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Modeling studies of amorphous (a-) semiconductors have recently enjoyed renewed interest because of
increasing access to computing power and experimental developments that have revealed more informa-
tion about local atomic structure. Amorphous arsenic sulfide (a-As2S, ) is a paradigm of an amorphous
material that exhibits structural bistability, and therefore is a prime candidate for investigations of mod-
els. Previous studies of this material have suggested that a-As2S3 consists of either helical or planar
structures or bridged parallel chains. Experimental investigations alone have not led to a resolution of
which of these proposed structures most accurately represents the actual material. We have built a mod-
el of a-As2S3 that consists of 1790 atoms and agrees relatively well with all experimental studies of the
material that can be directly compared with a computer model. These include the density, the (infrared)
vibrational properties, the radial distribution function, pair distribution functions, neutron (and x-ray)
diffraction spectra, and elastic moduli. By studying the dihedral-angle relationships in the model, it can
be determined that a-As2S3 consists of randomly oriented segments of helical chains. The model does
not contain planar structures or bridged parallel chains.

I. INTRODUCTION

Studies of amorphous (a-) semiconductors have recent-
ly enjoyed renewed interest due to increasing access to
computing power and experimental developments that
have revealed more information about local atomic struc-
ture. Structure and structural changes in amorphous ma-
terials represent a family of interesting problems that
lend themselves to modeling studies. In an argument
based on balancing constraints with degrees of freedom,
it has been suggested' that the optimum coordination
number for a material to exhibit a structural bistability is
2.44. The coordination number of a-As2S3 is 2.4, so it is
not surprising that a-AszS3 is considered by many to
represent a paradigm of an amorphous multistable ma-
terial and as such, a prime candidate for modeling inves-
tigations. Investigations of materials from the family of
chalcogen-containing glasses are also driven somewhat
because of interest in their potential technological appli-
cations in such fields as imaging and information storage.
Despite these technological and fundamental interests,
the modifications that lie at the heart of the structural bi-
stability in a-As2S3 and materials like it are not well un-
derstood. It is knowledge of the structure of a-As2S3 and
the mechanism behind its structural bistability that
represents the ultimate goals of this research.

The bistability of a-As2S3 manifests itself in a reversible
photodarkening effect. In its annealed state, a-As2S3 is a
yellow glass. It can be changed to a photodarkened state
by illumination, which causes the glass to turn redder in
color. This change is reversible. Heating of the material
to a temperature near its glass transition temperature
causes it revert to the annealed state.

Theoretical studies of the structure of materials can
often be aided through the use of models. The proper use
of modeling can lead to insight into the structure of the

actual material, but one must be careful in interpreting
modeling results. In particular, several caveats must be
kept in mind. First, one must be careful to check any
model against all experimental data that are available for
which a meaningful check can be made. Then, once one
is assured that the constructed model is consistent with
existing data on the actual material, one must be careful
in interpreting the value of one's model. This is because
agreexnent with experiments performed on the real ma-
terial is necessary but not sufhcient condition that a mod-
el truly mimics the actual material structure. Thus, mod-
eling is often used to rule out unambiguously structures
that do not pass the experimental check, but it alone may
not be used to identify the structure of the real material
absolutely.

Balancing these cautions, the modeling of amorphous
structures has several strengths. For one, modeling can
lead to further experiments that might not have been
thought of in the absence of modeling. Another strength
lies in the ability to identify, in models, elements of
intermediate-range order (IRO) that are elusive, if not un-
detectable, in the actual material. These two strengths of
modeling are particularly important in the present study.
Insofar as it is changes in intermediate range order that
lead to the interesting photostructural modifications ob-
served in a-AszS3, an accurate model of these intermedi-
ate range modifications can suggest mechanisms which
may be responsible for the observed effects. Such pro-
posed mechanisms can then lead experimentalists to labo-
ratory checks of these mechanisms and ultimately to a
better understanding of the real material.

The modeling of the atomic structure of amorphous
materials has a history almost as long as the study of the
materials themselves. Current interest in modeling has
been rekindled for two principal reasons. First, experi-
mental probes of intermediate-range order have become
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availible. The clearest example of these involves the x-
ray-absorption-spectroscopy data which allow for the
determination of pair-distribution functions in an amor-
phous material. The atom specificity involved with this
spectroscopy coupled with an ability to use phase infor-
mation in the transformation of data make
intermediate-range-order information available that sim-

ply was not accessible in the past. A second reason for
renewed interest in this type of modeling involves the in-
creased availability of computer power. Increased power
has allowed for construction of larger models (with a con-
comitant smaller fraction of surface atoms), more realis-
tic atomic potentials, and more complete computer relax-
ation.

