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Guided optical waves in planar heterostructures with negative dielectric constant
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A detailed study of guided optical modes in planar heterostructures involving one or two media with

negative dielectric constant is presented. The existence and the form of the solutions with respect to
geometrical and physical parameters are derived. The cases of a metal between two dielectrics and a
metal-dielectric-metal heterostructure are treated successively.

INTRODUCTION

Guided-optical-wave structures, consisting of a thin
dielectric planar medium between two difFerent dielec-
trics, are the subject of intense interest. They can accom-
modate propagating optical waves called guided
modes, ' which stay confined within the structure. As
such, they play an important role in many optoelectronic
applications. A well-known example is the diode laser,
the operation of which relies crucially upon a built-in
guided-mode structure.

An interesting situation occurs when a normal dielec-
tric is surrounded by two media with negative dielectric
constants. This is the case if metallic films are deposited
on each side of a normal dielectric. It can also be the
case for guided-wave structures consisting entirely of
nonmetallic media, in certain limited frequency intervals.
For instance, it is well known that semiconductors ac-
quire a negative dielectric constant near resonances such
as dipole-active phonons or excitons.

The symmetric situation may also occur, where a thin
metallic film is embedded between normal dielectrics, or
if a semiconductor with a negative dielectric constant in a
certain energy interval is surrounded by normal dielec-
trics. Quantum-well structures may provide an example
of the latter case.

The purpose of this paper is to derive all stable optical
guided modes in an anomalous heterostructure, i.e., we
look for the solutions of electromagnetic waves which are
invariant along the propagation direction z. To the best
of our knowledge, there is no complete study of' all possi-
ble guided modes in such heterostructures. As already
recognized by several authors for the case of symmetrical
structures, a special class of guided modes, called sur-
face waves, can be sustained. These surface waves have
field amplitudes with a maximum at the interface. In ad-
dition to surface waves, however, we will show that guid-
ed waves similar to those found in normal planar struc-
tures can also exist in certain cases. They have an oscilla-
tory character inside the inner layer. We call them oscil-
lating guided modes. The existence of the various stable
solutions depends critically on the combination of the
difFerent. indices and the sample geometry. In a lossless
structure, these eigenmodes are characterized by a phase

factor exp(ikn, &z ) involving a real parameter n, s and the
vacuum wave vector k. We restrict the discussion to the
case of pure real dielectric constants: all media are con-
sidered to have no losses. This should provide a reason-
able approximation in many cases. For example, in met-
als the imaginary part of the dielectric constant e is small
compared to the real negative part as long as co(co,
where co is the plasmon frequency. Specifically in Ag at
room temperature Re(e)= —10 and Im(e)= —0.37 at
wavelength A, =510 nm. By neglecting the imaginary
part of e, we can make use of the methods developed pre-
viously in classical guided-mode theory. ' The central
task is the determination of n, ff. n, ff depends both on the
geometry of the structure through a parameter a (the
inner layer thickness) and on physical parameters
through the dielectric constants e(co). Once
n,s(co, a, e(co)) is known, it is straightforward to derive
the field components of the corresponding mode.

It is convenient to consider the problem in two succes-
sive steps. First we consider the dependence of n, ff on
the geometry only (factor a ), taking the wave frequency
co constant. We call this geometrical dispersion. Then,
for fixed a, we study the dependence of n, ff with respect
to frequency. Note that the frequency dependence e(co)
has to be included in the computation of the frequency
dispersion n, s(co, a, e(co)). We will restrict ourselves to
the case of a plasma dispersion law, as relevant to metals.
However, the case of a resonance in a semiconductor may
be obtained without difhculty by introducing a Lorentz
oscillator instead of the plasma dispersion law.

The paper is organized as follows. We first recall the
features of surface waves at a planar interface in order to
introduce the problem. We then treat the case of a nega-
tive dielectric constant (core) between two normal dielec-
tric half spaces (cladding). Finally, we discuss the case of
a dielectric core surrounded by a negative dielectric con-
stant cladding.

I. SURFACE WAVES AT A PLANAR INTERFACE

In this section we derive the expression of n, ff in terms
of the dielectric constants of the two media; we also ex-
press the form of the allowed modes and calculate the
power Aux carried by these modes. In order to fix the no-
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tations, we consider a half space (x )0) having a positive
dielectric constant @2

=n 2, and a second half space having
a negative dielectric constant e&

= —n, . Let us start by
recalling Maxwell's equations:

curl 8+ a
c}t

kn, ff
e QX

Q

E =0

E —iAe fix

H. =0,
curl &- a

at
=0, kn,

H = —A e"x,
Q

X—ppJV,

2)=eoe(" =eon '8 .

The time dependence of the monochromatic field is ex-
pressed as exp( iso—t ). In order to simplify the notations
let

C=E(x,y, z)e ' ', &= H(x, y, z)e1

PpC

H, =p for x &0 .

kn, ffE A wx

l8

Ey =0,
E, =iAe

H =0,

The Maxwell equations reduce to H = —A
kn

WXe

E( )
—i ( co t —Pz ) H(x)e ' ' ~' with p=kn, fl,

the real quantity n, ff being called the effective index of
the mode. Note that the field does not depend on y.

Combined with Maxwell's equations and the condition
()/By =0 this gives the relations

/n ffB E
k(n n, (r)—
—iB„H,

k(n n fl
)—

in, ffB H,
k(n —n, (r)

inBE,H=-
k(n —n, (r)

(4)

where E, and H, are solutions of the differential equa-
tions

curl E—ikH=O, curl H+ikn E=O .

