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We discuss two quantum effects that can inhuence the relaxation of carriers in a semiconductor excit-
ed by an ultrashort light pulse. Namely, the presence of nonzero interband optical polarization and the
large energy uncertainty of carriers created by the short exciting pulse. The importance of both effects is

investigated numerically for the case of electron —LO-phonon interaction assuming a model (exponential)
pulse shape. Comparison of the results with the predictions based on the conventional Boltzmann equa-
tion indicates that both effects lead to a much more even distribution of carriers over k space, which may
significantly shorten thermalization times.

I. INTRODUCTION

Photoexcited hot electrons have been studied for more
than two decades now. In the past few years, the advent
of femtosecond lasers has given a new dimension to this
field by providing means to investigate the fastest and the
"most nonequilibrium" stages of carrier relaxation pro-
cesses. '

At present the theoretical description of such ultrafast
phenomena is based on the semiclassic Boltzmann equa-
tion (BE), and the results of corresponding calcula-
tions are in reasonably good accord with the experi-
mental findings. ' However, as the excitation pulses con-
tinue to get shorter, significant departures from the con-
ventional semic1assic picture of relaxation phenomena
can be expected to emerge.

Indeed, there are at least two reasons for the semiclas-
sic description to break down in the limit of small excit-
ing pulse durations. The first of them is that an optical
pulse creates carriers in quantum states which are
definitely not semiclassic —initially, carrier wave func-
tions are superpositions of conduction- and valence-band
states. As long as this phase coherence (which manifests
itself as the macroscopic interband polarization) (Refs. 8
and 9) is maintained, i.e., at times shorter than the de-
phasing time (experimental measurements' '" give values
in the range 1 ps to 10 fs for this quantity), the carriers
are not in definite-energy eigenstates and therefore can-
not be described semiclassically. Hence, at early stages of
the optical excitation, the presence of the interband po-
larization has to be explicitly taken into account in the
kinetic equations for carrier dynamics.

Another important point is that for femtosecond pulses
the time-energy uncertainty principle comes into play—
each individual carrier created by such a pulse is distri-
buted over a broad (some tens of meV) region of k space
corresponding to the spectral width of the exciting pulse,
so that once again we cannot regard it as a semiclassic
particle with well-defined energy. In the currently used
calculation schemes this effect is summarily included
by broadening the initial energy distribution of carriers

by the excitation spectral width, but this alone can hardly
be sufficient, since in this case the presence of energy-
conserving 6 functions in the BE is in clear violation of
the tiIne-energy uncertainty principle. Any consistent
treatment of this problem must take into consideration
the actual excitation history, which requires the use of
non-Markovian generalizations of the BE.'

In our recent work' we have proposed a systematic
way to incorporate both the interband polarization and
the memory effects into the description of the carrier ki-
netics. However, the non-Markovian structure of the re-
sulting "effective Bloch equations" for the carrier kinet-
ics and dephasing practically precludes any straightfor-
ward attempts to solve them numerically for more or less
realistic situations. Therefore it seems reasonable to ap-
ply these equations to some simplified models first.

In the present paper we analyze a model situation
when a two™band semiconductor is excited by an ex-
ponential light pulse. However unrealistic this model
might seem, this particular shape of the excitation pulse
allows one to get simple and exact expressions for the
scattering rates which readily lend themselves to numeri-
cal evaluation. These scattering rates are used to assess
the role that the above two quantum effects can play in
the carrier relaxation phenomena.

The paper is organized as follows: Sec. II is devoted to
a general formulation of the problem in terms of the
effective Bloch equations specified for the ease of the
electron-phonon interaction. The origins„as well as
some general properties of the coherent and memory
effects, are briefIy discussed in this section. In Sec. III
the exponential pulse model is introduced, and the corre-
sponding simplified expressions for the scattering rates
are derived. The numerical results for the scattering
rates are presented and discussed in Sec. IV. Concluding
remarks are confined to the final Sec. V.

II. GENERAL THEORY

The purpose of this section is to introduce basic equa-
tions for the carrier distribution functions and for the in-
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terband polarization (the eff'ective Bloch equations), "
which will be used as a starting point for the numerical
studies in the subsequent sections.