Remaining aware of the limitations inherent in the
modeling of amorphous materials, while at the same time
being encouraged by additional experimental results and
greated available computer power, the present study was
undertaken. In the following we first describe current
knowledge of the basic structure of a-As2S3 and then in-
troduce the concept of intermediate-range order, stress-
ing experimental probes of structure at this level. We
then review briefly previous models of a-As2S3 and de-
scribe our own model-building technique. Finally we
compare our model with experimental data and draw
possible conclusions about the structure of the real ma-
terial based on our modeling results.

II. STRUCTURE OF As2S3
AND INTERMEDIATE-RANGE ORDER

To understand the ordering of a-As2S3 it is instructive
to first examine the atomic arrangements in its crystalline
(c-) counterpart, orpiment, that is, c-AszS3. In orpiment
AsS3 pyramidal units form helices which cross link into
12-membered rings. Adjacent rings are covalently bond-
ed into planes, and these planes are principally weakly
van de Waals bonded to form the anisotropic solid.
Descriptions of the structure of a-As2S3 usually begin
with an AsS3 pyramidal unit. The argument for the ex-
istence of such a unit based on vibrational data, and there
is general agreement that these pyramids provide a con-
venient framework for discussions of the amorphous
As2S3 network.

For higher-order structures in the amorphous material,
no such consensus exists. By careful examination of the
symmetries of vibrations in the crystal and the infrared
and Raman spectra of the glass, larger structures have
been described in terms of -As-S-As-S-As- chains that
link into planar structures. Appeal to such chains ap-
pears in other work as well. With the addition of
nuclear-quadrupole-resonance techniques, coherent rela-
tionships between planes have been proposed. Some
groups have discussed large structural configurations in
terms of bridged parallel chains which center on 12-
member rings of alternating As and S atoms. A number
of other research teams' have pursued this notion, as
well as that of other clusters" which may be stable con-
stituents of the disordered network.

These studies and others like them have driven discus-
sions of the structure of these materials to consider the

notion of intermediate r-ange order. To establish a frame-
work for our discussion we first must recognize what we
mean by short-range order. Clearly, the atomic arrange-
ments that include definitions of an atom's neighbors and
the bond lengths and angles joining neighbors falls into
the regime of short-range order. If one includes the no-
tion of higher-order correlations and local symmetries in
this regime, then the notion of dihedral angle relation-
ships (four-body correlations) must also be considered.
We prefer inclusion of all of these in the definition since
this naturally places the notion of local-site symmetry
squarely in the realm of short-range order. We next sug-
gest that materials for which microcrystallinity is experi-
mentally observable (using, for example, x-ray or electron
diff'raction of Raman spectroscopy) are said to possess
long-range order. Particle correlations extending to
larger numbers of atoms than those included in short-
range order but which do not manifest themselves in the
long™range order signature are said to encompass the
realm of intermediate-range order.

Our choice of such a definition is of course arbitrary.
It does provide, however, a criterion that is not material
dependent and has a framework with a physical basis.
Other perfectly acceptable definitions include the sugges-
tion of Elliott' that descriptions of dihedral angle rela-
tionships are the smallest units of intermediate-range or-
der. Some researchers prefer to arbitrarily set the line of
demarcation between short- and intermediate-range order

0
at a particular distance (say 10 A) or a particular coordi-
nation sphere. ' Finally, some appeal mostly to experi-
mental responses of systems. ' This implies that the
definition of intermediate-range order lies in, for example,
spectral features of low-k x-ray spectra or in low-
frequency Raman spectra. We have chosen the definition
based on dihedral angle relationships and local sym-
metries because they lie at the heart of the problems we
are investigating.

Experimental determination of intermediate range or-
der in amorphous solids is difficult for two reasons. First,
the lack of symmetries inherent in the amorphous state
make symmetry-dependent characterization techniques
(e.g. , ir spectroscopy) problematic. Second, even if inter-
mediate range order structures exist, the disorder
broadening in many experimental measures of order can
cause any signature of existing intermediate range struc-
tures to be masked by a broad distribution involving all
intermediate range orientations.

