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Excitation of a localized oscillator or phonon due to transient charge transfer into and out of electron-
ic states linearly coupled to the oscillator is considered within several difFerent contexts. Specifically, the
basic physical content of the mechanisms responsible for phonon broadening in core-level spectroscopy,
intramolecular vibrational excitation in resonant electron scattering, phonon excitation in resonant elec-
tron tunneling through quantum-well heterostructures, and hot-electron-induced resonant desorption is
shown to be similar. Existing exact solutions to the scattering and tunneling problems are here adapted
to resonant desorption and numerical consequences —such as excitation and desorption probabilities and
translational energy distribution —are obtained. These results and insights are considered in the light of
a semiclassical wave-packet-dynamics model, which previously had been developed to account for ob-
served nonthermal, laser-induced desorption in the system NO/Pt(111).

I. INTRODUCTION

The abstract problem of localized-oscillator or boson-
field excitation due to a transient driving force provided
by electronic transitions, within atomic, molecular, or
solid-state systems, has been of great interest in many
different areas of physics. Without being exhaustive, one
would naturally include such phenomena as optical-
absorption line shapes, ' core-level spectroscopies, in-
tramolecular vibrational sidebands in photoionization
and in resonance electron scattering, " resonance Raman
scattering, stimulated desorption, and inelastic reso-
nant tunneling in quantum-well structures. '

Recent work on various aspects of resonant electron-
induced desorption of atoms and molecules from surfaces
has supported the idea that excitation of the adparticle-
surface bond, even beyond the bond-breaking level of dis-
sociation or desorption, can be due to the transient forces
associated with the resonance state. In particular, experi-
ments showing monochromatized-electron-beam-induced
desorption of atomic oxygen from Pd (Ref. 9) and also
laser-excited hot-electron-induced desorption of NO from
Pt(ill) (Ref. 10) have inspired theoretical modeling"'
which emphasizes the consequences of temporary
( —10 ' s) negative (adsorbed) ions on enhanced desorp-
tion characteristics.

In nanostructure physics, ' a problem of intense
current interest is inelastic electron tunneling through a
quantum well where some sort of electron-phonon cou-
pling exists, but only within the well. The interaction of
the tunneling electron with (dispersionless) phonons or
localized vibrational modes produces resonant transmis-
sion sidebands, as observed in the I-V characteristics of
G-aAs/Al Ga, As resonant-tunneling structures. ' A
number of theoretical models have been constructed '

that are logical extensions of the transient displaced oscil-
lator models developed in spectroscopy' and resonance
scattering.

The objectives of the present paper are manyfold. First

we call attention to some inherent parallels between gas-
phase resonant electron-molecule scattering, resonant
electron-induced desorption, and inelastic resonant elec-
tron tunneling in solid-state junctions, at least with re-
gards to the excitation of localized oscillators or bosons.
From a broad perspective all of these phenomena involve
energy transfer to an oscillator subjected to a transient
driving force associated with electron transitions between
continuum and localized states or resonances. Selected
past treatments of this problem are overed, using as illus-
trative examples of increasing complexity, the boson exci-
tation experienced in core-level spectroscopies, resonant
electron-molecule scattering, and finally, inelastic tun-
neling in quantum wells. ' Upon making contact with
the historical precedents, a recent solvable model of reso-
nant tunneling is adapted to the phenomenon of desorp-
tion. To achieve these ends, the paper is structured as
follows. Section II presents key physical features of the
models used here, ultimately to discuss desorption. First,
the wave-packet-dynamics model of resonance stimulated
desorption" ' is presented. Next the displaced-
harmonic-oscillator model for resonant tunneling is put
forth and commentary is given on their basic
equivalences. The theory is developed in Sec. III, start-
ing first with oscillator excitation in transient core-level
events, then in electron scattering, resonant tunneling,
and finally in situations leading to desorption. Numerical
consequences of the model recently featured by
Wingreen, Jacobson, and Wilkins, as might be applic-
able to desorption, are dealt with in Sec. IV and final dis-
cussion is oA'ered in Sec. V.