We restrict ourselves to the case of a semiconductor
with two (parabolic) bands, c and U (the intricate band-
structure effects are thereby left out). The Heisenberg
creation operator a k creates an electron with the wave
vector k in the band a = [c.U }. Furthermore, we assume
spatial homogeneity and therefore work in k space only.

We will be interested in the evolution of the one-
particle density matrix (DM):

(a,k(t)a, k(t) & (a,k(t)a, k(t) &

(a,„(t)a,„(t)& (a,„(t)a„„(t)& .p
n k(t) Pk(t)

(1)
Pk (t) n„k(t)

(where ( & denotes statistical average), whose diagonal
components give the distribution functions of carriers
within the bands, while the nondiagonal ones describe the
quantum-mechanical coherence between the bands; gkpk
is known to be proportional to the optical polarization. '

In the Heisenberg representation Nkp obeys the follow-
ing equations of motion:

BXkP =i ([H(t), ats, (t)a k(t)] &

Bt

(R= 1 throughout the paper), where H is the full Hamil-
tonian of the problem. Besides the free-carrier Hamil-
tonian:

HO X Eakaakaak
ak

o+II. +II h .

Without phonons the commutator in (2) can be taken
exactly, which results in the closed equations of motion
fOr NkP.

~"ek = —21m(pk p,„E), (7a)

(7b)

(E k E k)pk+tP E(n k n k)
BI;

(7c)

Equations (7) are nothing but the Bloch equations which
are widely used to describe the optical response of two-
level systems. ' According to (7), in the absence of the
electron-phonon (or the Coulomb) interaction Nk~ for
each k state evolves independently. The general solution
to the Bloch equations for an arbitrary E(t) is not
known; however, Eqs. (7) possess a useful integral of
motion: ' '

4lpk ~'+(n.k-n, k)'=1

(radius of the Bloch sphere), ' which makes clear that as
long as there is no relaxation, p and n [i.e., the diagonal
and the nondiagonal components of the DM (1)] are gen-
erally of the same order. This is particularly obvious in
the low-excitation limit (n &( I), where (8) reduces to

dependence of p,„=p„*,), as well as the electron-phonon
interaction:

H h=gco btb ++M (b +b )a ka k
q kqo.

(where the free phonons are included; cuq is the phonon
dispersion. Mq is the electron-phonon coupling). Hence
the full Hamiltonian reads

(E k is the carrier dispersion in the band a), we will in-
clude in our treatment also the interaction with a classic
optical field E(t):

H, ~,
= —g p &(k)a kats, E(t)

o,p
(4)

(where p ii is the interband optical matrix element; we
will neglect its diagonal elements, ' as well as the k

The electron-phonon interaction (5) gives rise to addi-
tional terms in the equations of motion (2), which are re-
sponsible for relaxation:

r

g~o;p
k

noh

where the "coherent" terms are given by (7).
The general non-Markovian result for the collision

term in lowest order in the electron-phonon coupling is'

ap

=y M', I dt'I e " ~ ' ' [(5., Nk')N p, .+, N—k'(&,&
—Np, )—(i+~,)]

S

+e " t q ' [(5 —Nkr )Np (1+JV ) Nk~(5 tt Np q)J—Vq]—
+e " ' ~ ' [N r (5 —NP)JVq —(5 r

—Nkr q)NP(1+~q)]

+e ~" q ek q [N~~ (Q —Np)(1+~ ) (Q Nk~i' )NpW ]}
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where Nkp and the phonon occupation numbers JV depend on the integration time variable t'
To get an insight into the contents of Eq. (11), let us first pass to the Markovian limit by assuming that n k and ~leak

vary slowly with time. Taking into account the free interband oscillations of the polarization, pk ~exp[i(E, k
—E,k)t],

we can perform the time integration in (11),which yields

ax„l'
=+MqI5 (E k

—E k
—co )[(5 —Np)Np JV' Nk—r(6 p Np— )(1+JV )]

st qr

+6 (E k
—E k +co )[(5 r

—Nk )Npq(l+JV )
—Nk (5~p —Npq)JVq]

+5+(&~k Eyk
—

q
coq)—[Nk~q(6rp Np—)JVq

—(5 r
—Nk~ )Np(1+JV )]

+6+(E~k E—
yk q+coq)[Nkr q(6~P N—P)(1+JVq) (5 —

~ Nk—r q)NPJVq]], (12)

where all N and JV are now taken at the current time t; and

dre'"=F5(E) i lim— =F5 (E),
oo s~oc +6

5+(E)=5* (E)=5 (
—E) .