We are interested here in planar structures. Therefore
the value of e depends on only one coordinate normal to
the interface. Without loss of generality we can direct
the x axis along this normal, so that the form of the mode
propagating in the z direction is

H, =O for x &0;

where A is a constant scaling factor and u =k ( n, (r

+n )' w =k(n n)' and—

n&n2
n,

Qn', —n2

which shows that a mode exists only if n, ~ n 2.
We see that the field is exponentially decreasing in the

two media and hence strongly confined at the interface.
For metals one recovers, in the limit n, =n2, the surface-
plasmon mode resonance. For n, &n2, the propagating
surface modes are in fact surface-plasmon-polariton
modes which are a coherent superposition of surface
plasmons and electromagnetic waves. The dispersion of
such surface-plasmon polaritons is best visualized in a po-
lariton diagram (see below).

The z component of the Poynting vector reads

6'pC

S,= (EXH'+E*XH), .

We find

k ncffn ]
2 2

f
Q

[8,+k (n —n2fl)] H' =0
z

S =.
z k n, ffn2

2 2

e for x)0.
N

(10)

n2 for x &0
with n= .

in& for x (0 .

If we restrict the solutions to be evanescent in the two
media and keep in mind the continuity requirement for
components tangential to the interface, we obtain a
transverse-magnetic (TM) solution only (H, =0). This'
solution is

In Fig. 1, we have plotted S, as a function of the dis-
tance to the interface. Notice the opposite signs of S, in
the two media. Integration of S, over the transverse
direction yields the global power Aux

k n n n
(11)
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FICx. 1. Power flux density profile of a plasmon surface mode
at an isolated interface. S, is plotted in arbitrary units vs x, the
distance from the interface, expressed in wavelength A, . Values
of the refractive indices are shown in the figure. The curves are
normalized such that the integrated power flux along x [Eq.
{11)]equals 1 W/m.

COp
e(co) = 1—

CO

as is appropriate for lossless metals, with co being the
plasma frequency. The interesting region for our study is
for e, &0 and therefore ~ (co . We obtain

' —1/2

n,&=n2 1— n2

to& /co 1
(13)

ro is thus restricted to the band to&co /Ql+nz. In-
stead of the group velocity, often the group index is used:

n 2

d(con, )t) (co„/to —1)
n2 1+

2
CO n21—

(to /co —1)

(14)

In Fig. 2 we have plotted both the effective index and
group index as a function of the reduced frequency co/co .
The relation between the group velocity and the velocity
of energy transfer may be expressed simply in the case of
a quasimonochromatic wave.

In Maxwell's equations (1) we can substitute the quasi-
monochromatic field components

which is always a positive quantity.
The above results are relevant for monochromatic

~aves, but physical waves are always a superposition of
such waves for which the group velocity is the relevant
concept. We are therefore led to study the dispersion.
We see from Eq. (8) that the effective index does not de-
pend explicitly on the light frequency. However, the
dispersion of n,z is contained in the variation of ni and
n2 with ~. Little dispersion arises from the normal
dielectric e2, which is therefore taken as independent of
frequency. In this paper, we will assume that the suscep-
tibility of medium 1 is of the form

FIG. 2. Frequency dispersion of a plasmon surface mode at
an interface between a normal dielectric and a medium with
negative e= —n &. The effective index and group index are plot-
ted vs co/co~ for n2=1. 5.

@=f e ""-t"E-(

0 0 e
—ia(t —P'z)E(x co +a)da

—i(co t —p z)

)Mec&= f e '"' ~'H( ,x)rod co

—i (coot —poz )=e ' ' e ' " ~'H(x, roe+a)da,

(15)

BE . ~o 1 BHcurl E—Pee, XE—iP'e, X i H—+— =0,
Bt c c Bt

BH .~o
curl H —Pee, XH iP'e, X— +i E

(17)

B(ego) BH . Be B E
I,poc

Qt2
(18)

where the time argument of the fields is t'=t —p'z. We
shall neglect the last term of (18). By multiplying (17) by
H* and (18) by E*, then subtracting, integrating along
the x direction, and finally identifying the real parts we
find "f "' ) ~E~'dx

dQ)"f"S,dx
(19)

We have supposed that the width of the frequency
band is so narrow that the field distribution is the same
for each component. This implies that we can separate
the time dependence in both ~E~ and S, so that the
group velocity is expressed as

where coo is the center of the band and /3' is the derivative
of p with respect to ro taken at point coo. This permits us
to define the slowly varying part of the field

E(t —p'z)= f e ' " ~'E(x, choo+a)da . (16)

By direct substitution in Maxwell's equations we obtain
the following system of coupled partial derivatives equa-
tions:
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S,dx

d( )~E~ d
dc'

(20)

II. PLANAR SLAB CORK
OF NKGATIVK DIELECTRIC CONSTANT

The denominator is nothing but the energy density in a
dispersive medium and consequently is always positive.
The sign of U is therefore the sign of the global power
fIux. We shall verify in the following sections that nega-
tive normalizing constants correspond to a negative
group velocity.

We expect that in a planar guide geometry (involving
two planar parallel interfaces) modes localized at both in-
terfaces interact giving a richer set of solutions, which is
the subject of the following two sections.

U( W2+ W3)
(TE)U'+ W2 W3

tanh(2U) =

n2n3U +n ]62%32 2 2 4 (TM),

(21)

(22)

U=ka+n, +n,z,
Wz

=karen,

s. n2,—

3 ka "y n,&
—n 3

2 2

(23)

where we have introduced the reduced real and positive
transverse wave numbers

Consider a slab core of width 2a with negative dielec-
tric constant e, = —n, surrounded by two claddings of
dielectric constants e2 =n z and e3 = n 3 (see Fig. 3). In
what follows, without loss of generality, we shall assume
n 3 & n 2, the ratio value n 2 /n

&
determining various types

of solutions, which will be discussed in the present sec-
tion. We first treat the general case of an asymmetric
guide, then we give particular results for the symmetrical
case. We examine the properties of the solutions, i.e., the
effective index value and mode shape as a function of
guide width 2a for fixed light frequency (geometric
dispersion). Finally, we treat the dispersion problem giv-
ing the effective index variations as a function of frequen-
cy for fixed geometrical parameters.

We start by deriving n,z, then we examine the analytic
form of the corresponding field components.