As mentioned at the start of this section, the structure
of a-As2S3 can be most easily discussed once the structure
of c-As2S3 or orpiment, is understood. In orpiment, the
linked AsS3 pyramids which form the crystalline state
can be seen as the building blocks of the helical chains in
Fig. 1(a). The helical chains connect together across
weaker-bonded bridging sulfur atoms to form layers. The
layers alternate and are weakly bonded together with van
der Waals forces. The entire multilayered structure con-
sisting of bridged chains describes the crystalline state of
As2S3 [Fig. I(b)j. The study of IRO of a-As2S3 is princi-
pally a question of what degree of the order seen in the
crystalline state (AsS3 pyramids; pyramids linked into
As-S-As-S-As-S chains; chains held together with bridg-
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(a) the atoms near it out to the third nearest neighbor. They
suggested that the photodarkening effect related to the
twisting of two joined AsS3 pyramids and the expansion
of the bond angle on the common sulfur atom.

III. MODKI.S OF AMORPHOUS STRUCTURES

FIG. 1. (a} A helical chain of a-As2S3 and (b} crystalline

AS2S3 showing the formation of layers from the helical chains.

ing S atoms; or alternate layers of bridged parallel chains)
exists in the amorphous material. As mentioned above,
previous studies have suggested that the intermediate-
range order in a-As2S3 takes the form of either layers,
helices or bridged parallel chains. The importance of un-
derstanding the IRO in a-As2S3 is underscored by the fact
that it has been previously determined that there is a rela-
tionship between the intermediate-range order of a-As2S3
and the photodarkening effect. Through the present
modeling studies, some possible forms of this IRO is
identified, and the relationship between this
intermediate-range order and the photodarkening effect is
investigated.

Experiments have made it possible to determine some
of the basic structural properties of a-As2S3 such as bond
lengths, bond angles, density, and bulk modulus. ' '
Other experiments have suggested more complex
structural ordering of a-As2S3. These include x-ray and
neutron scattering experiments. Lucovsky et ah. ' stud-
ied the vibrational aspects of a-As2S3. To interpret their
data, they used a valence force field model employing
bond lengths and bond angles. Using this model, they
were able to determine the force constants associated
with bond length and bond angle deviations. They also
suggested that an AsS3 pyramid constituted a basic build-
ing block of a-As2S3.

Yang et al. studied a-As2S3 through extended x-ray
absorption fine structure (EXAFS) experiments made at
the arsenic absorption edge. They determined the arsenic
structural distribution functions. These functions de-
scribe the radial distance between an arsenic atom and

A conceptually straightforward way of modeling amor-
phous structures involves the construction of mechanical
(or stick-and-ball) models. Such stick-and-ball models
suffer in that they consider only the effects of bond
lengths and bond angles on formation of the long-range
structure. These models are also subject to gravitational
sagging which displaces the atoms from their equilibrium
positions. To avoid these problems, a stick-and-ball mod-
el can be relaxed in the computer after it has been built. '

This relaxation process involves moving the atoms in the
model to their minimum-energy positions. This removes
effects of sagging on the model, and if an accurate intera-
tomic potential can be developed, it allows the introduc-
tion of higher-order energy considerations beyond bond
lengths and angles.

A variation of the relaxation method can also be used
to create models. This substitution method uses models
of one type of material and relaxes it with different types
of atoms or with more atoms added in between. ' This
method has the advantage of allowing one to exploit ex-
tant models of relatively simple materials (e.g., a-As) to
model more complicated structures (e.g. , a-AszS3). This
method is unrealistic, however, in that the structures
present in the simpler starting material are imposed onto
a physically different material.

There are other problems associated with stick-and-
ball models that computer relaxation cannot resolve. The
structure of a stick-and-ball model is limited to how the
modeler builds it. Any preconceived notions the builder
may have will be introduced to the model as biased struc-
ture. A model builder with no knowledge of the material
being studied may still use a preferred structure
throughout the model. One way to overcome modeler-
dependent biases is through construction entirely using a
computer. Computer-based modeling can follow a num-
ber of tacks, examples of which are discussed in the litera-