(13a)

(13b)

Let us first consider the equation for the electron distribution function n, k(t), which follows from (12) at a=p=c.
Taking the diagonal term (y =c) in (12), we immediately recover the standard Boltzmann collision integral:

=g M [2vr5(s, k
—E,k

—co )[JV n, k (1—n, k) —
( I+JV )n, k(1 —n, k )]

BoltZmann q

+2~5(E,k
—E,k +co )[( I+A' )n, k (1 —n, k) —JV n, k(1 —n, k )]] .

Equation (12), however, also contains terms with the nondiagonal components of the DM (y = v):

Bn,&

q (P kPk —q+PkP k —q [~5(Euk Euk q~q —) ~5( Euk suk —q ~q
P01 q

2COq
'(P krak —

q PkP k —
q ) 2 2

(Euk Euk —q) aiq

= —21mgpk V,s(q, ~=E„k—E k q)pk q
q

(15)

where

V,~(qco) =M (16)
(co+i 6) coq-

is the retarded Frohlich interaction potential. '

The additional scattering terms (15) describe the
inhuence of the interband polarization on the carrier ki-
netics and, according to (8) and (9), at early stages of the
excitation are of the same order as the conventional
Boltzmann terms (naturally, after a lapse of a few dephas-
ing times these terms vanish, and the usual Boltzmann
scattering regime is restored). The physical origin of
these terms consists in the presence of a local field,
gqV, tr(q)Pk, which enters Eq. (15) just in the same
way as the external field E appears in Eq. (7).

This 1ocal Geld generates carriers in some portions of k
space while destroying them elsewhere. The total num-
ber of particles is left unchanged by this process, so that
it can be regarded as just another kind of scattering ("po-
larization scattering"). ' Unfortunately, the analogy with
scattering stops at particle conservation, since this pro-
cess does not conserve the energy —some of the terms in
(15) do not have the 5-function structure, so that the par-
ticles are no longer bound to gain or lose exactly one pho-
non energy in a scattering event. Of course this does not
violate any laws of nature, since when pk&0, the carriers
do not have any definite energy in the first place, but it
does make the polarization scattering nontrivial and
worth investigating.

Apart from the polarization scattering, there is another
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reason for the BE to fail under femtosecond excitation
conditions: the Markovian approximation may break
down if the excitation pulse gets short enough. Therefore
let us now consider the general non-Markovian form of
the collision terms.

Introducing the notation:

~uk —q ~q

we can extract the equation for n, k from (11):

(17)

=+M~ f dt'( —n, k(1 —n, k )[JV~[2cos(rc,+)]+(1+%' )[2cos(rs, )]]
Bt oo

q

+(1—n, k)n, k [(I+JV )[2cos(~e,+)]+ JR[2 cos(rs, )]]

(18)

(where all n, p, and JV are now functions of t')
In the Markovian case, when n and JV in (18) do not

depend on r, the integration in (18) picks out of the q
sum only those components for which the integrands do
not oscillate at all, that assures energy conservation.
When the occupation numbers do depend on time, in
general all terms in the sum over q space begin to con-
tribute to the scattering rate. For example, if the carriers
are created by an optical pulse with the duration 7, the
integration in (18) will conserve the energy only with the
accuracy A/7, so that the carriers can scatter to a more
broad region of k space out of a given state, with corre-
spondingly smaller amplitude.

It is obvious that the additional time integral in the re-
laxation term (18) makes its straightforward evaluation
almost unaccomplishable. It would be advantageous,
however, to assess the importance of the memory eA'ects
on some simphfied model in order to find out whether
they are worth the tremendous numerical e6'orts involved
in a full-Aedged evaluation of expressions like (18). This
is what we are going to do in the following section.

III. EXPONENTIAL PULSE MODEL

In this section we introduce a model which allows one
to compare the relative importance of dift'erent scattering
channels and to assess the role of the above-discussed
quantum effects, without actually solving the full non-
Markovian Bloch equations (10).