~em'
E = H

n3
8'3 x /a

Z

2n 3 W3x/a
H = —ikaA e

3

for 0&x ~2a:

(24)

with U, W2, and W3 being positive, Eq. (21) can never be
satisfied since the two members have opposite sign and
therefore there is no TE-type solution. We now discuss
the TM solutions given by Eq. (22). The components of
the field are given as follows:

For x ~0:

A. Dispersion as a function of guide thickness

0

2
E, =Q3

We first consider the general case of an asymmetric
guide. By writing Eqs. (4) and (5) for each medium and
continuity conditions for the tangential field components
E„H„E,H, at both interfaces (x =0 and 2a ), we ob-
tain a general dispersion equation, which is easily split
into the following two separate equations related to
transverse-electric (TE) and transverse-magnetic modes,
respectively. We will find, as before, that only TM modes
can exist:

neo
2n2

Un 3E,= A cosh(2U) — sinh(2U) e8' n3 1

—F2�(x/a —2)

n,aE = — HX y
n&

Un
E, = A cosh( Ux /a )

— sinh( Ux /a )
8'3n )

n 2
1 Un 3H =ika A sinh( Ux /a ) — cosh( Ux /a )8' n3n)

for x ~2a:

(25)

(26)

X

n 2

H =ika A cosh(2U)
2 .

Un3
z sinh(2U) e

8'3n )

—W (x/a —2)2

FIG. 3. Geometry and notations for the planar slab
configuration. The inner layer is a medium with negative e
(such as a metal) and thickness 2a.

By performing the Poynting vector integration on a
cross section, we get the power Aux
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p = oj(1 —a)

0
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NORMA&-~& 'HMNSVEItSK COORDINATE x / a

6.0

2 2a=n /n
3 I

FIG. 4. Partition of the p, o plane: the existence and number
of solutions in the different regions are discussed in the text.

FIG. 6. Amplitude as a function of distance of the Hy com-
ponent of the guided mode for region 2 of Fig. 4 in a planar slab
structure in the direction x normal to the interfaces n3/n&
(x/a =0} and n&/n2 (x/a =2). Amplitudes are in arbitrary
units. The following parameter values have been taken:
n& =2(e&= —4), n2=2. 2, n3=2. 1, ka =0.15.

n] 8 3 tl3U
2 3 2 2+Ok ~

2 2 2 Pr 4~4 4U2n )8'3U 2 &) 2 +3

Pl n1 3 p 2
3+---

~3 n'rV' —O'U'
1 3 3

(27)

We find that I' can be negative, thus giving rise to a nega-
tive group velocity. The physical meaning of such nega-
tive solutions is not obvious, but we note that solutions
with negative group velocity do not violate the principle
of causality and that the energy density is always posi-
tive. Negative group velocities are also encountered in
semiconductors, for optical-phonon branches or near the

top of conduction bands.
We now discuss the existence and properties of TM

modes as a function of the optogeometrical parameters
2a, n &, n2, and n3 for fixed frequency.

A more convenient form of the implicit TM mode
dispersion equation (22) is obtained by setting

V2 =ka Qn, +n z, V3 =ka Q n, + n 3 (28)

X=, R=U

V2
'

V2
'

2

n2

(29)

(which gives 8'z = U —V2, W3 = U —V3 ). Moreover,
also let

2

n3 2 1+a.=o., R
1+p

9.0 With these notations the dispersion equation becomes

—2a
9.0

n 2
X A 7.0

30
50

1.0
0.00

I I

0.05 0.10 0.15

NORMAL&IF. D GUIDE WlDTH k a

FIG. 5. Geometric dispersion of the effective index of surface
modes in a planar slab structure with negative core index. This
corresponds to region 2 of Fig. 4. The following values are
adopted: n& =2 (e&= —4), n2=2 2, n3=2 1 (p=1 21,
o. =1.10). Note the double-valued effective index for thickness
ka &0.18. The upper branch corresponds to a mode with nega-
tive Poynting vector. The thickness is given in reduced units
ka, where k is the vacuum wave vector.

1.0
0.00

I I I I

0.10 0.20 0.30 0.00

NORMAL&~D GUIDE WIDTH ka

0.50

FIG. 7. Geometric dispersion of the effective index of a pla-
nar double heterostructure for region 1 of Fig. 4 as a function of
inner layer thickness 2a. The following indices have been taken;
n~ =2 (e~ = —4), n2 =2.2, n3 = 1.7 [p= 1.21, o=0.7225,
o. /{1—o ) =2.6].



GUIDED OPTICAL WAVES IN PLANAR HETEROSTRUCTURES. . . 13 561

1.0

n

03

0 I I

-2.0 0.0 2.0 4.0
NORMALIZED TI~SVERSE COORDINATE x/a

6.0
-1.0

-4.0
I I

-2.0 0.0 2.0 0.0
NORMAL&7FD TRANSVERSE COORDINATE x j a

6.0

FIG. 8. H~ component of the surface mode in a double het-
erostructure for region 1 of Fig. 4 as a function of distance
along x. The following parameters have been taken: nl =2
(el= —4), n2=2. 2, n3=1.7, ka =0.3.

FIG. 10. Hy component of the surface mode in a double het-
erostructure for region 2' of Fig. 4. The following values are
adopted: n& =2 (e&= —4), n2=1.9, n3=1 ~ 8, ka=0. 3. Curve 1

corresponds to the lower mode of Fig. 9.

X(cr +X —I +p+X —R )
tanh(2 V2X) =

pcTX ++(X —1)(X —R )
(30)

1 (1+A )(1+8)

4X (1—A )(1—8) (31)

with

A (X)=, 8(X)=+X~—R'
It is clearly seen that the existence of solutions is restrict-
ed by the conditions A, B & 1 or A, B & 1.

