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Using an analogy between the one-particle Green function 6 on the one hand and the dynamically

screened electron-electron Coulomb interaction function 8'on the other for a many-electron system, we

obtain a biorthonormal type of representation for the Fourier transform with respect to time of the func-

tion 8'. Based on the assumption that this function can be approximated in terms of simple poles in the

complex energy plane, the connection between these poles and the energies of (damped) collective excita-

tions, which are to be identified with plasmon excitations, is made clear. The biorthonormal-type repre-

sentation of the screened interaction function 8'o8'ers alternative computational prospects for the calcu-

lation of the electron self-energy in crystals.

I. INTRODUCTION
This is the first of two papers dealing with the validity

and usefulness of the plasmon picture in describing the
dielectric properties of crystalline materials. The present
paper provides the theoretical background of such a dis-
cussion by drawing analogies between the equations
governing collective charge-density oscillations and those
describing quasiparticle excitations. In the second pa-
per, ' hereafter referred to as paper II, we shall discuss in
more detail the analytic structure of the dielectric func-
tion and its inverse and propose a practical scheme allow-
ing a highly accurate description of the latter in terms of
plasmonlike excitations and its consequences for the
definition of plasmon energies and lifetimes.

According to common usage, elementary excitations of
a many-electron system may be classified into two
categories: particlelike and collective excitations.
The related quantum-mechanical quanta of the former
excitations are generally referred to as quasiparticles,
which may be quasielectrons, quasiholes, polarons, etc.,
while those of the latter are designated plasmons, pho-
nons, magnons, etc. , depending on the phenomenon they
account for. For instance, a quasielectron is an electron-
like entity which consists of an electron surrounded by a
polarization cloud. A plasmon is associated with an in-
trinsic charge oscillation in the system.

Not only quasiparticle band structures in crystals, but
also the knowledge of plasmon band structures, offers
valuable information about the physical properties of the
system. Plasmon energies can be easily measured by, e.g. ,
fast-electron experiments, as it is known that fast elec-
trons are slowed down by plasmon excitations. '

The theory of plasmon excitations and their energy
dispersion has mainly been studied for the uniform elec-
tron gas. The results can be applied to simple metals (see,
however, Ref. 7). Investigations concerning the effect of

ion potentials on the plasmon band structures are also re-
ported. ' In this paper, we will concentrate on the latter
aspect.

We consider a crystal with immobile ions in which,
moreover, the electrons interact via the spin-independent
Coulomb interaction function only. In such a system, we

expect to have quasielectrons, quasiholes, and plasmons.
Plasmon excitations are directly related to the long range
of the Coulomb interaction, for by the latter property a
local disturbance of the electron charge density may give
rise to an organized self-sustained oscillation of a macro-
scopic number of electrons in the system. As the long
range of the bare Coulomb interaction is responsible for
the well-known I/ q~ singularity of the interaction, we

expect plasmons to be of particular significance in the
limit of small ~q~, i.e., in the limit of long wavelengths.
Moreover, due to the possibility of exciting electron-hole
pairs, plasmons cannot be long lived in the range of very
high energies. On the other hand, in the case of a uni-
form electron gas, self-sustained oscillations cannot be ex-
cited at too low energies either, for due to the strong
screening effects at low energies, the Coulomb interaction
is effectively of short range. In crystals such as semicon-
ductors, the long range of the interaction will only be
partially screened, so that the minimum energy of
plasmons may be lower (in paper II we shall expound on
the actual meaning of the plasmon energy in the context
of inhomogeneous systems).

As much of our discussions in this and the following
paper revolve around the analogy between collective exci-
tations and quasiparticles, a short review of the proper-
ties of quasiparticles seems in place.

Quasiparticles are considered as well-defined entities as
long as their lifetimes are long enough to be observed in
an experimental situation. This is in fact the case for
low-lying excitations of the electronic system. For a uni-
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form gas the lifetimes of quasiparticles decrease inversely
proportional to the square of the difference between the
quasiparticle wave vector and the Fermi wave vector. '

As a consequence, the fast quasiparticles are very short
lived. In semiconductors, it can be made plausible that
the quasiparticle lifetimes are extremely large for energies
within the energy range of —,

' times the gap energy around
the midgap energy value. " As the quasiparticles in the
higher bands are loosely bound and therefore behave as
particles in a uniform system, their lifetimes are expected
to be short.