Let us assume the electron-phonon interaction to be
weak compared to the interaction with the optical field
E(t). Then, if we were able to solve the coherent part (7)
of the Bloch equation, we could insert the resulting time-
dependent DM Xk~(t) into the relaxation part (11) and
evaluate the corresponding relaxation rates (such a pro-
cedure is always justified for pulse durations smaller than
the shortest relaxation time). Of course, this way we can-
not follow up the actual thermalization process since the
DM dynamics is governed only by the external field in
this case, but the scattering rates can indicate what the
relaxation terms would do to the carrier distributions if
they were not assumed to be negligible.

Even in this oversimplified form the problem is still
complicated, since one cannot solve (7) analytically for an
arbitrary pulse shape. ' However, there is one particular
pulse shape for which (7) can be solved in the weak-
excitation limit, namely, the exponential pulse:

E(t) =Eoexp
7p

l COpt (19)

Equation (19) can be thought of as an approximation
for the leading edge of the excitation pulse with the dura-
tion 7 and the central frequency coo. Note that since
only past values of the field can infiuence the evolution of
the system at any given moment, the divergence of (19) at
t ~ ~ does not cause any inconvenience.

The equation for polarization (7c), which in the weak-
excitation limit (n, k (( 1) reads

~7k —l(E k s k)pk+Lp E(t)
Bf

(20)

where m 0 is the reduced mass: m o
=m, m, /( m, +m, ),

and ko =
2m 0(coo—E ).

By virtue of the property (9), we can immediately write
down the solution for n k(t):

= (p' E'r' )
exp(2t/r )

k —k()1+
2mo

(22)

As is clear from (22), within the exponential pulse model
the density distribution in k space just grows exponential-
ly with time without changing shape. This self-similarity
implies that normalized scattering rates, (Bn k/Bt )/n k,

can be straightforwardly solved with the model pulse
shape (19):

(ip„Ear )exp(t/r )

j 2 k2
1+1

2~o
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do not depend on time at all. In order to obtain these
time-independent quantities, which will later be plotted
in the figures, we will simply set the factor (p„EOH& ) in
(22) (the peak density reached by t =0) equal to unity fur-

ther on.
In order to clarify the impact of the memory effects, let

us consider the scattering-out term of (18) in the weak-
excitation limit [n «1, A'q(t) =const]:

Bn,k

out

= —f '
dt n„(t )y M', I2a,cos(~E,')+2(1+~q)cos(«c )]

q

(23)

Bn, = —f dt' n, „(t')o',"„'(t t'), —
. out

(24)

where the kernel

~hen n, „depends on t' according to (22), the time in-
tegration turns the exponentials in (23) into Lorentzian
peaks 1/~ wide instead of the 6 functions. Hence one
could evaluate this and other terms of (18) by performing
the integration over k space with the broadened 6 func-
tions instead of the true ones, just as it is done when the
collisional broadening is taken into account. ' We wish
to stress that this treatment of the memory effects would
break down beyond the nondegenerate limit, and that for
more realistic (e.g. , Gaussian) pulse shapes the broadened
5 functions may be much more complex and even not
positive definite.

Instead of performing the k-space integration numeri-
cally, here we will take a different course of action. Let
us note that the expression (23) can be written as

(26)

and the oscillating energy exponentials make this sum
finite at finite times. Since (24) has the form of a convolu-
tion, it is advantageous to make the Fourier transform:

r

] + de n,"„(co)o,'„"'(co)e' ',
Bt out

(27)

where the retarded Fourier transform of the density is
defined as

n "(co)—= f n(t')e' 'dt' . (28)

Assuming parabolic bands, the Fourier transform cr(co)
can be evaluated explicitly. For dispersionless polar opti-
cal phonons with'

describes the response of the semiconductor. At ~~0 it
diverges, because initially an electron can scatter to any k
state regardless of its energy:

o,'k'(~=0) =2(1+2%' )Q Mq cc- V,s(r =0)= oo,
q

o,'k'(r)=g M [JV„(e ' +e '
)

q

+(1+%' )(e ' +e ' )]

27M COLO {2

M
q2 q2

(25) we have, e.g. , for the first term of (23),

(29)

ODUi(~) — d& e lccv M2~ e ck ck —q q
+ oo l+6 8 +CO )

ck I
q

=2m.+Mq JVq5(E, k
—E,k q+co +co)=C,klV g

q

where

1+&1—x
g(x) =ln (31)

and
Cm,

k (32)

The q sum in (30) can be taken analytically because the
integrand is a true 5 function, not a broadened one.