By discussing these conditions we obtain a partition of

with the restrictions X) 1 and R & 1.
Recall that solving the dispersion equation means

determining n, ff as a function of V2. Due to the implicit
form of Eq. (30), it is more convenient to discuss the
function Vz(X), the determination of X from V2, giving

n,a

the (nz/n„n3/n, ) plane delimiting various domains
with respect to number or cutoff properties of solutions.
The discussion can be restricted to the nz &n3 area be-
cause the n2 (n3 area may be obtained by symmetry.
The case n2=n3 will be discussed separately in the con-
text of symmetric structures. Figure 4 presents a sum-
mary of the discussion.

In region 0 satisfying the constraints
(p&1;p&cT/1 o , cr—&1") or [n2) n„n3 &n, ;n2 &n, n3 /
(n i

—n 3
)' ], V2 is never defined for any value of X and

therefore no mode can exist. (While solutions involving a
pure real effective index are strictly forbidden, neverthe-
less attenuated modes with complex n, ff do exist even if
this system is assumed lossless. Such modes are called
leaky waves. For large ka, such modes have vanishingly
small attenuation, as seen from the fact that the single in-
terface solution should be recovered in the limit of
infinite thickness. They may be experimentally hard to
distinguish from true surface modes in the presence of re-
sidual material losses. )

In region 2, when condition p) cr & 1 (nz& n3 & n, ) is
achieved, the function Vz(n, fr) is continuous; it increases,

9.0
9.0

7.0
7.0

50
50

1.0
0.00 0.10

I

0.20
I I

0.30 0.40

NORMALIZED GUIDE WIDTH k a

0.50

3.o

1.0
0.00 0.10

I

0.20
I

0.30
I

OAO 0.50

FIG. 9. Geometric dispersion of the effective index of a pla-
nar double heterostructure for region 2' of Fig. 4. The follow-
ing values are adopted: n l =2 (e& = —4) nz =1.9, n3 = 1.8
(p=0.9025, o.=0.81). The two modes would correspond to
Fano modes in a symmetric case n2=n3.

NORMALIZED GUIDE WIDTH k a

FIG. 11. Geometric dispersion of the effective index of a pla-
nar double heterostructure for region 1' of Fig. 4. The follow-
ing values are adopted: nl =2 (e, = —4), n2=1.9, n3=1.3
lp=0. 9025, cr=0.4225, cr/(1 r)=c70316—].



13 562 B.PRADE, J. Y. VINET, AND A. MYSYROWICZ

n3 n n2

I
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NORMALIZED TRANSVERSE COORDINATE x j a

e.o
I I

-2.0 0.0 2.0 4.0
NORMAL&~& I'RANSVERSE COORDINATE x/ a

FIG. 12. Amplitude of the H~ component of the surface
mode in a double heterostructure for region 1' of Fig. 4 as a
function of distance along x in arbitrary units. The following
values are adopted: n

&
=2, n, = 1.9, n 3

= 1.3, ka =0.15.

FIG. 14. Amplitude of the H~ field component of the surface
mode for a symmetric slab (area p & o. & 1 of Fig. 4). The follow-
ing numerical parameters have been adopted: n& =2 (e& = —4),
n2=2. 2, ka =0.15.

reaches a maximum, then decreases to zero. The disper-
sion curve n, fr(ka) is thus doubled valued, admitting an
upper branch having only a high cutoff. The lower
branch has in addition a low cutoff at W2 =0. Let us em-
phasize that in this region n2 ) n 1 and n 3 ) n

&
no solution

exists for the isolated (n„nz) or (n„n3) interfaces. The
coupling makes the existence of new modes possible, but
only for small core thicknesses. For larger widths, the
slab behaves like two isolated interfaces and no more
solution can exist anywhere. The dispersion curve and
the corresponding mode profile are plotted in Figs. 5 and
6, respectively.

In region 1 satisfying the constraints
(p&1;p&o/I —o;o. &1) or (n2 713 l12 &11163 /
(n, —n3)' ] only one solution with a lower cutoff can
exist. One sees that for increasing values of ka, n, ff tends
towards the value given by the isolated interface theory
(see Figs. 7 and 8).

In region 2' satisfying the constraints (p& a';p &0 /
1 —o",p & 1) two branches separated by a finite gap are
seen to exist. The upper branch has no cutoff. The lower
branch has a lower cutoff. In this region, for each inter-
face, an isolated interface type solution would exist sepa-

9.0

8.0

7.0

N so—

4.0
p4

3.0

2.0

1.0
0.00

Odd mode

Even mode
I I

0.50 1.00 1.50
NORMAL&~D GUIDE WIDTH k a

FIG. 15. Geometric dispersion of the effective index for a
symmetric slab (area v &p & 1 of Fig. 4). Note the appearance
of two distinct modes (Fano modes) for thicknesses 2a &1/k,
with k the incident light wave vector. The following numerical

parameters have been adopted: n
&
=2 (e& = —4), n, = 1.7.

9.0

8.0

7.0

6.0 0.0

2.0

1.0
0.00

I I I

0.05 0.10 0.15

NORMAL&7F. D GUIDE WIDTH k a

0.20

FIG. 13. Geometric dispersion of the effective index for a
symmetric slab (area p & o. & 1 of Fig. 4) as a function of inner
layer thickness a expressed in reduced units. The following nu-
merical parameters are adopted: n 1

=2 (e& = —4), n2 =2.2.

I

-2.0 0.0 2.0
I

0.0

NORMALIZED TRANSVERSE COORDINATE xj a

FIG. 16. Amplitude of the 0„ field component for a sym-
metric slab (area o. &p & 1 of Fig. 4). The following values have
been adopted; n& =2 (e&= —4), n2 =1.7, ka =0.5 {for Au, the
value of 2a is about 80 nm). Note the existence of the two Fano
modes, also shown in Fig. 15.
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Area

0
1
1'

2

2'

diagonal p& 1

diagonal p &1

TABLE I. Summary of the discussion for negative index core slab.

