buttiker and Landauer. In
the e6'ective-mass approximation one has v BL

=AK/m '
(see Sec. I for a definition of a). In the TB model, with
A'= 1, one has UBi =B(h —E)/~)ir= ha (close to reso-
nance). In Fig. 10 we have indicated with horizontal bars
the expected delays of the particle density peak when the
barrier thickness is increased from Nb =1 to Kb=20

I

FIG. 11. The wave packet at t —0 and 9, w&th parameters as
in Fig. 10. The corresponding curves for ~%'(t =9)

~
with N& = 1

or 20 are indistinguishable from the present example, where
Xb = 10.

sites, the long bar corresponding to free-particle velocity
and the short one corresponding to "Buttiker-Landauer
velocity. " Clearly, both candidates disagree qualitatively
with the observed behavior. In fact, the maximum of
~%„(t) occurs somewhat earlier as X& is increased.

It is even possible to show analytically that the time
evolution of the particle density in the well is (approxi-
mately) independent of barrier thickness. Using Eq.
(3.15) and ignoring bound states, one has

(t)= gc I e '" '[ 2iu sin(k—a)]—m/a 2&
—i [Eo+2u cos(ka)]t

N +N +1,0

(5.1)

E(k) —eo 2u
Nb+Ni+1, 0 +

ZEX
Nb

ik (NI + 1)aI (5 2)

which yields

for an arbitrary initial state ~%'(0)) =g c m ) separat-
ed by 1V& sites from the left edge of the DBS. The well
consists of a single site, and (A18) was used to express
1(ik(X&+Xi+1) in terms of the Green function. Next we
use the results of the Appendix to find an expression for
GN +N +, 0 in the limit of very large barrier height h. To
leading order one obtains

p (t)= Q
l8

Nb
m'la dk ik(N( —m)a ik( mivi+ 2)a 2u
—a/a 277

—i [c, +2u cos(ka)]t0 (5.3)
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for the wave function. The particle density
l
4 (t)

l
de-

pends on the barrier width one through the time-

independent scaling factor (u /b, ) '. Except for this fac-
tor, which corresponds exactly to the well-known term
exp( 2a—.b ) in the continuum model, the temporal evolu-
tion of 4 is also independent of b, when

l
b /u

l
))1.

Let us summarize the results of the present section.
The transient buildup of resonantly tunneling wave pack-
ets is of a nature different from the exponential decay out
of the resonant state. The main reason is that in order to
describe the buildup process, one needs to take both reso-
nant and off-resonant scattering states into account. The
exponential decay, on the other hand, is well described by
states near resonance only. Thus, the decay time is
linked to the resonance energy width through the uncer-
tainty relation as rd=iii/I . For wide wave packets the
buildup time mainly reAects the spatial extent of the
packet. A study of narrow packets yields a transient time
independent of barrier thickness and height for opaque
barriers, indicating that a finite "tunneling velocity" can-
not be defined.

VI. CONCLUDING REMARKS

In this paper we have discussed stationary as well as
time-dependent properties of resonant tunneling within a
simple tight-binding formalism. The tight-binding model
is more satisfying than the effective-mass approximation
in that it incorporates a finite bandwidth, but reduces to
an efFective-mass description in the limit of very large
bandwidth. However, when one investigates time-
dependent properties, it is important to be aware of the
specific features of the model, as was shown in Sec. IV.
For explicit solutions we have applied a recursive Green-
function technique, which turns out to be an effective tool
in the present context, especially for numerical im-
plementation, but also for analytic results in simple ex-
amples and certain asymptotic limits (see Secs. II, IV,
and V).