Equation (30) also shows that the frequency argument co

has a clear-cut physical sense: when absorbing a phonon,
an electron now gains co +co instead of just cu, so that co

is a measure of energy nonconservation ("missing ener-
gy"). Thus the frequency integral (27) sums up the con-
tributions of processes with all possible values of missing
energy, whereas in the semiclassic description only pro-
cesses with co=0 are taken into account.

Carrying out such summation over q in the remaining
terms of (23), we arrive at
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o',g'(co)=C, g. (1+JV ) g +IV g (33)

7pn "(co)=nz(t)e' '
2+ 1 c07 p

(34)

(its real part is a Lorentzian and is also shown in Fig. 1),
so that the general expression (27) for the scattering-out

The response function cr'"'(co) (33) is shown in Fig. 1.
The logarithmic singularity at ~=+co is due to the 1/q
divergence of M (29) and accounts for the fact that the
Fourier components of the density having such frequen-
cies are resonant with respect to the phonons. In the ex-
ponential pulse model the retarded Fourier transform
(28) of the density (22) reads

rate takes on the form

ng(t)
dco

a

27
z „0,'k'(co)

4+co &

(35)

which can readily be evaluated numerically.
The fact that for the exponential pulse the population

of all the k states has the same temporal dependence al-
lows us to cast the remaining terms in the collisional in-
tegral (18) into essentially the same form. Indeed, let us
consider the scattering-in term of (18):

=g f dt'n, „(t')[(I+A' )e ' +IV e
Ill q

' +(1+JVq)e ' +JV e ' ], (36)

which, using the relation (22) to express n, z q through n, k, can be transformed to the form

+
dco n,"q(co)cr',"q(co),Bt;„n o

where the kernel cr'"(co) can be calculated just like cr'"' had been above:

(37)

I+2(E,&
—E,I, +co —coq)

~ck

1+7~(E~g E~k co coq)

+(1+IV )
' '

2 +(I+JVq) ' '
2 [I+(E,g —E,k ) r, ],I+2(E,I,

—E,k +co+coq) 1+2(E,„—E,z
—co+ coq)

(38)

where r, =r (mo/m, ).
By the same token, using (21) to express pk qpk through n, k= ~pk~, we can rewrite the terms with polarization in

(18) in a similar way:

Bn,k

Bt po(

nq(t) ~+ dc'
2v coP

2 2 Reo,z'(co)+
2 z

Imcr~k~(co)
4+co 'Tp 4+ & 'Tp

(39)

with the corresponding kernel being given by

cr~j", (co)=C,I,

I+ i(E,k
—E,q )r,

0

1+) (E,k —E,~ +co —co )r,
0

1 —t (E,„E,.„)r,
&ck

I+i(E,k
—E,q )r,

0

I +I (E~g E~k +co+co )r
0 &ck

1 —t (E,„—E,„)r,
1 & (E~k E~g +co coq)'7~

(40)

Note that o. "does not depend on phonon occupancy JVq.
Now we are in a position to evaluate each of the components of the overall scattering rate:
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Bn, k

at
an, k

at
+

at
an, k

at
gaol

(41)

and to compare them with the predictions of the semiclassical BE:

an, k

Boltzmann
2

~ k(t)l-~ k(0) ~ k (0) j (42)

Although the polarization scattering (39) is not included in the BE, we will call the Markovian limit of (39)
"Boltzmann" polarization scattering rate:

an, k

pol /Boltzmann

Im~, 'k'(e)=
—,'n, k(t) Reo ~k'(0)+ —f dc@ (43)

(44)

Before we proceed to the evaluation of these expressions, let us also quote the results for the polarization dynamics.
The general non-Markovian expression for t3pk/t3t follows from (11) (see Ref. 13 for its explicit form). It has two terms,
one of which describes the dephasing proper ("dephasing-out"), and the other is proportional to pk q

and accounts for
the diffusion of polarization in k space ("dephasing-in"). We are going to consider here only the polarization decay,
i.e., we will evaluate only i) lpk I