Type of Solution

no solution
1 solution for ka & cutoff
1 solution for all ka
1 solution for cutoff 1 & ka & cutoff 2
1 solution for ka & cutoff 1, no solution for ka & cutoff 2
2 solutions for ka & cutoff 1, otherwise no solution
2 even solutions, similar to type 2
similar to type 2'

1 even mode with cutoff
1 odd mode without cutoff

curve p=o /(1 —o. )

p=o. =1
p 1o.

1
1 solution if o. &0.5 with cutoff X&

&1—2u
o. &0.5 no solution

1 solution with cutoff
no solution

rately giving the two asymptotic values of n, ff. For small
values of ka, these solutions becomes coupled, causing
the observed dispersion (see Figs. 9 and 10). Such modes
have been previously discussed under the names of Fano

5.0

3.5
3.0

modes.
In region 1' satisfying the constraints (p ( 1;p ) cr /

1 —cr) we obtain a unique solution without cutofF. Two
isolated surface-type solutions may exist asymptotically,
but only one is given by our analysis. As in case 0 there
is a second solution having a complex n,z, the imaginary
part of which tends to zero as ka grows, giving asymptot-
ically the isolated interface-type solution (see Figs. 11 and
12).

We now consider the special case of symmetric struc-
tures (n2=n3). For the sake of convenience, we choose
the center of coordinates in the middle of the core. Due
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REDUCED WAVE VECTOR n ff (o/ o)eff p

FIG. 17. (a) Frequency dispersion of the effective index n, ff

(heavy line) and nl (light line) of the heterostructure shown in
Fig. 3. Vertical bars delimit different regions of Fig. 4. The fol-
lowing values are adopted: n2 =2.5, n3 =1.3 (p/cr & 2), q =0.1.
(b) Polariton dispersion curve of surface modes of a planar dou-
ble heterostructure of inner layer thickness 2a (20 nm for gold)
vs wave vector P= kn, frco /co~ n2 =2.5, n, =.1.3 (p/cr & 2),
q =0.1. Note the negative slope of the upper curve correspond-
ing to negative group velocity and the cutoff for n, ffco/~, & 2.8.
Also shown is the light dispersion in medium 2.
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FIG. 18. (a) Same parameters as in Fig. 17(a), except q =2.0.
(b) Same parameters as in Fig. 17(b), except q =2.0.
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tanh(U) = '

8'
(even solution)

n', U

f12
(odd solution);

pg, 8'

with

to the symmetric geometry the general dispersion equa-
tion can be split in two equations related to even and odd
modes:

1 pX+~X —1
ln

pX —&X'—1

1 ~X —1+pX
1n ~X'—1 —pX

(even solution) (36)

(odd solution) . (37)

It is clear that for p & 1 both even and odd solutions can
exist, and for p& 1, only even solutions exist, since each
member of Eq. (35) must be lower than unity. By invert-
ing both equations, we finally can cast the dispersion rela-
tions under the following reverse but convenient form:

U=ka+n, +n,z, W=ka+n, z n—
2

V=ka+n, +n2
(33)

tanh(VX)= '

~X' —1
(even solution)

pX
pX

~X'—1
(odd solillloil) .

(34)

(35)

By defining the reduced variable X= U/V) 1 and not-
ing p=(n2/n, ), the dispersion equations become

In region p &1 (n2 & n, ), the even solutions are split
into two branches (see Fig. 13); the corresponding shapes
of the modes are plotted in Fig. 14. The upper branch
corresponds to negative power solutions.

In region p &1(nz & n, ), we find one even solution and
one odd solution, both without cutoK This region is em-
bedded in region 2' of Fig. 4. It corresponds to the cou-
pling between two identical plasmon modes which can be
combined, giving odd and even supermodes. See Figs. 15
and 16. This whole discussion is summarized in Table I.

B. Dispersion as a function of light frequency

Having found the solutions of the stable modes at a
fixed frequency as a function of geometry (geometrical
dispersion), we now examine the frequency dependence of
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FIG. 19. I,
'a) Effective index frequency dispersion. n2=1.9,

n, =1.8 (p/o. &2) q=0. 1. (b) Frequency dispersion. co vs P.
n2=1.9, n3=1.8 {p/o. &2), q=0. 1.

FIG. 20. (a) Effective index frequency dispersion. n2 = 1.9,
n3=1.8 (p/o &2), q=2. 0. (b) Frequency dispersion. co vs P.
n2=1.9, n3=1.8 (plo. &2), q=2.0. Note the cutoff.
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the solution. As done previously, we shall make use of
the plasma dispersion law given by Eq. (12).

By using the reduced frequency /=co/co~ (0&(&1)
and the parameter q =co~a /c, expressions (23) become

U=q 1/ 1+(n,s —l)g

Wz =qg"(/ n, s n—
2

W3 =qgQn, s n3—

(3g)

III. PLANAR SLAB: CLADDING
WITH NEGATIVE DIELECTRIC CONSTANT

Consider now the inverted structure, a planar slab core
of ordinary dielectric constant (e, =n, for 0&x &2a)
surrounded by two half space (claddings) of negative sus-
ceptibilities (ez= n2 for—x )2a, @3= n3 for—0)x ).
Again, we may assume n3 (n2. The solutions of field
equations found in Sec. II [Eqs. (24) —(26)] remain un-
changed, but parameters 8'2, 8'3, V2, and V3 are now

By substituting these explicitly frequency-dependent ex-
pressions in the general implicit dispersion equation (22),
we get an implicit equation of the variable g, the solution
of which gives the frequency dispersion.

By eliminating g between p and cr, we can see that the
reduced frequency g may be represented by a straight line
in the (p, o ) plane from the origin to infinity. Depending
on the slope of the line, two scenarios may be encoun-
tered: (a) (n2/n3) )2: the path crosses areas 1',0;1;2.
(b) (nz/n3) &2: the path crosses the areas 1', 2';1;2. In
each case the effective index has been plotted with respect
to the frequency parameter for various values of parame-
ter q (see Figs. 17—20).