19 24

A. Previous models of a-As2S3

Rechtin et aI. produced a model of a-As2S3 containing
100 atoms. ' This model began with a random cluster of
atoms which was then relaxed using a Monte Carlo
method such that it fit a given experimental radial distri-
bution function. The Monte Carlo method involves ran-
domly moving atoms and determining the energy change
associated with the move. If the energy is lowered by the
change, the move is retained. If the energy is higher, the
move is retained with a probability exp( dE lk T), —
where dE is the energy increase associated with the move,
k is Boltzmann's constant, and T is temperature. Period-
ic boundary conditions are employed to avoid problems
with finite sample size. This model shows very good
agreement with the experimental radial distribution func-
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tion, as would be expected, but is somewhat unrealistic in
that it has a large number of internal dangling bonds
which are known to be absent in the real material.
Furthermore, no claims as to the intermediate-range or-
der in the model are made.

Fujiwara et al. ' produced models in a difFerent way.
They begin with a random close-packed structure of
atoms which is relaxed using an atomic potential which
involves bond lengths and bond angles only. The relaxa-
tion is achieved by determining the direction of the net
force on an atom and moving that atom in that direction.
Completion of the model was accomplished through
iterative reformation of the bonds between atoms and
subsequent relaxation. The results show good agreement
with the experimental radial distribution function, and
the model shows evidence for two-dimensional (planar)
structures. This model is questionable, however, since it
contains a large percentage of internal dangling bonds,
which are known not to exist in the real material.

Fowler and Elliott' created Inodels of a-AszS3 by a
substitution method. Although this model agrees well
with the experimental radial distribution function and x-
ray difFraction results, a bias is built in since the model is
based on a structure known to be different from the
modeled material. Through careful study of how this
model re-creates the first sharp diffraction peak (a feature
of the x-ray diffraction spectrum), Fowler and Elliott con-
cluded that their models could accurately model the x-
ray diffraction without resorting to layers or bridged
parallel chains. Thus they concluded that these struc-
tures were unlikely in a-As2S3.

Pfeiffer and co-workers used the relaxed stick-and-ball
method to build several models. To perform the relaxa-
tion, an atomic potential consisting of bond-stretching
and bond-bending terms similar to those used by
Fujiwara was employed. Also included were two terms
that relate to the interaction between sulfur atom pairs.
Each sulfur atom has two electrons which are not used in
bonding. These lone-pair electrons can be modeled as a
quadrupole of charge on each sulfur atom. The interac-
tion of these quadrupoles form the basis for the other
terms in the potential. These early models show reason-
able agreement with the experimental radial distribution
function and with x-ray diffraction experiments. The
models do not have internal dangling bonds, but they are
relatively small so they do sufFer from finite size and sur-
face problems. The models also show evidence for the ex-
istence of helical forms of intermediate-range order. This
could, however, be a product of the initial bias inherent
in hand-built models.

B. Building the model

The present model was constructed entirely using the
computer, but the process used to build it was derived
from the relaxed hand-built method. In the method
chosen, the computer takes the part of the experimenter
in randomly adding atoms to the growing model. The
program is constrained always to add additional atoms to
the atom with unfulfilled bonds that is nearest to the
center of the existing model. In this way, the program

avoids leaving dangling bonds, except —of course —on
the surface of the growing model. The building algo-
rithm furthermore only allows bonds between heteropo-
lar atoms (As-S). Experimental evidence suggest that this
configuration is preferred over homopolar (As-As or S-S)
bonds.

The program proceeds by adding atoms and relaxing
them into place. The relaxation process involves the use
of the four-term potential suggested in our previous
work:

U.i,.i.h =4)«L —L 0)' (2)

where I. is the distance between two bonded atoms, I 0 is
the experimental bond length (2.27 A), and a is the
strength of the potential as determined by Lucovsky.
The second term is also harmonic alid relates to the angle
between the bonds on a given atom. This term has the
form

Ub, „d =( —,
' )/3(0 —8O) I o,

where 8 is the angle between two bonds, 00 is the experi-
mental bond angle, and P is the strength of the potential.
The constants 8 and /3 have different values for the two
type of atoms.