Quasiparticle energies show up as peaks in the imagi-
nary part of the one-particle Green function G. A con-
venient representation of this one-particle Green func-
tion, the so-called biorthonormal representation, is in
terms of the eigenvalues and eigenfunctions of a
Schrodinger-like wave equation in which an energy-
dependent nonlocal operator, the self-energy operator,
plays the role of a potential. ' ' The energy dependence
and non-Hermiticity of the latter potential give rise to a
broadening of the quasiparticle peaks in the imaginary
part of the Green function, which is generally associated
with a damping of the quasiparticle excitations.

Similarly, plasmons show up as peaks in the imaginary
part of the screened interaction function 8' which is
closely related to the inverse of the dielectric function. In
a spatially uniform system, plasmons are known to coin-
cide with the (high-energy) zeros of the dielectric func-
tion of the system these zeros occur at real energies,
giving rise to 5-function peaks in the imaginary part of
8'. In a crystalline material, the existence of self-
sustained oscillations in the absence of an external field
leads to the requirement that the determinant of the
dielectric matrix in the plane-wave representation should
vanish at plasmon energies. However, as will be ex-
plained in more detail in Sec. II, this requirement is
fulfilled nowhere on the physical Riemann sheet, ' and
one has to look for possible zeros of the analytical con-
tinuation of the dielectric function e through the branch
cut. Again, the energy dependence and non-Hermiticity
of the dielectric function give rise to a broadening of the
plasmon peaks. In Sec. II we derive a biorthonormal rep-
resentation for 8' in complete formal analogy to the
above-mentioned representation for the Green function.
By considering our biorthonormal-type representation for
the static screened interaction function, we recover the
concept of dielectric band structure introduced earlier by
Baldereschi and Tosatti. ' ' Making approximations
similar to those used in deriving the quasiparticle repre-
sentation of the one-electron Green function from its ex-
act biorthonormal representation, we will then assume
that it is possible to describe the energy dependence of 8
in terms of simple poles, an assumption which will be
justified numerically in paper II. The connection of these
poles with charge-density oscillations will be explained.

Section III is devoted to the discussion of an applica-
tion of this theory in the calculation of the electron self-
energy operator in the 68' scheme. ' The thus-obtained
result will be used in paper II to calculate a highly accu-
rate self-energy operator for a model semiconductor. We
end with conclusions.

II. THE THEQRY

V', u(1, 2) =5(1,2),
e

while the relation between 8'and v can be expressed as

W'( l, 2) =u(1,2)+ fd(3)d(4)v(1, 3)P(3,4) W(4, 2) . (2)

This relation can alternatively be expressed in terms of
the inverse dielectric function e

W(1,2)= f d(3)e '(1,3)u(3, 2) .

The solution of (1) can be written

(3)

(4)

while the function P is related to the dielectric function e

by means of

e(1,2)=5(1,2) —fd(3)u(1, 3)P(3,2) . (5)

The functions e and e ' are related via

Most of the following is based on the observation that
there is an analogy between the equations governing the
behavior of the one-particle Green function on the one
hand, and the dynamically screened interaction function
on the other. To be specific, there is a Dyson-type in-
tegral equation for the screened interaction function 8'
similar to the one for the one-particle Green-function 6
in which the role of the unperturbed Green function G is
played by the bare Coulomb interaction v and the role of
the self-energy operator (function) X by the polarization
function P. Put otherwise, in the case of the one-particle
Green function we have, symbolically, G=G +G XG,
whereas in case of the screened interaction function we
have 8 =v+vPR'. Interestingly, like the unperturbed
Green function G, which satisfies a differential equation
with the Dirac 5 function as the source term, the bare
Coulomb interaction satisfies an equation, Poisson s equa-
tion, with almost the same structure. This analogy sug-
gests that, just as for the one-particle Green function G
which can be given in terms of a biorthonormal represen-
tation, ' ' there also exists a biorthonormal-type repre-
sentation for the dynamically screened interaction func-
tion 8. More importantly, and this is what we really are
aiming at, this similarity suggests that if some particular
approximation would work for the biorthonormal repre-
sentation of 6, the same might apply to 8'. As known,
the usual quasiparticle approximation for 6 is considered
to be a suKciently accurate one, at least as far as the be-
havior of G at low excitation energies is concerned. The
question arises whether a similar type of approximation
does exist for 8, which would then offer substantial com-
putational advantages for applications in real materials.