Often, the dispersion is presented in a frequency versus
P (P=kn, ~) diagram (polariton diagram). This presenta-
tion has the advantage of showing the asymptotic limit
for large n, ff. Such a polariton diagram is shown in Figs.
17(b), 18(b), 19(b), and 20(b).

FIG. 22. Geometric dispersion curve of a normal dielectric
core surrounded with media with negative e, as a function of
thickness expressed in reduced units ka. The following values
are adopted: n, =1.5, n, =2.0 t,'e, = —4), n, =1.3 (e,= —1.69),
corresponding to area 1 of Fig. 21.

W2 =ka Qn, ir+ n z W3 =ka Q n, ff + n 3

V2=ka tk/ n, +n2, V3=ka+n, +n3
(39)

The preceding definition of U [Eq. (23)] gives, for the or-
dinary index n &,

U =ka (/ n, fr n, — (40)

Recall that we look for solutions which are evanescent
outside the core region of index n &. Since U affects the
type of solutions in the bounded core region only [see Eq.
(40)], one must examine the case of either real or pure
imaginary values, giving rise to evanescent ( n, & n, fr ) or
oscillating solutions (n,z & n, ) in the core region.

Modes of the first family are TM modes, with a spatial
dependence similar to those discussed in Sec. II [Eqs.
(24) —(26)]; as before they correspond to surface modes.
Modes of the second family, which may be divided into
TE and TM modes, have features analogous to those of
classical guided modes in ordinary dielectric structures.
The two families will be treated in the following two sub-
sections.
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15o I I I I I I
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C
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CL.

r ~ . . . ~ ~, ~ ~ ~ ~

0.0

n =20
2

e =-4
2

n = 1.5
n = 1.33

c =- 1.69
3

2 2a=n /n
3 1

-2.0 0.0 2.0
NORMALIZED TI~SVERSE COORDINATE x / a

4.0

FIG. 21. Discussion of the existence of solutions for imagi-
nary index claddings.

FIG. 23. Amplitude of the H~ field component of the surface
mode of the heterostructure discussed in Fig. 2. ka =0.6.
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FIG. 24. Geometric dispersion curve for area 2 of Fig. 21.
The following values are adopted: n1 = 1.5, n &

= 1.4
(e~= —1.96), n3 =1.3 (@3=—1.69}.

FIG. 26. Geometric dispersion curve for area 3 of Fig. 21.
The following values are adopted: nl =1.5, n2=2. 0 (@2=—4),
713 1.8 (e3 = —3 ~ 24) ~

A. Surface modes

Discussion of the existence of solutions

The TE and TM dispersion equations are now, with U
real ( U=ka+n, tt n&, n, tt)—n, ),

X(cr+X +1 +p+ X+R )tanh 2VzX =
per X ++X + 1+X +R

(44)

As in Sec. II, it is possible to give V2 as a function of X:

The assumption n3 &n2 gives o. &p and R &1; X&0.
The dispersion equation reads

U( W2+ W3)
(TE)U'+ m2 W3

tanh(2U)= '
2U 2~ +n] n3 p n2 3 (™~

U n2n3+n, 8'2@3

(41)

(42)
with

1
1

(1+2)(1+B)
4X (1—A )(1 B)—

~(X)=, B(X)=
+X +R +X +1

(45)

UX=, R=, p=
V2

'
V2

'
n,

'2
Pl 3

n1

2

(43)

which makes clear that, as in Sec. II, only TM modes can
exist. In order to discuss the existence of the correspond-
ing modes, it is convenient as before to introduce the pa-
rameters

As usual, curve n, ff vs V2 may be obtained by rotating
the curve Vz(n, tr). Figure 21 summarizes this discussion.

Within the area 1 obeying the constraints n2&n1,
n3 & n1, we have one solution with a lower cutoff. That
solution matches asymptotically the plasmon wave locat-
ed at interface x =2a (see Figs. 22 and 23).

Within area 2 (n 3 (n2 (n, ), only one solution is seen

0.0 2.0 4.0
NORMAL17j:& 'IRANSVERSE COORDINATE x / a

-2.0 0.0 2.0
NORMALIZED 1RANSVFWSE COORDINATE% x / a

4.0

FIG-. 25. Amplitude of the H~ field component of the surface
mode shown in Fig. 24. This solution has a negative group ve-

locity. The following values are adopted: nl =1.5, n2=1.4
(@2=—1.96},n, = 1.3 (e,= —1.69), ka =0.3.

FIG. 27. Amplitude of the H~ field component for area 3 of
Fig. 21. The following values are adopted: n, =1.5, n2=2. 0
(@2=—4), n, =1.8 (e3= —3.24), ka=0. 8. The upper curve
corresponds to the upper branch of Fig. 26.
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FIG. 28. Geometric dispersion curve for a symmetric slab.
The following values are adopted: n

&

= 1.457, n 2
= 1.3

(e& = —1.69).

FIG. 29. Geometric dispersion curve for a symmetric slab.
The following values are adopted: n, = 1.457, n 2

=2.0
(~2= —4).

U=ka+n, fr n1, W—=karen, 1r+nz

V=ka+n1+nz
(46)

The general dispersion equation (42) splits up into the
following two equations having even and odd solutions:

to exist having an upper cutoff. The isolated interfaces
cannot sustain any surface mode due to the plasmon ex-
istence condition (8), but the coupling between the inter-
faces allows the existence of this new mode. The corre-
sponding dispersion curve and mode shape are plotted in
Figs. 24 and 25.

Within area 3 (nz ) n 3 )n, ), the solutions are split into
two branches corresponding asymptotically to the
plasmons located at each interface. The upper branch
has no cutoff, the Geld intensity has no node in the core
region and will involve even modes for the special case
n2=n3. The lower branch has a lower cutoff, the corre-
sponding 6elds have a node in the core region and will in-
volve the odd modes of the symmetric structure (see Figs.
26 and 27).