II. MQDEI. S

A. %'ave-packet desorption model

The electronic structure of chemisorbed NO, as
relevant to bonding, is characterized by broadened levels
as shown in Fig. 1(a). Here it will be assumed that the
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FICx. 1. (a) Energy-level diagram for inelastic hot-electron
scattering through 2~* shape resonance of adsorbed NO. (b)
Potential-energy curves of chernisorbed and negative-ion NO
with respect to surface, showing wave-packet propagation
throughout the time sequence involving the NO 2~* reso-
nance. The distribution of final NO states is shown as P(c.) vs c.

splitting between the highest occupied (HOMO) and
lowest unoccupied (LUMO) NO 2~'-derived orbital is
due to intramolecular Coulomb repulsion between singly
and doubly occupied states, as suggested by Johnson and
Hulbert' on the basis of photoemission and inverse-
photoemission spectroscopy.

It has been proposed'" ' that the observed nonthermal
laser-induced desorption of NO proceeds as follows. In-
cident radiation with photon energy h v creates a distri-
bution of photoexcited electrons with energy c,;„ in the
range EF„;(c,;„(c.„„;+hv),which produces a fiux of
hot electrons from within the substrate incident upon the
adsorbed NO. For those photoexcited electrons resonant
with the 2'* "level" (or shape resonance), the incident
electron with energy c;„may hop onto the adsorbed NO,
reside in this resonance for a time ~R, and then scatter
back into an unoccupied conduction-band state with en-
ergy cf,„~c.;„, leaving behind some part of the adsorption
system excited with energy Ae = c,;„—c,fi„.

The essential features of the desorption process trig-
gered by resonance electron scattering are pictured in
Fig. 1(b). Let the potential-energy function for the

NO/Pt(111) system be the attractive potential labeled
V, (z) in Fig. 1(b). When the incident photoexcited elec-
tron with kinetic energy c;„ is captured in the NO 2~
resonance state, an additional image-potential type of at-
traction is turned on, resulting in the augmented negative
ion-surface potential curve shown as V (z) in Fig. 1(b).
While image attraction corrections provide a highly
simplified model for the negative-ion potential, their use
has provided intuitively plausible explanations for vari-
ous stimulated desorption scenarios. ""' ' In any
event, the major requirement is only that the intermedi-
ate state is one in which forces are applied to the NO
such that the equilibrium geometries for the two charge
states differ. Displaced and "half-truncated" harmonic-
oscillator potentials could provide an alternative set of
model curves amenable to analytic solution as will be ex-
panded upon in Sec. III D.

With all this in mind, desorption is imagined to
proceed as follows. Upon capture of the incident electron
in the 2~* orbital, the wave-packet characterizing the nu-
clear motion of the adsorbed NO suddenly finds itself as a
nonstationary state on V (z), as in a Franck-Condon
transition, and thus accelerates inward towards the sur-
face. After a time interval ~z, the negative-ion resonance
lifetime, the moving, displaced, and distorted wave pack-
et is returned to V, (z), again as a Franck-Condon transi-
tion, but this time involving the projection of a moving
initial-state wave packet onto both the discrete bound
and continuum desorptive states of V, (z). As is apparent
from Fig. 1(b), the dynamics on V (z), the intermediate-
state potential-energy curve, can easily lead to electron-
assisted desorption represented by the area under the
filled-in region of the (extremely ri, -dependent) final-state
distributions labeled P(s), if hv is large enough for E to
exceed D, the desorption energy. This model has been
quantified using the Gaussian wave-packet propagation
techniques developed by Heller' and the results present-
ed in analytic form in the so-called short-time limit. "'

B. Inelastic resonant-tunneling model

H =H,)+H h+H;„, ,

with

(la)

K, CX

Hph =kco0b b,
H;„,=XDctc(b+bt),

K) CX

(lb)

(1c)

which is sometimes called a local polaron model. Equa-
tion (1) describes a system in which a discrete localized
electronic state [eigenvalue equal to e, , Fermion opera-
tors (c,c )] is coupled via a set of matrix elements V
to a number of electronic continua specified by index a,

Recently the phenomenon of resonant tunneling, treat-
ed in some detail many years ago within the context of
field-emission spectroscopy, ' has been discussed in terms
of the model Hamiltonian



13 468 J. W. GADZUK

with eigenvalues c and operators c,c . This elec-
tronic system is in contact with a dispersionless boson
field described by the harmonic-oscillator Hamiltonian,
Eq. (lc), which is linearly displaced according to the per-
turbation, Eq. (ld), when E„ the localized electronic
state, is occupied. In physical terms, the force provided
by the time-dependent occupation of the state
[n, (t)=(c (t+)c(t)) ] can leave the field or oscillator
excited and it is this possibility which has led to observ-
able consequences of the "transient local polaron model".