We start by giving first the basic relations concerning
the bare and screened Coulomb interaction functions
v (1,2) and W(1,2), where j =1,2 stands for a space-time
point (r, t ). Poisson's equation reads
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f d(3)e(1, 3)e '(3, 2)= fd(3)e '(1,3)e(3,2)

=5(1,2) . (6)

again for arbitrary functions f (r).
Substituting Eq. (8) in the right-hand side of Eq. (3), we

obtain

d r3e(r„r„E)e '(r3 12 E)=5(r, —r, ) (7)

It is not difficult to verify that the function e (r„r2, E),
completely similar to the Green function G(r„rz, e), may
be expressed in the form of a biorthonormal representa-
tion:

The similarity of Eq. (2) with the Dyson equation relating
perturbed and unperturbed Green functions and of Eq.
(1) with the Schrodinger-type equation defining G is ap-
parent [see Eqs. (10) and (9) of Ref. 13].

Let us now concentrate on the first relation given in
Eq. (6). In view of Eqs. (3) and (5) it will be clear that Eq.
(6) is nothing but the integral equation which the func-
tion W fulfills. Starting from Eq. (6) is therefore
equivalent to starting from Eq. (2) in which the formal
solution of the integral equation for 8' has been written
down. By Fourier transforming Eq. (6) with respect to
time according to Eq. (15) of Ref. 13 we obtain [cf. Eq.
(16) of Ref. 13]:

(14)

in which

g'„(r;E)= f d r'u(r r')g—„(r'; E) .

From Eqs. (12) and (15) it follows that

r), C I'2, C =U r) 12

(15)

(16)

In the system we are dealing with (i.e., no spins and mag-
netic fields), P(r„r2, e) is equal to P(r2, r, ;s), so that we
have in fact

By using Eqs. (5), (9b), (13), and (15) one can readily show
that g'„(r; E ) satisfies the equation

f d r' 5(r' —r) —f d r"P'(r', r";e)u(r" —r) g'„(r';E)

(17)

(8)
[D„*(E) %—*(E)]g„(r;'c,) =0 . (18)

in which the functions g„and g„satisfy the equation [cf.
Eqs. (18) and (19) of Ref. 13]:

[D„(E)—A'(E)]g„(r;E)=0,
[D„*(c,) —A' (E)]g„(r;E)=0,

in which the operator%'(e) has been defined by

%(E)f(r)=f d r'e(r, r', e)f(r'),

(9a)

(9b)

(10)

where the function f(r) is an arbitrary function. The ad-
joint operator %' (E) has been defined through the rela-
tion (%'(E)f,g) =(f,A' (E)g ), where (, ) stands for
the inner product, defined according to the expression
(f,g ) = fd r f*(r)g(r). As shown in Ref. 13, the func-
tions g„and g„can be constructed to be biorthonormal,
in the sense that

Therefore the functions g„and g'„* actually satisfy the
same equation.

In a crystal, where e(r„r2, E)=e(r, +R, rz+R;e), in
which R stands for a lattice vector, the functions g„(r;e )

and g'„(r; E) can be chosen to be Bloch functions and may
be denoted as g& k(r; e ) and gI k(r, E ); l is a band index and
k is a vector in the first Brillouin zone (1BZ). As the
functions g&*k(r;E) have to be linear combinations of the
gik(r;e) functions, and as both (g(*k.,

flak)

and (g'ik. , gik)
are equal to zero for any k'W —k (due to the Bloch prop-
erty), it follows directly from Eq. (11) that g& k(r;e) has to
be identified, apart from a possible numerical factor, with

k(r;e) (compare the similar discussion in Ref. 13). By
choosing the factor equal to unity, i.e., by writing
gIk(r;E)=g& k(r;e), we simultaneously fix the dimension
of the involved eigenfunctions g' and g to (J m )'
Denoting D„(e) as D& k(E), we may now write Eq. (14) as