The above analysis has to be completed by inspecting
the properties of the symmetric slab. As in Sec. II, we
adopt the more convenient notations

tanh U=

n&

2
(even TM solutions)

~2 U

n2
(odd TM solutions) .

n21 8'
(47)

As in Sec. II, let us set

UX=—,p=V'

2n2
(48)

Within these notations we can rewrite Eqs. (47) under the
form

1 pX++X +1
ln

pX —+X —1

1 +X +1+pX
ln

2X QX +1 pX

(TME)

(TMO) .

(49)

The discussion of the existence of solutions shows that
(i) for p(1 (nz (n, ) there is only one odd mode with a
higher cutoff (see Fig. 28), (ii) for p) 1 (nz) n, ) there is
one even mode without cutoff and one odd mode with a
lower cutoff (see Fig. 29), (iii) for p= 1 (n zn, ) only the
odd mode can exist. Table II summarizes this discussion.

TABLE II. Summary of the discussion for negative index claddings.

Area

diagonal p& 1

diagonal p(1

p=0=1

Type of solution

1 solution with a lower cutoff
1 solution with an upper cutoff
2 solutions

one solution without cutoff
one solution with a lower cutoff

one odd mode with an upper cutoff
2 solutions
one even solution without cutoff'
one odd solution with a lower cutoff'
one odd mode
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2. Frequency dispersion

Let us now discuss the existence and features of modes
with respect to frequency. If the frequency is varied. , the
intrinsic dispersion laws of media 2 and 3 have to be tak-
en into account.

By denoting co2~ and co3p the plasma frequencies of
media 2 and 3, respectively, we can express n2 and n3 as

quency cu/co3~ for two typical values of parameters q and
In the same figures we have added the variations of n2

and n3. Note that there is a change of type of solution
each time curves n2(g) or n3(g) cross the constant line
n).

B. Qscillating guided modes

n2 —v co2 /co 1, n3 = y' co3&/co 1
2 2 ~ & 2 2 (51) Dispersion as a function of slab width

(0&&&1),
CO2p

(0&/&1),

Without loss of generality, we shall assume co3~ & co2&. By
using reduced variables, we have

Oscillating guided modes are obtained for values of n, ff
lower than n&. It is thus convenient to adopt the follow-
ing new definition of U:

cod a
q=

C

n2 =+1/9g —1,

U =qg (r/n, tt n, —
n3 =+1/g —1, ka =qg; (53)

W'2 =q i/ (n, tt
—1)g +1/~

(54)
8'3=q i/(n, tt l)g +1—.

When g is varied, the corresponding representative
point in the p, o. plane describes a rectilinear path, which
in general does not meet the origin. In Figs. 30 and 31
we have plotted the effective index versus reduced fre-

U=ka 1/ n, n,tt—

The field components are now as follows.
For TE modes:

For O~x ~2a,.
E =0,

ika UE = C sin( Ux /a ) + — cos( Ux /a )8'3

(55)

(56)

n (m/I n (co/co )
3p
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FIG. 30. (a) Effective index as a function of co/co3p co3p is the
plasma frequency of medium 3. The following parameters have
been chosen: n& =1.5, q=0.4, ~=0.8. (b) Frequency disper-
sion. co vs P=kn, &co/co, r The follow. ing parameters have been
chosen: nI =1.5, q=0.4, ~=0.8.
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REDUCED WAVE VECl&R n ff + 3p

FIG. 31. (a) Frequency dispersion of the effective index as a
function of the reduced frequency co/co3~. The following values
of the parameters have been adopted: n& =1.5, q=2, ~=0.8.
(b) Frequency dispersion. co vs P=kn, &co/co, for the following
parameters: n& =1.5, q=2, ~=0.8.
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E, =O,

H = —n, ffE

H =0,

UH =C cos(Ux/a) — sin(Ux/a)Z 8'3

C) 0.0

for x ~0,

E =0,
W3x /a

eE =ikaC
3

=0

Hx = —n,ffE„,
H =0,

W3x /a
H, =Ce

(58)

-2.0 0.0 2.0
NORhh4J IZED TRANSVERSE COORDINATE x / g

FIG. 33. Amplitude of the E„component of TED and TE& os-
cillating guided modes of Fig. 32. The following parameters
have been assumed: n, =1.5, n&=3 e~= —,n3 3=-ave: &= . , = i = — n =2(e= —4),
ka=2. These parameters correspond to a layer o gof lass of
thickness 2a =340 nm surrounded with two metallic sheets of
silver (e&= —9) and gold (@3=—4) for a wavelength 530 nm.

for x &2a, newE„H
nI

E = i —C cos(2U)—. ka

E,=O,

Hx = —n, ffE

H„=O,

U —W&(x /a —2 j
sin(2U) e

83

(60)

(61)

Ey =0,
n3E =3 cos(Ux/a) — sin(Ux/a)Z 8' n23

H =0,
2kan

& U n3H = i —3 sin(Ux/a)+
z cos(Ux/a)

8'3 nI

(62)

UH =C cos(2U) — sin(2U) e
Z 83

—W&(x /a —2)

(63)

For TM modes:

For O~x ~2a,

H, =O;

for x &0,
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FIG. 32. Geometric dispersion curves for TE and TM oscil-
lating guided modes. The following parameters are assumed:

(+P 9) ~3 2 (~3 4)

FIG. 34. Amplitude of the H~ component of TM& oscillating
guided mode of Fig. 32. The following parameters have been
assumed: n& =1.5, n&=3 (e&= —9), n3=2 (e3= —4), ka=0. 8.
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netE„— H
n3

E =0, (64)

1

2X
X—arctan

R —X

X—arctan
1 —X

+

kyar

(TE), (70)

W3x /a
E, =He

H„=O,

2n 3 W3x/a
H = —ika Ae (65)

V2= '

I o.X
arctan &~'—X'

+arctan +kryo (TM),pX
1 —X

(71)