Our main focus has been on the transient behavior of
resonant tunneling. Contrary to earlier predictions, the
process of building up resonance conditions is shown to
be qualitatively different from the decay of the resonant
state. Consequently, it takes place on a time scale
different from the decay time ~d. This result is in agree-
ment with the numerical calculations of Refs. 9 and IO.
We have shown how the buildup time wb is directly relat-
ed to the spatial width Ax of the wave packet. This
dependence of wb on Ax dominates the picture to an ex-
tent that we are forced to go to extremely small Ax, and
correspondingly high barriers, in order to pinpoint a pos-
sible dependence of ~b on the barrier thickness. Our con-
clusion, based on both analytic and numerical evidence, is
that, to leading order in inverse barrier height, ~b is in-
dependent of the thickness of the barrier. It makes no
sense to ascribe a velocity to the electron tunneling
through the initial barrier into the resonant state. Pre-
dictions based on the classical velocity U f„, or the
Buttiker-Landauer velocity UBL are clearly contradicted
by our results. This statement should not be read as an
entry in the debate on the relative merits of various pro-

posals for a general tunneling time. In our opinion, rath-
er than to debate this general question, it is more fruitful
to focus on the dynamics of tunneling in very specific
models of some relevance to experiment. The present
effort represents a erst step in this direction.

Since the buildup time may be substantially shorter
than the decay time, there is no contradiction between
our results and the high-frequency experiments by Sollner
et al. However, we cannot draw any conclusions on a
maximum operating frequency, since the situation in a
real sample is much more complex than in our simple
one-electron model. Our results indicate that the limiting
factor is either due to properties of the incoming elec-
trons, in particular their spatial extent, or due to
inelastic-scattering or external-circuit effects not incor-
porated in our simple model.
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APPENDIX

I q k &
=G (k) {—[E(k) —a] lsk & ], (A3)

where G(k) is the retarded Green function, and E(k) is
the eigenenergy of leak). With Eqs. (2.1) and (A2) and
the orthonormality condition for the states lj ), the term
in curly brackets becomes

—[z(k) —a]ls„&= y [ —E(k)+E,

+ u (e
—ika+ e ika) ]e ikjal J )

+ue '"'lo) —ul —1) . (A4)

From Eq. (2.3), E(k)=EO+2u cos(ka), and the sum in
(A4) vanishes. Thus,

yk(j ) = &j I pk & =ue '"'G 0— (A5)

where we have used the definition (2.6), and, for simplici-
ty, have suppressed the argument k in the Green-function

We want to find the transmission and reAection ampli-
tudes for the scattering potential in Fig. 2. The station-
ary Schrodinger equation is

(z —a)le, & =0,
where z is the eigenenergy and

l g, ) is the corresponding
energy eigenstate. Let us investigate the scattering states
leak ) of Eq. (2.4), i.e., for k )0. We start by writing the
total scattering state as a "source" term

lsk&= X e'""jl& (A2)
j&

plus a remainder leak ). From (2.6) and (Al) we have
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matrix elements.
In order to proceed from here, we use the Dyson equa-

tion. With H=H +H', the Dyson equation expresses
the Green function G of the full Hamiltonian H in terms
of the perturbation H' and the Green function 6 of the
unperturbed Hamiltonian H:

( G 0
)
—i —

( G 00
)
—1 G 00 (A12)

Using the definition of 6 and H =H —H", we have
(Gli ) '=(lI(z H—)Il &=z —sl. Furthermore, Gll
and 61 i 1 i are both diagonal elements of rightmost
end sites of semi-infinite chains, so, from (A8), we have

G =G +6 H'6 =G +GH'6 (A6) (I l ) '=z —Ei —u I l, u . (A13)

This exact result follows directly from the definition
(z H)—G =l.

If we let the perturbation be the matrix elements of H
between two sites, l and I +1, (r+) '=z —e, —ur,+„u . (A14)

By interchanging H' and H" we find the analogous equa-
tion for I ",

H'= Il &u (1+1I+Il +1 &u (1I, (A7) An expression for Gll, more symmetric than (A10), is
then found by inserting (A13) in (A10),

G and H describe two separate semi-infinite chains
[j&1] and Ij)1 +1]. Since there is no coupling be-
tween the two chains, any off-diagonal element 6 „with
m & 1 and n )1+ 1 (or vice versa) must be zero. Further-
more, the diagonal element of 6 at the end site of a
semi-infinite chain requires special attention. With the
"cut" (A7) (removing the terms Il &u(l+1I and

I
1 + 1 & u (1

I
from H literally means that we cut the chain

in two pieces) we define

0~1 =611 ~

~+ ~0~ 1+ i =~1+1,1+1
(A8)

where "+"denotes a chain extending (here, from site
1+1) in the positive direction and "—"denotes a chain
extending (here, from site 1) in the negative direction.
The matrix elements I + and I will be called "surface"
Green functions (SGF's).