/dt I
note that all terms in (11) which produce energy renormalizations do not contribute

to this quantity]; using the same method, we can express it as

~lp I Ip «)I f den Regk(co)+ Imgk(co)
t)t 217 —~ I +co 1+co

where the kernel gk has two parts:
—gout+ gin

The functions P"' and g'" can be calculated as above:

g"'(co) = —C,k (1+JVq)g +JV g
~Uj

—C,„(1+JV )g — +JV g
~ck Eck

(46)

k"(~)=C k JVq

+C, JkV@

COq COk

coq cok

k —ko1+l 7pmo

k —ko1+i 7pmo
+(1+JV )g1+tr (Euk Cuk +COk COq)

0

+ (1+JVq)gI+tru(Euk suk +~k+~q)
0

COq COl

k —ko1+i I0

I+~ru(Euk Euk +~k ~q)0

k' —ko1+i
mo

I +lou(euk Fuk +COk+Q)q)
0

(47)

~lpk I = lpk IRegk(0)
Boltzmann

+ f dc'
Imgk(co)

(48)

The expressions (35), (37), (39), and (44) will be evaluated
and compared to their Boltzmann counterparts in the
next section.

In the last two expressions cok means co —(k —ko)/(2mo).
Similarly, we can switch off the memory effects in (44)
("Boltzmann dephasing"):

IV. RESULTS AND DISCUSSION

In this section we present numerical results for the re-
laxation rates (41)—(44) for the case of a two-band semi-
conductor with the following set of material parameters:
m, =0.067; m, =0.62; coLo=36. 8 meV; @*=70 Ithis
quantity enters the coupling constant (29)], which loosely
corresponds to the conduction and the heavy-hole bands
of CxaAs. The central frequency ~o of the exciting pulse
is assumed to be 5 LO-phonon energies (183 meV) above
the band gap; throughout this section we will use ~„Q as
the unit of energy, and measure pulse durations in the
units of the inverse phonon frequency 1/coLQ
=1/(2m TLo)=17.9 fs. In order to simplify interpreta-
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tion of the results, we will consider only the zero-
temperature case (JVq=O), i.e., only phonon emission
processes.
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A. Electrons

In our numerical example the electrons are excited
5coLQmo/I, =4.51coLo=166 meV above the band edge,
so that their relaxation is not affected by any "end
effects. " The scattering rates, calculated according to
(41) and (42) with and without the coherent and memory
effects, are plotted in Fig. 2 for three different pulse dura-
tions.

The quantity (42), labeled as "Boltzmann result" in
Fig. 2, is quite in line with the conventional semiclassical
picture of carrier relaxation: the exciting pulse produces
a density distribution peaked around c,,k with the width

0

1/~~ (it is not plotted in Fig. 2 since the Boltzmann
scattering rate itself gives a fairly good idea of it). The
electrons emit phonons, so that the initial peak at c,k0
subsides (negative part of the curve), while the second
peak with exactly the same width grows one phonon ener-

gy below.
As is clear from Fig. 2, the electrons behave in a very

different way when the coherent and memory effects are
turned on (solid curves): while the initial density peak de-
cays with roughly the same rate, the second peak is al-
most completely washed out (except for the longest pulse
durations), and the gap between c.,z and E,z

—coLo is
0 0

now being filled rather rapidly. The overall impression is
that both effects lead to much more even redistribution of
the electrons over the k space.

Let us consider in more detail what each of these two
effects does. In Fig. 3 we compare scattering-in and
scattering-out rates, with the memory efFects [(35) and
(37)], to their semiclassical values (42). One sees that
while the scattering-out rate does not change much [its
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FIG. 2. Comparison of the overall scattering rates (41),
which include the polarization scattering and memory effects,
with Boltzmann values of the scattering rates (42) (v~ and ener-
gy in dimensionless units, see Sec. IV).
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scattering-out rate, so that it seems that the scattering
rate is shifted only slightly, in fact the coherent effects
may push the density peak down the energy scale quite
efFectively: as one can read from Fig. 2(b), at r„=5 the
density at e,& +1/r~ (at half-height of the peak) decays

0

four times as fast as at e,k
—1/r~, so that the effect can

0

be quite observable.
In fact, a red shift of the spectral hole caused by the in-

itial density peak is often observed experimentally and is
usually attributed to the band-gap renorrnalization due to
carrier-carrier interaction. ' Let us note, however, that
experimental manifestations of the coherent effects would
look very much like that, so that these effects might be
partially responsible for the observed shifts.