The latter two terms of the potential of Eq. (l) are
based on the quadrupole of charge created by the lone-
pair (LP) electrons on the sulfur atoms. The quadrupole
can be modeled as two negative charges projecting out
from the nucleus of the sulfur which is assigned a charge
of +2 for the sake of charge conservation. For the in-
teraction of these quadrupoles on two sulfur atoms, we
defined the last two terms of the potential as the "cross-
ing" and "pointing" terms. For the crossing term we as-
signed a vector to each of the sulfur atoms which points
from the nucleus to one of the negative charges. The an-
gle between these two vectors, P„, has an optimal value
of 90, which represents the two vectors being crossed
[Fig. 2(a)]. For the pointing term, we define two vectors
on the sulfur atom being relaxed. The first points from
the nucleus to the negative charge. The second points
from the center of the atom to the other atom [Fig. 2(b)].
The angle between these two vectors, P „also has an op-
timum value of 90', and thereby avoids having the
charges on one sulfur pointing toward the other sulfur.
The potentials for each of these two terms are harmonic
with an additional weighting term exp( yrlro) includ-—
ed to define the effective range of interaction. The cross-
ing term is

Ustretch + Ubend + UI.I'-cross+ ULP-point

Correcting potentials are used to accommodate intera-
tomic bonding, to monitor the density, and to avoid the
development of "bad pairs, "which are atoms that are not
bonded together but are closer together than one bond
length. The building process is explained in detail in Ap-
pendix A.

The first two terms of the potential derive from the
valence force field model of Lucovsky et aI. ' The first
term is an harmonic potential based on the bond length
between two bonded atoms. The form of this term is
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(a}

(b}

FICx. 2. (a) The angle used in the crossing term of the poten-
tial. (b) The angle used in the pointing term of the potential.

model and the known value of the density. The atom was
then given a potential of the form (r —ro), where ro is
the calculated radius and r is the actual radius of the
atom from the center of the model. The r potential al-
lows a small amount of deviation from the expected ra-
dius, but large deviations are avoided. During growth,
another correction potential was used to avoid the
creation of "bad pairs" of atoms. In reality, the existence
of a bad pair would result in the creation of an additional
bond between the two atoms while other bonds were bro-
ken. Our simple program does not allow for the breaking
of bonds, so we used a "hard-sphere" potential to avoid
the creation of bad pairs. A bad pair is a bonded pair of
atoms initially grown into the sample in a configuration
such that their separation is less than the equilibrium
bond distance. It should be stressed that this is a poten-
tial term used during model growth. Clearly once an
atom has bonded, relaxation can result in a distribution
of nearest-neighbor separations, including whose with
separations less than the most likely value (i.e., the value
at the first peak of the radial distribution function). This
hard-sphere growth potential is quite simple. If the
atoms are far enough apart, then the potential vanishes.
If the atoms are within a bond length, however, the po-
tential is effectively infinite, thus forcing the atoms into
any configuration which avoids the bad-pair
configuration.

A=—'KLP-cross 2 cr Vcr

2
e

—yr
(4) C. Accuracy of the model

and the pointing term is

LP-point 2 pt 'Ypt

2
e pv

where r is the distance between the two sulfur atoms. K„
and Apt were determined through the calculation of the
bulk modulus of one of the models. The value of y was
chosen to allow strong interaction between second
nearest-neighbor sulfur atoms.

Most of the bonds in the model are created by bonding
additional atoms to the existing portion of the model.
Other bonds, between existing atoms, must be created
during model growth to avoid dendritic growth. To
create these other bonds, a building correction potential
is used. This potential represents an attractive force be-
tween heteropolar atoms with unfulfilled bonds. The po-
tential has a 1/r form which represents a Coulombic at-
traction between the two atoms. Once two atoms are
within a reasonable distance, a trial bond is made and
tested. If the bond lengths and angles resulting from the
trial bond are within a certain tolerance of their antici-
pated values, the bond becomes permanent. One of the
major difhculties that had to be overcome in this program
was building the models with the correct density. To
solve this problem, a density-correction potential was
created. Once the model exceeded the radius at which
the radial distribution function becomes washed out
(about 7.5 A), all additional atoms were placed subject to
this potential. The anticipated radius of an additional
atom was calculated based on the current mass of the

A model of 1790 atoms was built according to the
above method over a period of 9 days on a DEC Micro-
Vax. In comparing the model to experiments done on the
actual material, one must distinguish between explicit
comparisons that can be made after the model is built,
and implicit comparisons that are incorporated into the
construction of the model itself. Explicit comparisons be-
tween our model and real data include: radial distribu-
tion functions; x-ray and neutron scattering spectra; and
pair distribution functions determined from XAS experi-
ments. Implicit comparisons include the sample density,
infrared vibrational frequencies, and bulk moduli. We
discuss each of these comparisons separately below.