The tunnel junction shown in Fig. 2 is conveniently
characterized by this Hamiltonian with the sums on 0.'re-
stricted to two terms, in which a=l(r) refers to the con-
tinuum of electron-band states in the left (right) elec-
trodes. With the electrodes biased by Ap as indicated in
Fig. 2, inelastic tunneling proceeds in the following way.
A Aux of electrons in the left-hand electrode is incident
upon the barrier, some of which are transferred by the
V,&

term in H, &
into the quantum well, particularly

when the bias is such that c.„the resonant level of the
well, is tuned to the Fermi level of the left electrode.
Upon entering the well in which the boson or vibrational
system is in its ground state (at T=O), c c, the occupa-
tion number changes from 0 to 1, and the interaction
term H;„„which is linear in boson operators, and thus
oscillator displacement is switched on. Subsequent time
evolution of the oscillator occurs under the action of the
displaced harmonic-oscillator potential until V „,
transfers the electron from the quantum well into an
unoccupied band state within the right-hand electrode.
As a result of this transfer, c~c =0, the oscillator poten-
tial returns to its original form, and the oscillator is now
in a distribution of excited states due to the forcing of the
transient linear perturbation Ljust as in Fig. 1(b)]. The to-
tal amount of energy left in the vibrational system is bal-
anced by the energy loss of the electron which has tun-
neled, which in turn has an upper bound equal to Ap, the
applied bias. The inelastic tunneling characteristics for
such a junction, in the wide-band limit with energy-

independent V „have been given an exact analytic
solution by Wingreen, Jacobson, and Wilkins which
shall be discussed in Secs. III C and then III D in the con-
text of desorption.

C. Kquivalences

The basic similarities between the wave-packet model
presented in Sec. II A and the resonant-tunneling model
of Sec. II 8, at least from the point of view of dynamics
and oscillator excitation due to electron scattering
and/or tunneling are by now probably apparent. ' The
molecular potential in Fig. 1(a) and the quantum well in
Fig. 2 play the same role, specific system details
inAuencing only the numerical values of the parameters
A'coo, E„V „and A.o in Eq. (1), but not the essential
physics. Furthermore, the biased electrodes serves the
same function in the junction as does the photoexcited
substrate in the desorption experiment, namely providing
both an incident Aux of high-energy electrons (the left
electrode) and a continuum of unoccupied lower-energy
states (the right electrode) into which the incident elec-
tron can inelastically scatter. The maximum possible en-

ergy transfer to the oscillator is hv or hp in the two
equivalent systems.

III. THEORY

For present purposes, the essential issue which a
theory of inelastic resonance scattering or tunneling
through a localized (either molecular or quantum well)
electronic state must address is determination of the
probability per event that an incident electron with ener-

gy c; scatters into a final state of energy c&, the difference
in energy, hc. =c., —c&, remaining in the phonon or oscil-
lator system. Historically related problems have been
nicely dealt with both in gas-phase resonance electron
scattering from molecules and in solid-state core-level
spectroscopies. ' ' In electron scattering, the energy of
the incident and the scattered particle are monitored, not
just their difference. This fact gives rise to an added de-
gree of complexity over the core-level theories in which
the core hole has no internal degree of freedom other
than whether or not it exists. It is informative to proceed
from simple to complex and this rule dictates the unfold-
ing of this theory section.

A. Core-level spectroscopy

FIG. 2. Schematic of a resonana-tunneling structure carrying
current J between two doped contacts with Fermi energies cz.
The current as a function of bias Ap depends on the interacting
transmission spectrum T„,(c), an example of which is sketched
in the well (Ref. 7).

It is interesting to consider first a demonstration of the
boson or oscillator excitation that occurs in a core-level
process involving recoiless-hole creation and subsequent
decay. The physical picture implied by Eq. (1) (plus an
additional excitation term which creates the initial core
hole) is one in which the oscillator system (phonons,
plasmons, bosonized electron-hole pairs, etc.) is subjected
to a driving force that is proportional to the time-
dependent core-hole population (equal to one minus the
electron occupation). When the eff'ects of the V„, cou-
pling of the discrete core state to the continuum can be
represented by an exponential decay, "then the problem