Moreover, these functions are supposed to satisfy the clo-
sure relation [cf. Eq. (27) of Ref. 13]:

yg„(ri,'E)g„*(r2;E)=5(ri —r2) . (12)

(13)

In view of the fact that e(r&, r2, E ) has the dimension m

we observe from Eq. (10) that %(E) and therefore also
D„(E) are dimensionless. The dimension of the product
g„(r,;e)g„*(r2',E) in Eq. (8) is m, which allows us to
postpone the choice of dimension for the functions g„
and g„ themselves, as long as their product has dimen-
sion m . It follows easily from Eq. (10) that

A' (E)f(r) = f d r'e*(r', r;e)f(r'),

As g& k and g& k are both eigenfunctions to the same ei-
genvalue, we find that D& k(s) and D& k(E) are in fact
identical. The static values D&k(v=0) correspond to the
eigenvalues defining the concept of dielectric band struc-
ture introduced by Baldereschi and Tosatti. ' ' Note
that g& k(r;e) is only equal to g&k(r;E) if P(r&, r2,'e) is
real valued. By expanding the functions g in Eq. (19) in
plane waves exp[i (k+ Cx) r], where Cx denotes a
reciprocal-lattice vector, according to the relation

(20)

with A the volume of the crystal, and Fourier transform-
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ing W(r&, r2, E) according to Eq. (37) of Ref. 13, we obtain
the plane-wave matrix elements of W(r„rz, E ) as follows
(K and K' are reciprocal-lattice vectors):

:-Ik(K;s):-I k(
—K';s)

WK, ~«E)—=X
I I, k e

(31)

:"Ik(K;E):-I k(
—K';E)

WK, x(k E)=X
l Dl, k

(21)

XeK, K'(k E) l, k(K s) Dl k(s) I k(K 8)
K'

(22)

If the system under consideration is symmetric with
respect to the origin, it can be shown that =I k(K;e) and

„(—K; E) are in fact identical.
The closure relation in Eq. (16) transforms to

where the "& k functions have the dimension J' . From
Eqs. (9), (10), and (20) it follows directly that the plane-
wave coefficients =I k(K;s) satisfy the following system of
linear equations:

2)I „(e, (k))=0 D, k(el (k))=0 .

Equation (31) is then written as a sum over residues:

(32)

is in fact the screening part of the electron-electron in-
teraction.

As mentioned above, the biorthonormal representation
in Eqs. (19) and (30) is formally equivalent to the repre-
sentation of the one-particle Green function in terms of
eigenfunctions and eigenvalues of an energy-dependent
Hamiltonian. ' ' Therefore it seems natural to make an
approximation for 8'similar to the quasiparticle approxi-
mation of the Green function. In such an approximation,
the eigenvalues 2)l k(E) are assumed to have Ml simple
zeros el (k) for which it holds that

g:-I k(K;E):-I k(
—K', E)=uK I (k), (23) I k K I, —k(

WrC, ~(k'E)=X X fl, k
E —el (k)

(33)

whereas the normalization is fixed by the Fourier trans-
form of Eq. (12) with g„replaced by using Eq. (15);

in which the function =I k(K) stands for =I k(K;el (k))
and in which

where

1 :-Ik(K E):-I,—k(
—K's)=&i, l (24)

m
l, k=

M)l k(s)

BE a=el (k)

BDI k(s)
c=e, (k)

(34)

2

u~ x (k)= 1

eo k+ Kl
(25)

eK ~(k;E)~5~ ~+0(E ) as ~s~~ oo .

As a consequence of this, it follows from (22) that

(27)

Dl k(E)~1, (28)

is the Fourier transform of the bare Coulomb interaction
function.

Let us now consider Wit K (k; E) for large values of
~
E~.

The asymptotic behavior is known to be

Wir it (k;s) —
mud K (k)+O(c, ) as ~si~oo .