It seems interesting that the polarization scattering is
apparently most pronounced in some intermediate range

FIG. 3. Scattering-in rate (37) and scattering-out rate (35)
compared with their Boltzmann counterparts (42).

slight diminution is explained by the decrease of cr'"'(co)
at high frequencies (see Fig. 1)], the rate of scattering-in
is profoundly modified by the memory effects. It still
does have a peaked shape, but it is approximately three
times as broad as its semiclassical counterpart, which can
be readily understood in view of the above-mentioned
loosening of energy-conservation requirements. It is also
visibly shifted closer to the initial peak, because the
strong q dependence of the interaction matrix element
(29) now favors processes with smaller momentum (and
hence energy) transfer.

The slight bump at the excitation energy is not an ar-
tifact and is also due to the 1/q singularity in M: it is
caused by scattering events whereby an electron emits a
phonon with a very small q and scatters to virtually the
same state —such events are no longer forbidden by the
energy conservation, and the mentioned singularity in
M gives them an unproportionally large weight. Al-
though this kind of scattering does not lead to any
measurable effects in our example, it seems interesting
from the fundamental point of view.

Figure 4 depicts the contribution of polarization
scattering at different r, again with [Fig. 4(b)] and
without [Fig. 4(a)] the memory effects [some of the
curves in Fig. 4(b) are also shown for comparison in Fig.
2]. The coherent effects seem to be of importance only in
the vicinity of the excitation energy. The polarization
scattering rate changes sign at c= c,,& and reaches its ex-

treme values at c,,k 1/r, i.e., at half-width of the initial
0

density peak, so that its decay is slowed down at the low-
energy half and speeded up at the high-energy one. Since
the curves in Fig. 4(b) look very much like the derivatives
of n, z(s), we can loosely say that the polarization scatter-
ing mainly shifts the initial density peak towards lower
energies (or, which is the same, shifts the negative peak in
the scattering rate to higher energies).

Although the peak value of the polarization scattering
rate is considerably smaller than the maximum
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of pulse durations [around r =5 in our example, as Fig.
4(b) suggests], since one would rather expect it to grow
monotonously with diminishing ~ because of the increas-
1ng spI'ea 0 p krakd of p *p . As is seen from Fig. 4(a),
"Boltzmann" values (43) of the polarization scattering
rate do just that, while the amplitude of the curves in Fig.
4(b) (with memory effects) at r (5 quickly diminishes
with decreasing w, so that at ~ =2 it is only —' of its
Markovian value.

The fact that the memory effects suppress the polariza-
tion scattering can be explained by the peculiar temporal
dependence of polarization terms in (18): they are pro-
portsona to sin ~ ~

when the quantity pi*,pk (r) is nonzero only at small r,
its overlap with sin(coque) also becomes small, while, e.g.,
for the scattering-out terms, the integral o
cr'"'(r r)n —(r) stays finite no matter how short the pulse
is, because of the singularity (26).
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B. Holes

The scattering rates for the holes are presented in Fig.
5. In our example the holes, because of their greater
mass, are excited only O. ScoLO above the gap, i.e., well
below the phonon emission threshold. In the semiclassi-
cal description such holes are not able to emit phonons
and at zero temperature the electron-phonon interaction
should not affect the holes at all (such an arrangement is
sometimes used in experiments in order to single out the
effects of carrier-carrier scattering).

As is clear from Fig. 5, nothing like that happens when
the quantum effects are taken into account: the phonon
emission is no longer forbidden, since a hole created by a
short pulse can now emit a phonon and scatter to the bot-
tom of the band while losing less than phonon energy.
This leads to the development of a pronounced
scattering-out peak at excitation energy with diminishing
pulse durations [Fig. 5(a)], which again is slightly shifted
by the polarization scattering [Fig. 5(b)].