INELASTIC RESONANCE SCATTERING, TUNNELING, AND. . . 13 469

of oscillator excitation embodied in Eq. (1) is equivalent
to that of a forced classical harmonic oscillator subjected
to the time-dependent perturbation

continuous Gaussian,

dp7
dE,

1 1 s Py ~cop
exp (6b)

where, by comparison with Eq. (ld), the driving force is

f ( t ) =A QB( t )e ~' "(2m
cop liii) ' (2b)

and z and m are the oscillator position and mass, respec-
tively. It is easily demonstrated that the energy gain to
the oscillator is b E,&„,= l f(cop) l

/2m with f(cop) the cop

Fourier component of the forcing function. For f(t)
given by Eq. (2b) the energy gain is

kE ] kpfi cpol[ (fi cpo) +y ] (3)

p—= (A,p/A'cop) (Sa)

and

5 E „=A,p/A'cop =piricop, (5b)

it is well established that the excited-state distribution
for 0—+n vibrational transitions induced by a separable
perturbation, such as Eq. (2a), is

P (E)=e ~ g (Prln!)5(e —niricop),
n=O

(6a)

a Poisson distribution. Furthermore, when p~))1, the
discrete Poisson distribution is well approximated by a

as implied in a proposal due to Sunjic and Lucas
(SL) which has subsequently received considerable

2(c), (3b),21,25

The correspondence principle provides the connection
between the energy gain of the forced classical harmonic
oscillator, as specified here by Eq. (3), and the vibrational
excitation probability distribution of the equivalent
quantum-mechanical harmonic oscillator subjected to the
same forcing function. In terms of the parameter

p—:lhIE
/ /ficop =/3( coQI [cop+ ( y /fi) ] ]

with

where b, ~ =/3r~ %cop. Equations (3) or (4)—(6) clearly
demonstrate that the degree of excitation is a sensitive
function of ~z, the lifetime of the core hole, as embodied
in the parameter y=h'/rz, with respect to an oscillator
period. For a short-lived hole, y /iii ))cop. Thus
b,E,&„,/ficop~o and the oscillator remains in its ground
state. In the other extreme of a long-lived hole, y/A ((coo
and thus p~-p so the distribution of oscillator excited
states is Poisson with characteristic parameters of a per-
manently displaced oscillator, in other words a Franck-
Condon distribution. From a dynamics point of view, the
initial step-function displacement implied a sudden tran-
sition, hence the Franck-Condon distribution followed by
the slow, therefore adiabatic, return to the original oscil-
lator configuration, as governed by the exponential decay.

B. Resonance electron-molecule scattering

A new level of complexity arises for processes in which
light electrons rather than transient but infinitely massive
core holes drive the oscillator or phonon system. Due to
the fact that electrons can recoil, the entangled dynamics
of the electron coupled to the oscillator must be main-
tained in the theoretical construction, and this requires
considerations beyond the simple forced-oscillator model.
Within the context of gas-phase resonance-electron
scattering from small molecules, this problem was treated
by Herzenberg and co-workers in terms of the so-called
boomerang model. " The problem was later reformulat-
ed by Domcke and Cederbaum (DC) explicitly within the
model specified by Eq. (1) and a compact analytic solu-
tion was provided. ' ' For purely resonant scattering in
which the discrete-state —continuum interaction is in-
dependent of oscillator extension, as for example Eq. (lb),
DC have shown that the 0—+n vibrational excitation
cross section for an electron with incident kinetic energy
equal to c; can be expressed as

2), ~ (nlm)(mlo)
(E, )+(i/2)r (s, )

(7)

with E =E, —b,E„+miricop. An effective no'n-Hermitian energy operator X=A —ir /2, which accounts for the role of
the discrete-state —-continuum coupling on the oscillator dynamics, has been incorporated into Eq. (7) as diagonal ma-
trix elements in the basis which diagonalizes the intermediate-state displaced-oscillator Hamiltonian equal to
Hph +Hl t In other words,

,(s;)=(ml&(E; —~ h)lm') = g (mlj)&(E; —jiiicop)(jim ')
j=O

has been taken to be nonzero only when m =m'. Also in Eq. (7), I (E,.~f~)/iii is the electron transition rate at the initial
(final) energy into (out of) the quasidiscrete resonance state and (n lm ), etc. , are vibrational overlap integrals where
l
m ) denotes vibrational states of the temporary negative ion and ln ) those of the neutral molecule. Using standard for-

mulas for the displaced oscillator overlap integrals or Franck-Condon factors ' ' and taking both A and I as
energy-independent constants, DC s expression for the excitation cross section, which follows from Eq. (7), can be
worked into the equivalent form
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co n

a(Ef, s, )-E, 'I (sf)l (E, )e ~ Q, 5(s, —Ef —nA'(oo).=0 n~

( —1)" L" (P) for m ~ n

13 "(n!/m!)L "(P) for m ~ n,

o e, —(s,' —b, E„)—m))!(o+i I /2

where

n n+a
L„(P)= g( —1)' P' j!