Implicit inclusion of bond strengths through use of in-
frared vibrational data presumes that the structure of the
model and that of the actual material are similar. Since
aH other comparisons of the model and the actual materi-
al show striking similarities, it is reasonable to use the po-
tential strengths (a and P) that were determined from ir
results. ' The model also agrees implicitly with the ex-
perimental bulk modulus because the constants K„and
Ept were determined from these values. A final implicit
agreement lies in the density of the model which was ad-
justed by controlling the As—S bond length and devising
a growth algorithm that avoided dendritic growth. In-
sofar as all of these implicit agreements are built into the
model during construction, the "agreement" between the
model and the actual material is self-fulfilled. More
meaningful comparisons involve explicit independent ob-
servations made after construction of the model. Table I
lists major data concerning the model. The values for
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TABLE I. Major data concerning the model.

Model parameters

L0=2.27 A
As = 100.9
s= 101.3
y=1.006 A
a=8.67 eV/A

P&, =2.00 eV/A
Ps=2.81 eV/A

Acr =Apt =0.316 eV/A
4".=Apt=90'

Model Statistics

Number of atoms=1790
Calculation time-=3 CPU days on a Micro-Vax

Average bond length=2. 298 A (2.27 A)
Average As bond angle=103. 03' (100.9 )

Average S bond angle=102. 61' (101.3')

Average density=3. 112 g/cm' (3.187 g/cm')

averages bond length, bond angles, and density are in
close agreement with the experimental values shown in
parentheses in the table.

Perhaps the most critical experimental comparison
that can be appealed to in discussing the accuracy of the
model lies in its agreement with the pair distribution
functions determined from x-ray absorption spectrosco-
py, or XAS. The XAS data allow three direct experimen-
tal comparisons of pair distribution functions. The As-S
first-nearest neighbor (and thus the S-As neighbor) is
measured to be at 2.28+0.01 A in the actual material and
2.3+0. 1 in the model. The As-As second-nearest neigh-

0
bor is measured to be 3.52+0.01 A in the actual material
and 3.5+0. 1 in the model. Within the accuracy of the
XAFS experiment and the spread of bond lengths in the
model, it can be said that for these pairs the agreement is
excellent.

Although we have not measured the XAFS at the
sulfur edge we can make some statements from EXAFS
data and topological constraints about the S-S second-
nearest-neighbor pair-distribution function in the actual
material. As shown above, the first-nearest-neighbor As-
S distance is measured to be identical for the crystalline
and amorphous material. It has been shown in other
XAS work that the S-As-S angle is—within experimen-
tal error —the same in the amorphous material as in the
crystal. From this information and the density of the
amorphous material we can conclude that the As-S-As
angle must not deviate by more than approximately one
degree from the crystalline value. This allows us to
determine the S-S second nearest-neighbor distance in the

0

actual material to be 3.5+0. 1 A, which is identical to the
value and spread measured in our model.

The use of XAFS experimental results thus allows us
to make explicit comparisons of atomic pair distances,
and all suggest that within the experimental accuracy our
model replicates the actual material. The As-S (and thus

C)
0

Radius (A)

10

FIG. 3. The radial distribution functions (FRD) for the model
(solid line) compared with experimental results of Ref. 18
(dashed line).

the S-As) first-nearest-neighbor distance is 2.28+0.01 A
(versus 2. 3+0. 1 A in the model). The As-As second-
nearest-neighbor distance is 3.52+0.01 A (versus
3.5+0. 1 A in the model). And both the model and the
XAFS results give as the S-S second-nearest-neighbor dis-

0

tance 3.5+0. 1 A This study of pair distribution func-
tions and interatomic distances clearly underscores
several strengths of XAFS techniques. The atom-specific
nature of XAFS allows one to focus on particular envi-
ronments, and the use of the phase-corrected Fourier
transform allows clear separation of atomic species in
any given shell surrounding the chosen environment.
Comparison of specific pairs in the actual material to
those in the model is thus made experimentally possible.
And the agreement is excellent.