Similarly, the matrix elements of the dielectric matrix
satisfy

Note that eI (k)=eI (
—k). Obviously, at E=el (k) the

solution of Eq. (22) with vanishing right-hand side [cf.
Eq. (32)] is nontrivial if and only if

det[e~~(k;eI (k)}]=0, (35)

which is just the dispersion relation for plasmon energies
[see also Eq. (41) and the text following it]. Therefore we
have shown that the poles el (k) of our biorthonormal
type of representation can be identified with plasmon ex-
citation energies. ' Note that only those solutions of Eqs.
(32) and (35) are physically acceptable for which it holds
that either Re[el (k) ])0 and 1m[el (k ) ] & 0 or
Re[el (k)] &0 and 1m[el (k)])0. We remark here that,
for practical purposes, it is advantageous to look for the
poles of Tr[ez'z(k;E)] rather than for the solutions of
Eq. (35) as we have

Therefore, to our aim it is rather advantageous to intro-
duce a function 2) I k( E ) via the relation

1

K
'

I Ik F-

(36)

1 = 1=1+ (29)

WK K.(k;E)=uK ~ (k)+ W~ K.(k;e) .

The function

(30)

in which, owing to Eq. (28), I/X)l k(E)~0, as ~E~~ oo.
Due to the fact that the plane-wave coefficients =I k(K;E)
approach constant values for large JE~, and owing to Eq.
(26), we must have I/2)lk(E)=O(s ) as ~E~~oo. Intro-
ducing Eq. (29) in Eq. (21), while making use of Eq. (23),
we obtain

In this connection, we have to realize that the function
det[eK z(k;E)], for semiconductors, is real valued for
real energy values c within a finite interval around c=O.
Furthermore, the function is analytic everywhere in the
complex c plane, except for branch cuts on the real axis.
Consequently, the reAection principle of Schwarz im-
plies that the function takes complex conjugate values at
complex conjugate energies. Therefore the zeros of the
above function, if any, should be symmetrically located
with respect to the real axis. This would imply poles of
8' in all four quadrants of the complex energy plane,
which contradicts the above assertion about the location
of poles of 8' unless they lie precisely on the real axis.
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The latter possibility, however, is in conAict with the ob-
servation that, for three-dimensional systems, the func-
tion 8 has to be continuous ' and therefore bounded.
The solution to this seemingly contradictory situation is
that we have to search for the possible zeros of the ana-
lytic continuation of det[eK &.(k;s)] across the branch
cut on the real axis, i.e., on the nonphysical Riemann
sheets. "

In paper II we shall derive a formalism which circum-
vents the practical difficulties in solving Eqs. (32), (34),
and (35) directly, which arise from the necessity to
analytically continue eK x ( k; e ) into the nonphysical
Riemann sheet. This is achieved by making an inspired
guess for the pole positions eP and using the weights fI k
as fitting parameters. If one is Inerely interested in a
good numerical approximation for 8' it is even possible
to choose pole positions independent of the band index I,
1.e.)

II K,~ (k~~)=X Xfj,k=7k(K)=t, —8
m I

that the total potential 5y(r;e) due to an external poten-
tial 5$(r;c. ) is equal to

5y(r; E) =5&(r; s )+f d r'u(r —r')5p(r', E), (38)

in which 5p(r';E) stands for the charge-density deviation
from the charge-density distribution in the ground state.
Moreover, 5$(r;E) is related to 5g(r;E) through the rela-
tion

5$(r; E)= f d r'e(r, r', E)5g(r'; s) . (39)

fd'r, d'r, E(r, r, ;s)u(r, —r2)5p(r2;s) =0, (40)

or, in the plane-wave representation,

In the absence of the external potential, making use of
Eq. (38), this expression reduces to

E —e (k)
(37)E+e (k)

geK z (k; E)uK ~ (k)5p(k+K', s) =0 . (41)

where, concerning the minus sign between the two terms
inside the last set of large parentheses, use has been made
of the fact that the dielectric matrix eK ~ (k; E) is an euen
function of c..

If, however, we are interested in explaining the main
features of the plasmon spectrum in terms of as few col-
lective excitations as possible, direct solution of Eqs. (32),
(34), and (35) yields a physically more appealing picture,
in particular in view of calculating plasmon band struc-
tures. As this requires knowledge of the analytic con-
tinuation of 8'across the branch cut along the real ener-
gy axis, the answers one obtains for the excitation ener-
gies and lifetimes become the more ambiguous the fur-
ther away from the real axis the corresponding pole lies,
and it becomes more and more difficult to distinguish be-
tween individual excitations. It should be noted that
whatever choice of parameters in Eq. (33) has been made,
Eqs. (32), (34), and (35) will always be satisfied exactly if
we replace the exact functions ez K. and 2)&k by those
which would be obtained from the approximation to 8'in
Eq. (33). The technique of analytic continuation has been
used successfully to determine plasmon bands along the
6 and A directions in silicon.