H, =O;

for x ~2a,

netE H
n2

E =0,

E, = A cos(2U)—
Un

sin(2U) e
83n(

(66)
1

(ka );„r=
2n,

n) n)—arctan —arctan +k~
n2Il3

Let us point out that the TM, mode has a specific behav-
ior: it also has a higher cutoff given by

which facilitates the discussion of the existence and
cutoffs of the modes. We see that for ka tending towards
infinity, there exists an infinity of modes obeying Eqs. (70)
and (71), that we shall refer to as TEk+, and TM„modes,
respectively. The situation is roughly analogous to that
of guided modes in normal dielectric planar structures.
The cutoff values are, however, different. One can see
that TE& and TMk+ &

modes have a common cutoff given
by

n 2 Un
H =ika A cos(2U) — sin(2U) e

3

8'3n )

—W (x /a —2)2

n 3
(ka ),„„= 1

Qn +n

2
n2

Qn', +n,'

H, =O .
(67)

The dispersion equations for TE and TM modes are, re-
spectively,

The dispersion curves of the two families of modes
have been plotted in Fig. 32. We have represented the
spatial dependence of these modes in Figs. 33—35. Index-
ation of TE and TM modes has been determined in order
to be consistent with the number of nodes of the field am-
plitudes.

U( W'~+ W3)
(TE)

tan(2U)= 2 2 ~
)

U n2n3 n )S2$V32 2 2 4

(68)

(TM) . (69)

Note that the tan appears now, instead of tanh. We have
a situation similar to the case of an ordinary heterostruc-
ture with positive dielectric constants. Modes will always
exist above a critical thickness. Defining the variable
X= U/V2 and the parameter R = V3/V2 & 1,
[0 &X &n, /(n, +n2)' with Vz=ka(n, +nz)'~ and
V3=ka(n

&
+n )'~ 3] the inverted dispersion equations

become

0.0 2.0 4.0

NORMA»~~ 'IR)&fSVEltSE (XMRDINA'IK & I a

FICx. 35. Amplitude of the H~ component of TMz oscillating
guided mode of Fig. 32. The following parameters have been
adopted: n& =1.5, n2=3 (e&= —9), n3=2 (e3= —4), ka=2.
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—
I pm+arctan(+I/X —1)] (TEE)X (79)

1 X
pm

—arctan
&I —X' (TEO) (80)

1
pm —arctan —& 1/X —1

1-'
X p

(TME) (81)

1 pX
p ~+ arctan

X V'I —X' (TMO) . (82)

An alternate useful form, which allows indexation of
modes, is

FIG. 36. Geometric dispersion of oscillating guided TE
modes for a symmetric slab. The following parameters have
been adopted: n& =1.457, n2 =2.0 (e&= —4).

The geometric dispersion curves of these four families are
shown in Figs. 36 (TE) and 37 (TM).

2. Symmetric case: n2=n3

When n2=n3, we reduce the parameters and variables
to the set

U=ka+
&

n—n,z, 8'=karen, z+nz

V=ka+n, +n2
(74)

Then the dispersion equations are split into even and odd
equations, giving four types of modes determined by

3. Frequency dispersion

When the frequency is varied, we can introduce, as in
Sec. IIIA2, parameters /=co/co3~, r=co3/coz~, and

q =~3 a /c, and discuss the resulting dispersion as before.

1.35

1.20

U
(even TE solution)

tanU=.
U

(odd TE solution),8'

8'
(even TM solution)

~2
tanU=-

2
U

(odd TM solution) .
n 2)

8'

(75)

(76)

(77)

(78)

1.05

o.so

o.vs

0.60

0.45

0.30

0.15

0.00
0.0

1.0

0.9
8

0.8

0.2 OA 0.6 0.8

NORMALIZED LIGHT FREQUENCY i 33p

1.0

1.'k6

1.31

1.17

1.02

0.87

0.73

0.58

OAW

0.29

TMO

0.7

0.6

0.5
0.4

0.3

0.% 0.8 1.2

REDUCED WAVE VECTOR

1.6 2.0

0.15

0.00
0.00

I

1.00 2.00 3.00 '1.00

NORMALIZED GUIDE WIDTH ka

5.00

FIG. 37. Geometric dispersion of oscillating guided TM
modes for a symmetric slab. The following parameters have
been adopted: n] =1.457 n2 =2.0 (6'2= 4).

FIG. 38. (a) Frequency dispersion of the effective index of TE
and TM oscillating guided modes vs co/co» for the following pa-
rameters: n

&

= 1.5, q =2, ~=0.8. For a metal such as gold with
A,»=460 nm, the corresponding thickness is a =150 nm. (b)
Frequency dispersion of TE and TM oscillating guided modes.
co-P representation. The following values of the parameters
have been adopted: n& =1.5, q=2, ~=0.8.
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Examples of the frequency dispersion curves for the
effective index are shown in Figs. 38(a) and 38(b).

CONCLUSION

A complete discussion of guided optical modes in pla-
nar heterostructures consisting either of a normal dielec-
tric sandwiched between two media with negative dielec-
tric constants or a medium with a negative dielectric con-
stant surrounded by two normal dielectrics has been
presented. All media have been assumed to be lossless
and a plasma frequency dispersion law has been taken for
the media with negative dielectric constants.

In the first case, transverse magnetic modes with field
amplitude maxima at the interfaces (surface modes) are
found as stable mathematical solutions. The set of solu-
tions and their cutoffs depend sensitively on the inner lay-
er thickness (geometric dispersion) and the light frequen-

cy. Examples pertaining to realistic cases have been
presented. The well-known Fano modes are recovered as
special solutions in the symmetric cases.

In the second case, both TM surface modes and TM
and TE oscillating guided modes are found as stable,
unattenuated solutions. Again the geometric and fre-
quency dispersion is discussed in the general case. Partic-
ular examples have been presented for realistic cases.

It would also be interesting to examine other types of
simple topological situations, such as the circular cylin-
drical case (optical fibers surrounded by a metallic layer).
They will be treated in a forthcoming paper.
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