j=O

are generalized Laguerre polynomials and c,' = c,, +A
Although DC do carry out a proper evaluation of
X' (E;) given by Eq. (8) in terms of a continued-fraction
expression and recursion relations appropriate to a tridi-
agonal system, ' the major features of the resonance-
scattering event are more transparent with the approxi-
mate solution expressed in Eq. (9). Basically the partial
inelastic scattering cross section is the product of in-
cident electron penetration into the molecule [=I (s;)]
multiplied by a measure of its resonance with the vibra-
tionally renormalized quasibound state (the energy
denominator or propagator), weighted by Poisson factors
(or equivalently by vibrational overlap integrals) and in-
terference terms, ultimately multiplied by the transition
rate out of the molecule for an electron with 6nal-state
energy cf =c, —nA'coo. The general form of the energy-
dependent resonance cross section is one showing a series
of resonance peaks, more or less equally spaced Pi~0

apart, each with a width determined by I, the inverse
resonance lifetime, and all within a ' Poissonian" or
Gaussian envelope characterized by the electron-vibrator
P parameter. This picture has been quite successful in

providing an intuitively clear account of gas-phase inelas-
tic electron-scattering data.

C. Resonant electron tunneling

Next consider oscillator excitation experienced in reso-
nant electron tunneling through a quantum well. The
basic phenomenon is very similar to vibrational excita-
tion in resonance scattering, the distinctions mainly ap-
pearing in matters of detail such as spherical versus pla-
nar symmetry or few versus tens of angstroms charac-
teristic length scales, issues which arise only when actual-
ly computing the V, matrix elements between localized
and continuum states (as opposed to the customary pro-
cedure of just assigning a value).

Wingreen, Jacobson, and Wilkins (WJW) have present-
ed a comprehensive and readable analysis of inelastic res-
onant tunneling in junction structures characterized by
the Hamiltonian of Eq. (1) and have obtained the tunnel-
ing equivalent of the inelastic cross section, the probabili-
ty for inelastic transmission and/or reAection of an in-
cident electron of energy E; into a state with energy cf.
WJW refer to these quantities, in the junction case, as a
transmission (reflection) matrix equal to T( sf, E; )

[R (Ef, s; ) ]. For systems described by Eq. (1) in the wide-
band limit and with V „,and V I, taken to be energy in-
dependent, the exact solutions for the transmission and
thus by unitarity, the reAection matrices are

oo pal n

T(Ef c, , )=I,I „e ~ g, 5(E, sf n—Sicko) X—
n=0 m=0 j=O

+n, m, j
E; —(s,' —b,E„)—(m +j )A'(oo+ il /2

(10a)

where

Pl

8 . —:( —1)J . P m!n, m, j
and

R (Ef, E;)= II
I„ T(sf, E;)

+5(sf —c.; )[1+2I &Im[G, (E; ) jI

=R;«)(Ef, c., )+R,»,«, (E; ) (lob)

with the following clari6cation. The resonance widths

1((„)(&)=2rrglv.((.„),.I'5(& —
&~) (.„))

are due to elastic coupling between the localized state and
the left or right continua and the total width I = I I +I,.
As in Eq. (9), a real self-energy shift, given as the Hilbert
transform of I (E), has been incorporated into a renor-
malized localized eigenvalue c,' —=c, +h. The weak-
energy dependencies of both I and b have been neglected
in Eqs. (10). The electron-phonon interaction strength
appears through the dimensionless parameter p and the
"relaxation energy" b,s„given by Eqs. (5a) and (Sb), re-
spectively. The reAection matrix, Eq. 10(b), has been ex-
pressed in terms of an inelastic and elastic component,
the latter given in terms of G, (E, ), the Green's function
of the resonant site including electron-phonon interac-
tions.