In order to find the matrix elements of the Green func-
tion, we use the Dyson equation repeatedly. With the
perturbation (A7) one has

Gll
'= —cl —uI1 iu —url++iu . (A15)

r=, Iz —e,+[(z —e, )' —4u']'"] .1

2u
(A16)

The proper sign in (A16) for the retarded Careen function
is that which yields a non-negative density of states.
The surface density of states is given as
Dr(z) =( —1/m)lmI'(z). For z located in the continuous
spectrum of the Hamiltonian, namely z =E (k) =E0

+2u cos(ka), we obtain

The systems we want to study consist of homogeneous
regions enclosing a potential profile. In particular, the
linear chain has a potential that is equal and constant for
j ~0 and j ~N+1; see Fig. 2. Obviously, all I are
equal for j ~ 0, and all F'+ are equal for j ~ N + 1.
Denote by I (not to be confused with the energy width of
a resonance) the SGF of a homogeneous semi-infinite
chain. Then, (A13) [or (A14)] is a quadratic equation for
I, with solutions

611 Gll+ Gllu61+1, 1
0 0 I =—e —'"' (k)&0) .+k.

u
(A17)

0 0 0
Gll + 11 61+1,1+1u611

or, using (A8),

Gll '=(I l )
' —ul l+, u,

+6, +, , =r, +,u6

Repeating the procedure, one readily finds

1+1
Gi+m l + ~j " Gll

j =1+m

(A9)

(A 10)

Pk(N + 1)=pl, (N + 1)= —2iu in(ska)G& 0+ ,l (A18)

Here we have also assumed u (0. Functions of z involv-
ing the square-root term in (A16) have a branch cut along
the real z axis between z =E0

—I2u and z =E0+ I2u I. For
real values of z not belonging to the branch cut, one
must take [(z —E0) —4u ]' =+I(z —E0) —4u '~ for
z&&E0+I2uI.

Now we have all we need to derive the scattering am-
plitudes for the potential in Fig. 2. From (A5) we have

Gl +m, 1 + m

j=1+m —1

uI . (Al 1)

The next step is to calculate the SGF's, and we start by
deriving recursion relations for SGF's on neighbor-
ing sites. Take H' as in (A7) and let
H" =H'+

I
1 —1 &u ( lI+

I
1 &u (1—1I. Then G corre-

sponds to the two chains [j&1] and [j)1+1], whereas
G corresponds to the chains [j & I —1] and [j)1+1]
plus an isolated site, j =l. The Dyson equation now
yields a relation analogous to (A10),

Gj j Gj $ +Gj 0u I

60 e
—ikj a=1

j,—1 u

G. =e 'jGj,0 00 ~

and finally,

(A19)

where we used Glv+, , =Glv+, 0u I and (A17) for k )0.
Comparison of (A18) with (2.4) yields t(k) in Eq. (2.9).
To find the refiection amplitude, start from Eq. (A5) with

j ~ —1. Using the Dyson equation repeatedly, one has
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&~(j)=~~V)+mk(i)
=e'"1'—[2iu sin(ka)Goo+ 1]e (A20)

Again, comparing with (2.4), one obtains r(k) in Eq.
(2.9).

The inverse process, i.e., scattering of a plane wave
coming from x = + ~ with k (0, is analyzed in a similar
way, starting with a source term

The resulting scattering amplitudes are

t(k)=2iu sin(ka)e' ' +"Go~+&,

r(k) = [2iu sin(ka)G~+, ~+, —1]e '"' (A22)

The consequences of time-reversal symmetry and particle
conservation lead to relations between the scattering am-
plitudes. With k & 0 one has

j&%+2
e rkja~J ) (A21)

t( —k)=t(k),
r( —k) = r*(—k)t (k) lt *(k) .

(A23)
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