It is important to remember that these comparisons are
of pair distribution functions involving explicit pairs.
This is in contrast to radial distribution functions which
do not distinguish between the atomic identity of pairs.
Both XAFS and structural modeling allow comparison of
explicit pairs while the measurement and calculations of
radial distribution functions does not. The ability to
separate individual contributions within one shell in x-ray
absorption spectroscopy requires a clear phase di6'erence
between species one is trying to resolve. In the case of
As and S, the scattering-phase difference is nearly 90',
which is the ideal phase difference for resolving separate
components with a shell. Of course the comparison of
distinct pair distribution functions is not possible in mod-
els of elemental solids.

Other explicit experimental results that the model can
be compared with include the radial distribution function
and x-ray (and neutron) diffraction intensity, I(k). These
can be calculated from the model. The calculations for
both the radial distribution function and I(k) are shown
in Appendix B.

An examination of the radial distribution function (as
shown in Fig. 3) for one sample of the actual material
and for the model allows one to compare both bond



C J gRABEC13 338

it . The first peak in the FRD corre-
e n atoms and it is where

3.5 A and correspo
pairing. Althoug pea w'

le the positions vary on ysample to samp e,
parison of experimrimental FRD's wit

mind the fact that t e exh xperimentalmade keeping in min
'dth ' so that exactF 's can difFer slight y

'
p1 in eak wi

ths in the model is not cntica y
'"p"'""n"""h"n '

ortant in the comparison o etant. Also irnpor a
own in Fig. 3 is t e cornthe material as show g. 3 t om

re of the background. e ac
fth t 1model curvature pre licates that o e a

accurate and uniform densi y in

rate al orithms for avoi ingnot incorpora e g

~ - fi..l,...i...f ... .d.
r structures that wou resu in

1-inaccurate densities. T e na ve
~ ~

ram as describe in e
ithm 1 d

'
the good agreementithm that resu te ineluded an algorithm

i . 3. It is important toshown in the arg - plar e-r ortion of Fig. . is
'

1 1 to large-r values soF that extends c ean y o
1 f band topo ogica unthat model density a

d. 0 choice of experimen RD
isoil plllposes was 111acle w

g compares th p tthe ex erimenta an
ood a reement here as we wThe model shows good ag

f m the experi-The model deviates rom eminor exception. e
A '. This is to be ex-for k values below 2

f h",--- d"nd.e the low-k part o t ispected since e
-ran e correlations e w .upon very long-rang
in our finite-sized mo e.are not present

in the I(k) spectrumm has been in e
ft t ' ' and thisthe hotodarkening efFect,range order and t e p

roduced with thepeak has been a'
yfairl accurately repro uc

h' st is concerned, thedel. Thus, as far as t is tes is cpresent mode .
d' ge order featuresmodel does not have interme iate-ran e

B. Structure in the model

n e order is not well defined in the x-
d' ld b o fits or in the ra ia isray difFraction resu s

tion. n aI a model one has in an ,

Dihedral Angle Distribution (deg)

N
Q)

c 0

a OQ&

C3

0 50 100 'l 50

Sum of Paired Dihedral Angles (deg)

I
I

(b)

real material rmediateincommensurate wit
ge order fouIldnd in the model'

to ut the present worrk in proper per-js important to p
l. studjes In gen-s ect to earlie mspectjve w sp

1
~

1 e impljc t in-eral, it can be "'
lusion of bou. ndibrational data (t roug in

b t general model struc-a resumption a ou ge

length). It has i h se m m
studies that c pcorn arison with ra ia is
has been made andnd that suc compar

1 des all of thesee resent study inc u es a
1 f.„h.„.„....,...

n
'

1 ays. First, the bulk
t it oes considerab y ur

ntal data in severa ways.with experimen

d'
1 included. econ, c

x-ra difFraction spectra is iree
f distinct pair distribua corn arison o our is

~ ~

able. Finally, a p
tion functions is explicitly made, an
quite good.

G

ID

E
Z

O
0

—J

100 200 300

C3
CU

LC3

O
a

0
T

E
Lri

f P ired Dihedral Angle (deg)Difference o aire

II
I 1

(c)

I li
I

'l
/

I

0 10 15
50 100 150

raction intensityt I(k) for the model
d with experimental resu ts o(solid line) compare wi

(dashed line).

b Distribution

) corn ared with randomof paired i e rad h d l angles (solid line compare
pairing (dotted line).



STRUCTURAL MODEL OF AMORPHOUS ARSENIC SULFIDE 13 339

Type of Atom

B —Bridging

Fraction of Total

0.024
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X
X

intermediate-range order that can be examined in some
detail. Thus, insofar as we have developed a model which
agrees quite well in experiment with the real material, it
is of interest to investigate the intermediate-range order
in our model.