In order to find the connection between the expanding
functions gl j,(r;s) and the charge-density functions tak-
ing part in plasmon oscillations, we remind the reader

Eo
5p(k+K;eP(k)) =a ~k+K(:-,k(K) .

e
(42)

III. PROSPECTS FOR CALCULATIONS
OF THE ELECTRON SELF-ENERGY

IN THE GS'SCHEME

Most of the calculations of the electron self-energy
operator X in crystalline materials thus far have em-
ployed the 68' approximation, in which only contribu-
tions to lowest order in the screening potential 8'are ac-
counted for. If we replace the Green function G by
its unperturbed version 6, the plane-wave matrix ele-
ments of X can be written as"

l
XG G(k;s)= y y FK K, (E;a,a', k, k'),

K. K'

where

(43)

It is just Eq. (41) from which the dispersion relation for
plasmon band structures follows, ' due to the fact that
det[uz K (k) ]%0, Eq. (41) can have nontrivial solutions if
and only if det[e~ it(k;c)]=0. It immediately follows
that the eigenfunctions =& k can be identified, apart from
a multiplicative constant o;, with the amplitudes of
charge-density Auctuations:

FK K (c,;Cx, Cx', k, k')=Rgd„q k(K)d„*q k (K') f d '

iE X/0/A~o—z, o' —~'(k' e')~

e —
E,

' —E„(k—k') —i i),sgn[p —s„(k—k')] (44)

In Eq. (44) the d„z(K) coefficients are plane-wave components of the Bloch eigenfunctions of the unperturbed system
with band index n and wave vector k; E„(k) is the related (real) energy; p separates occupied from unoccupied bands;
and flu, i1, are infinitesimally small positive numbers. Making use of Eqs. (30) and (31), we obtain from Eq. (44)
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FK ~.(e;G, G.', k, k') =2triittgd„„k. (K)d„*k k (K')

X IB(p e&(k k'))UG ~ o K (k )+Ho K G ~ (k «E«E&(k k )«p)]

in which I, ~G —K, G' —v'(k'«s')

In arriving at Eq. (45), use has been made of the residue theorem to obtain the term containing the 8 function. By sub-
stituting Eq. (37) in Eq. (46) and again using the residue theorem, we obtain

:"ti, (G —K):-t k (
—G'+K')

'"
E —E (k —k')+e (k')sgn[p —E, (k —k')] (47)

The practical advantage of Eq. (45) along with Eq. (47)
above Eq. (44) is obvious: there is no energy integration
left to be carried out numerically. The price to be paid is
an additional summation over the plasmon band index I
and over the pole positions m. In paper II, an eKcient
method for obtaining the coefficients ft k will be pro-
posed, which makes evaluation of X using Eqs. (43),
(45), and (47) comparable in terms of numerical cost with
schemes employing crude approximations for 8' like the
plasmon-pole model, in which each matrix element of
8 is represented in terms of two simple poles.

IV. CONCLUSIONS

respectively. It should be mentioned that the latter two
operators are energy dependent and non-Hermitian in
most of the energy range of interest. Analogously to the
way quasiparticle energies are found to correspond to the
poles of the Green function, plasmons have been shown
to be related to the poles of 8'. Moreover, the corre-
sponding eigen vectors of the dielectric function are
shown to be related to the amplitudes of the charge-
density oscillations. We have discussed the merits of us-
ing our representation in self-energy calculations within
the 68' approximation scheme. In paper II we further
develop the theory presented here and give the numerical
results of our calculations on a model semiconductor.