A crucial quantity of importance in the case of adsor-
bate resonances is the total inelastic refiection probability
for an incident electron with energy c.;,
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R';„",, (E;)=fdEfR [('ef E; )

n oo nr 2 —2/3

n=O m=O j=O

ph+ int

—= y R„(., ;p, r, , r)
n=O

with f„.=B„divided by the denominator from Eq.
(10a). WJW have provided the sum rule

f de, f deaf T(Ef 8;)=2ml, r„/r
which with Eqs. (10b) and (11) implies that

~.„= Pr ~o

~ph
llNIMIIIIIIIIIIIIIIIIIIIIIIIllllllll IIIIIIIIIllllillNIIIIIIIIIRllIIIIIIIIIIIl

llNlllNNlllNN%lllliNllll IIIMMlllNIINlllNN

IIINSIIIININNIIIIIIIIIINIIIINIIIININNIIIIIIINNI1R~

/ 0

1 f de, R,'„",i(E;)=1 .
1

(12)

Bds
Equations (11) and (12) will be particularly useful for pro-
cesses involving an incident electron Aux distributed uni-
formly in energy over the "width" of the phonon-induced
resonance.

When considering either a molecule adsorbed at a
solid-vacuum interface or a quantum well located close to
the left electrode, then I

&
))I „, in which case I „,=I

&

in Eqs. (10) and (11), the role of the right electrode is
negligible, and T"'(E;„)=0 (i.e., all electrons are
refiected).

Finally, one is invited to note the similarity (and
differences) in algebraic structure between the electron-
scattering cross section [Eq. (9)] and the tunneling
transmission matrix [Eq. (10)]. The obvious similarities
follow from the near identity in physical content of the
two phenomena. The major difference here, the "j-
summed" contribution in the intermediate-state denomi-
nator of Eq. (10) but not in Eq. (9), is due to the fact that
only a simplified form for X,(E;), Eq. (8), has been re-

tained in Eq. (9). This is not intended to imply any
significant difference in the physics of the two situations.

D. Desorption

A venerable model for a bound molecular system, such
as an atom or molecule adsorbed on a surface, is a har-
monic oscillator truncated on one side. ' While this
model can be misleading when considering kinetic pro-
cesses which in real life involve "ladder climbing" up a
progressively softer potential well, it is much more mean-
ingful for addressing bound-to-"predissociative" continu-
um Franck-Condon transitions of the type considered
here. This is illustrated in Fig. 3. As discussed in Sec.
II A, vibrational excitation and/or desorption on such a
system of potential curves can be considered as a se-
quence of Franck-Condon-like transitions, in which the
initial vibrational ground state on the equilibrium adsorp-
tion potential-energy curve associated with H„h is pro-
jected onto a coherent superposition of displaced oscilla-
tor eigenstates of H h+H;„, . The wave packet formed
from this superposition state propagates for a time dura-
tion ~z before returning to the potential energy, curve of
Hph but now displaced from the wel1 minimum. In the
case of the full harmonic potential, the probability that

FIG. 3. Potential-energy curves for resonant desorption,
analogous to the process shown in Fig. 1(b), but here with half-
truncated harmonic-oscillator potential for the adsorption
bond. The predissociative and/or predesorbtive states of the os-
cillator, those with energy greater than D, are here symbolized
by the broadened levels. In this figure, nd =4.

the nth vibrational state is excited is expressed as

2

P„(r, )= y (nl~&e '&mlo)
m=0

(13)

for step-function switching on and off of the
intermediate-state potential. " The reader is referred to
the Appendix for further discussion. From a real-time
point of view, the "down" Franck-Condon transition
puts the moving wave packet on the inner wall of Hph
and thus the distribution given by Eq. (13) should be little
affected by whether the oscillator well is truncated or not
on the outer side, at least not until after the time delay
exceeds —

—,
' an oscillator period.

For desorption to be possible as a result of not only the
sharp switching implicit in Eq. (13), but more important-
ly, as a result of inelastic electron scattering, the target
oscillator must be left excited with energy equal to or in
excess of D, the desorption energy. Within the context of
the model discussed in Sec. III C, the desorption proba-
bility per resonance event for a hot electron with energy
e; is given by an expression like Eq. (11), but including
only those values of n ~ nd where nd is the smallest in-
teger greater than D/A~o. The desorption probability is
thus

P „(c,;)= g R„(e;;Pr,, r) .
n=n d

The translational energy distribution of the desorbed
molecules is taken as
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dX 1
(E E p I D)-

~ [ E —
( n A'co —D ) ] + b, 2

"d

(15)

where the "picket fence" discrete 5 function spectrum. of
oscillator states in excess of energy D have been given a
predissociative width 6 =A~o. The value of the ex-
ponent g depends upon the geometry and other details of
the experimental configuration. For comparison with ex-
perimental results, this (essentially) one-dimensional
number density energy distribution, dN /d e, must be
transformed to a three-dimensional representation to
properly account for phase space factors. Comparison
to specific laboratory results will require additional trans-
formations from the experimental observables (i.e., time-
and/or velocity-dependent product densities) to the pre-
dicted energy distributions. For the NIST experiments in
which a number density distribution of desorbed mole-
cules is measured in the time-of-Bight apparatus &o, ii(b)

g= —,
' is appropriate.