Figure 6 may help to understand the situation: the
scattering-out kernel cr'"'(co) is strictly zero at co=0—in
the Markovian approximation the holes cannot scatter
out. However, it is nonzero at ~co~ )0.5coLo=E,k, and

0

the overlap integral (35) always has a finite value, which
grows as the spectral width of n„(co) increases, i.e., with
decreasing pulse durations.

This example perfectly demonstrates that at least in
some cases the quantum effects can completely dominate
carrier dynamics.

C. Polarization dynamics

We are not going to analyze the polarization dynamics
in any detail and will only present here one set of results
for illustrative purposes. Figure 7 depicts the polariza-
tion decay rates at one particular value of the pulse dura-
tion, z =5.

The Markovian dephasing rates [Fig. 7(a)] display
sharp spikes at coo+~„o, which are nothing but phonon
sidebands these structures are integrated out when
memory effects are included [Fig. 7(b)]. Somewhat unex-
pectedly, the diffusion term (47), which is normally omit-
ted, actually causes the polarization to grow, not to de-
cay, in some portions of k space, which can lead to a
buildup of polarization in the sidebands.

Let us note that the mean value of the dephasing time
[about 40 fs in Fig. 7(b)] is in surprisingly good accord
with the experimental values of Ref. 10 (10—40 fs). This
value of 40 fs represents the shortest relaxation time in
our example, so that, strictly speaking, our results are
valid only for pulse durations shorter than this value, i.e.,
for w «2. In reality, for longer pulses the carrier dy-
namics are not determined by the external field alone and
are also affected by the relaxation processes. This means
that our results must be taken for what they are —the re-
sults of a model which assumes weak interaction in a situ-
ation when the coupling is not weak. However, they still

give a good idea of the role of the effects in question,
which is what one should expect of a model calculation.

V. CONCI. USIONS

Our aim in the present work has been to assess the role
of quantum effects in the relaxation of photoexcited car-
riers. It turned out that both the coherent and the
memory effects are rather important and can even dom-
inate the relaxation processes, at least when the exciting
pulse is shorter than approximately 100 fs =2~ilcoLo (one
phonon period) in GaAs.

Of course our calculations are model ones, and we do
not even try to compare the results with the experiment,
since we have left out numerous effects which are known
to infIuence the relaxation of carriers in GaAs: valence-
band anisotropy, carrier-carrier and intervalley scatter-
ing, collisional broadening, and so on (see Ref. 5 for an
excell'ent account of the real situation in GaAs). Howev-
er, our results indicate that the coherent and memory
effects should be added to this relevance list if one aims at
a comprehensive description of the relaxation phenome-
na.

The main feature of both quantum effects that we have
considered above seems to be their ability to destroy any
sharp structures (e.g. , phonon replicas of the initial densi-
ty peak) in distribution functions. They may help to ex-
plain the extremely rapid thermalization of carriers in
femtosecond experiments. ' Indeed, it seems that
valence-band anisotropy, carrier-carrier scattering, and
collisional broadening are included in the Monte Carlo
simulations mainly to get a more uniform distribution of
carriers over k space, which is in better accord with the
experiment. The memory effects offer another (and rath-
er powerful) source of broadening, which, in our opinion,
could explain the rapid thermalization of ultrafast-
excited carriers even in the absence of the above-
mentioned factors. Besides, the coherent effects may also
play a role in the experimentally observed red shift of the
pump-induced spectral hole, although it can prove
dificult to distinguish this effect from the Coulomb re-
normalization of transition energy.

Since not only the electron-phonon scattering, but also
other types of scattering must be modified by these quan-
tum effects, it seems very desirable to perform a full nu-
merical solution of the Bloch equations (10) for some
experiment-oriented situation in order to reassess the role
of the many factors affecting the relaxation of carriers.
Unfortunately, the extreme complexity of numerically
simulating non-Markovian systems like Eq. (11) puts such
a project far beyond our computer capabilities.

Let us conclude by noting that the important physics
that comes in under femtosecond excitation conditions
apparently deserves further exploration, although the
tremendous numerical problems involved are 1ikely to
confine such studies to the level of simplified models for
some time to come.
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