We have proposed a general representation for the
dynamically screened interaction function 8' of a many-
electron system. To this end, we have made use of the
fact that both the one-particle Green function 6 and the
screened interaction function 8 obey I3yson-type in-
tegral equations whose formal solutions can be expressed
in terms of eigenfunctions and eigenvalues of the related
operators, the Hamiltonian, and the dielectric function,

ACKNOWLEDGMENTS

B.F. and W.v.H. acknowledge useful discussions with
D.J. Wielaard. One of us (G.E.E.) would like to thank
Gateway Corporation and Churchill College, Cambridge,
for financial support. This work was supported by the
Science and Engineering Research Council (United King-
dom).

~Ci. E. Engel, B. Farid, C. M. M, Nex, and N. H. March, follow-
ing paper, Phys. Rev. B 44, 13 349 (1991).

zD. Pines and P. Nozieres, The Theory of Quantum Liquids,
Vol. I of Normal Fermi Liquids (Benjamin, New York, 1966),
pp. 111—118.

3R. Mattuck, 3 Guide to I'eynman Diagrams in the Many-Body
I'robIem (McGraw-Hill, New York, 1967), pp. 12—15.

4N. H. March and M. Parrinello, Collectiue Fffects in Solids and
Liquids (Hilger, Bristol, 1982)~

"'L. Marton, Rev. Mod. Phys. 28, 172 (1956).
6K. Sturm, Adv. Phys. 31, 1 (1982).
'E.-N. Foo and J.J. Hop~eld, Phys. Rev. 173, 635 (1968).y, ( ).
9N. H. March and M. P. Tosi, Proc. R. Soc. London, Ser. A

330, 373 (1972); Philos. Mag. 28, 91 (1973).
~oA. A. Abrikosov, L. P. Cyorkov, and I. E. Dzyaloshinski,

Methods of Quantum Field Theory in Statistical Physics
(Dover, New York, 1963), pp. 15-18.

~~B. Farid, R. Daling, D. Lenstra, and %. van Haeringen, Phys.

Rev. B 38, 7530 (1988).
~2A. J. Layzer, Phys. Rev. 129, 897 (1963).

W. van Haeringen, B. Farid, and D. Lenstra, Phys. Scr. T19,
282 (1987).

i~D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Ref. 2), pp. 210—215.

~5An n-valued function of a complex variable can be considered
to consist of n single-valued functions, each called a branch of
the original function. Alternatively, and equivalently, one
can extend the domain of the above n-valued function into n
so-called Riemann sheets, thereby making the many-valued
function single valued over the larger domain of n Riemann
sheets. The dielectric function we are considering in this pa-
per, for instance, is a many-valued function of energy. By
simply replacing the real energy variable in the usual defining
expression for this function by a complex energy, one obtains
what we in this paper refer to as the dielectric function on the
physical Riemann sheet; other branches of this function cor-
respond to other, nonphysical, Riefnann sheets.



PLASMON EXCITATIONS IN CRYSTALS

A. Baldereschi and E. Tosatti, Solid State Commun. 29, 131
(1979).
R. Car, E. Tosatti, S. Baroni, and S. Leelaprute, Phys. Rev. 8
24, 985 (1981).
L. Hedin, Phys. Rev. 139, A796 (1965).

9B.F. is indebted to D. J. Wielaard for pointing out this result.
2oE. C. Titchmarch, The Theory ofFunctions (Oxford University

Press, London, 1985), pp. 155—157.
L. van Hove, Phys. Rev. 89, 1189 (1953).

22K. Knopp, The Theory ofFunctions (Dover, New York, 1945),
Part I, pp. 92—111; ibid. (Dover, New York, 1947}, Part II,
pp. 93—118.

R. Daling, W. van Haeringen, and B. Farid, Phys. Rev. 8 44,
2952 (1991).

L. Hedin and S. Lundqvist, in Solid State Physics: Advances in
Research and Applications, edited by F. Seitz, D. Turnbull,
and H. Ehrenreich (Academic, New York, 1969), Vol. 23, p.
46.

25L. Hedin and S. Lundqvist, in Solid State Physics: Advances in
Research and Applications (Ref. 24), p. 14.

~ M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418
(1985);Phys. Rev. 8 34, 5390 (1986).

27R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. Lett.
56, 2415 (1986); Phys. Rev. 8 35, 4170 (1987}; 37, 10159
(1988).

2~VV. von der Linden and P. Horsch, Phys. Rev. 8 37, 8351
(1988).