For the sake of completeness, note that when the oscil-
lator excited-state distribution is given by the continuous
Gaussian of Eq. (6b), then the dissociation or desorption
probability is

dPy D Pyficoo-
P, = r dr. =-,' 1 —erf

D dE ' v'2g (16)

which is a convenient limiting case.

IV. RESULTS AND CGMMENTARY

Numerical consequences of the various models of oscil-
lator excitation due to transient forces are presented here.
Although special emphasis is placed on inelastic reso-
nance scattering and tunneling as relevant to a hot-
electron-induced desorption scenario, '" " the results
are more general, owing to the generic nature of the mod-
el Hamiltonian, Eq. (1), which is at the heart of this
study.

First, the total inelastic reAection probability inferred
from Eqs. (5), (10), and (11) has been calculated as a func-
tion of incident electron energy (with respect to an energy
zero at the renormalized adsorbate resonance energy, i.e.,
E,

' =0) treating the resonance width I and the vibrational
coupling constant P parametrically. Some results are
displayed in Fig. 4(a). This shows the total inelastic
scattering probability independent of the final-state elec-
tron energy or equivalently, of the energy transferred to
the oscillator. The complementary desorption probabili-
ties per scattered electron with incident energy c.; ob-
tained from Eq. (14), again with several values of I, p,
and now desorption energy D, are shown in Fig. 4(b).
The labeled energies ( I, D, and explicitly e;) are given in
units of %coo. It is apparent in all the plots of Fig. 4 that
the coupling of the vibrational modes to the localized res-
onance serves to spread out the energy range of the
e8'ective resonance, due to what would be called phonon
sidebands or vibrational Franck-Condon features in other
fields. The price to be paid is that the rnaximurn values of

R;„,&, the inelastic reAection probability, and as a result

P„„„„,the desorption probability, are significantly re-
duced as p increases. This is to be expected on the basis
of sum rules such as Eq. (12) which say that the vibra-
tional coupling redistributes, but does not enhance or di-
minish, the spectral weight associated with the reso-
nance. ' Equation (9), the cross-section expression of
Domcke and Cederbaum, has been evaluated as an equal-
ity and the quantity c.;o. c&, c.; de& as a function of c.,

was found to be numerically indistinguishable from the
results of WJW, obtained from Eqs. (10) and (11). Ap-
parently the approximations implicit in proceeding from
Eqs. (7) to (9) are of limited numerical consequences, at
least in the region of parameter space under study here.
This is fortunate as the slightly more compact algebraic
structure of Eq. (9) compared with Eq. (10) will be useful
later.

Next, the desorption probability as a function of
desorption energy (in integral multiples of A'coo) with la-
beled values for I, p, and E; is depicted in Fig. 5 for in-
cident energy exactly on (the P=O) resonance. A general
point which should be noted from Figs. 4(b) and (5) is the
obvious finding that, all other things being equal, Pd„ is
smallest for adsorbates with the largest binding or
desorption energy. On the other hand, comparison of
Figs. 5(a) and 5(b) shows an effect when all other things
are not equal, namely when the vibrational coupling con-
stant is changed. For systems with low D, small p cou-
pling produces a greater desorption probability then does
large P coupling. However, large P is enormously more
efFective for systems with larger desorption energies.

Translational energy distributions obtained by evalua-
tion of Eq. (15) are shown in Fig. 6 where nd, p, and I
are varied parametrically in Figs. 6(a) —6(c), respectively.
It is apparent that the general "shape" of the distribu-
tions, unlike their relative magnitudes which have been
normalized away, is fairly insensitive to parameter varia-
tions in the chosen range. Still, the peak of the distribu-
tion moves to higher energies with increasing oscillator
displacement which results from larger p and/or
intermediate-state lifetime rz ( —R/I ). Obviously one
could be seriously misled if this apparent "heating" was
interpreted in terms of some equilibrium thermal eQ'ect.

An important message to be gleaned from Figs. 4—6 is
that there is more excitation to the oscillator for the
longer-lived resonances, those with the narrowest widths.
The physical basis for this has been spelled out in detail,
both in Sec. III A and elsewhere, ' ""' where it has
been stressed that the intermediate-state potential, the
displaced oscillator here, must exist long enough for
'consequential" motion to occur over it. This is clearly

illustrated in Fig. 7. The ratio p~/p=b, E,h„/pkcoo vs

coors, obtained from Eq. (5), is shown in Fig. 7 as the
thick curve. The associated analytic desorption probabil-
ity from Eqs. (5) and (16), is also displayed in Figs. 7(a)
and 7(b) as a function of coors, treating P and D parame-
trically as labeled. Here the implications of the lifetime
on physical observables, such as the oscillator excitation
and desorption probabilities, are clear.

Finally it is informative to examine the resonance life-
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time dependence of the total desorption probability ob-
tained from the DC-WJW model, which is

(17)

This is of more than pedagogical interest since laser-
excited hot-electron-induced desorption is initiated by an
incident Aux of substrate electrons upon the adsorbed
molecule, fairly uniformly distributed in energy across
the resonance. '" ' Integration on E;, as in Eq. (17), is an
attempt to account for this aspect of the laser experi-

ments. To proceed, we take advantage of the numerical
identity between the results based on the DC expression,
Eq. (9), and the WJW expressions to make the replace-
ment

2

R„(e;;P,I &, I ) —:Ie ~(P"In!)
+i I /2

with E =—E,
' —b,E, +mA'coo. Inserting Eq. (18) into Eq.

(17) and carrying out the integration, the total desorption
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core-level spectroscopy. The analytic solution to the
boomerang model " for electron-molecule resonance
scattering due to Domcke and Cederbaum ' ' incorporat-
ed electron dynamics into the problem beyond the simple
potential switching experienced in the transient hole
effect of SL. More recent applications of the model to the
problem of inelastic resonant tunneling (and refiection)
through (from) quantum-well structures have been con-
sidered here with special emphasis on the presentation of
Wingreen, Jacobson, and Wilkins. The relationship to
the electron-scattering work of CD has been demonstrat-
ed.

Going beyond the generic problem of oscillator excita-
tion in electron scattering and/or tunneling, the implica-
tions of such excitation to the current problem of hot-
electron-induced desorption has been worked out. ' Not
surprisingly, the results presented here for theoretical
desorption characteristics obtained from the exactly solv-
able displaced-oscillator model support the insights and
conclusions based upon time-dependent wave-packet dy-
namics. "

Although the present truncated, displaced-harmonic-
oscillator model cannot be pushed too far in terms of
quantitative significance, that is the price one pays for an-
alytic solutions to complex problems. Nonetheless, the
additional insights provided and the sense of unity with
other areas of physics which is achieved, hopefully make
this an acceptable price.

APPENDIX

The phenomenon of intramolecular vibrational excita-
tion probabilities in resonance electron-energy-loss spec-
troscopy of physisorbed diatomic molecules has previous-
ly been addressed in terms of the sudden-switching model

leading to excitation probabilities given by Eq. (13). No
electron dynamics appears within this formulation. The
main feature of this model follows from the coherent I
sum over paths connecting ~0) with ~n ), leading to the
interference effects responsible for the intermediate-state
lifetime dependence of the excitation probabilities. For
situations in which the initially prepared state decays ac-
cording to some distribution of lifetimes, P~(r„) should
be averaged over all values of ~z, weighted by the proba-
bility that the intermediate state still exists at the given
moment. " Hence with Eq. (13) and the assumption of
an exponential decay law,

(P„)= J exp( —t /rtt )P„(t )
R

n, m *
n, , m'

~ I+(coors ) (m —m')
(A 1)

with f(n, m)=(n~m)(m~O). Referring to the argu-
ments invoked to proceed from Eqs. (7) to (9), it can be
seen that

f(n, m ) =exp( P)(P—"In!)'

Thus the excitation probabilities implied by Eq. (19) and
those given by the "exponentially averaged, sudden-
switching" result, Eq. (Al), are identical. In other words,
the DC-WJW solution, when averaged over all initial-
and final-electron energies (consistent with energy conser-
vation), is equivalent to the sudden-switching model in
which the electron energies do not appear explicitly, only
implicitly through the energy dependence of the reso-
nance lifetime or time delay rz =th'B5/BE, where 5 is the
phase shift of the dominant partial wave characterizing
the shape resonance.
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