In order to describe the intermediate-range order in
the model, one must consider the relationships between
pairs of dihedral angles. To define a dihedral angle, we
first describe the orientation of an atom in terms of a vec-
tor which is the sum of the bond vectors connecting it
with its first nearest neighbors. A dihedral angle can
then be defined as the angle between the orientation vec-
tors on two neighboring atoms. If one considers a sulfur
atom which connects two AsS3 pyramids, we have a pair
of dihedral angles on each sulfur atom which describes
the orientation of the adjacent A2S3 pyramids. Luedtke
and co-workers describe the correlation between pairs
of dihedral angles using distribution functions describing
the average sum and average diC'erence between the two
dihedral angles in each pair. Any variation between these
functions and similar functions calculated for random
pairing provides evidence for IRO in the model.

Another method which we used in our previous work
is to create a scatter plot on which each S atom is as-
signed on point representing its local environment. The
coordinates on such a plot can be the atom's two dihedral
angles with the greater angle being defined as the ordi-
nate. Such a plot can be examined for clustering which
would be indication of a preferred order in the model.
On a scatter plot for a crystalline sample, only two S en-
vironments would be found: one representing the helical
S environment and one representing the bridging S atom
between two helices. In an amorphous model, any clus-

Sulfur Atom with Dihedral Angles (131, 131')

.C

Eye Position: 0.00, 1.00, 0.50

FIG. 7. Stereoscopic computer drawing of a sulfur atom with
dihedral angle (131, 131'). Sulfur atoms are smaller and darker
than arsenic atoms.

tering in these regions would suggest the existence of the
structures which give rise to these environments in the
crystal.

Evidence for intermediate-range order in the model is
seen in these two dihedral angle plots. In the angle distri-
bution plots (Fig. 5) we have a noticeable variation from
the random-pairing graph In the. scatter plot (Fig. 6) we
have noticeable clustering in at least two places. The sum
distribution plot shows a peak which is higher than it
would be for random pairing at about 200 degrees. This
corresponds to the peak in the difI'erence graph at 75 de-
grees and to the clustering shown on the scatter plot at
(140', 65'). The scatter plot shows that these pairs lie in
the region near the helical S-atom site from c-As2S3.
From this we conclude that the helical form which is
found in the crystalline state is also found in the amor-
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FIG. 6. Scatter plot of dihedral angle pairs in the model.
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H show the bridging and helical sulfur sites from the crystal.

FIGX 8. Stereoscopic computer drawing of a sulfur atom with
dihedral angles (90, 62 ). Sulfur atoms are smaller and darker
than arsenic atoms.
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phous state represented by our model.
There is also some clustering on the scatter plot be-

tween (130, 130') and (150, 105'). These points corre-
spond to the range of 260' —300 on the sum plot and 0'
on the difference plot. Notice that the graphs at these
points are close to the graph for a random pairing, which
means that this particular pairing occurs as a random
event rather than as a preferred pair configuration. This
suggests that these neighborhoods are an artifact of a sin-
gle preferred dihedral angle, i.e., a shorter-range order-
ing. Nevertheless, this configuration could represent a
sulfur atom bridge between two crossing helices, as sug-
gested by the computer picture for the pair (131', 131')
shown in Fig. 7. There is a small peak of the sum graph
at 150' which corresponds to the peak at 25 degrees on
the difference graph. These peaks correspond to a
minimal amount of clustering on the scatter plot in the
area (85', 65'). The computer picture for the pair (90',
62 ) (Fig. 8) shows that this pairing occurs in the six-
membered ring configuration. Such six-membered rings
can be formed at the termination point on two intersect-
ing helices.

The scatter plot shows a distinctly low number of
sulfur atoms in the neighborhood of the bridging sulfur
site. Since bridging sulfur atoms form the chains into
planar structures, this suggests that this model does not
contain such planes. Furthermore, no other clustering is
evident, so we have seen no evidence for the existence of
bridged parallel chains in the model.

Insofar as the present model is an accurate depiction of
reality, one can say the following: that a-As2S3 contains
helical units which are linked together by bridging sulfur
atoms as found in the crystal. Unlike the crystal, howev-
er, the helical axes are not parallel, so the bridging sulfurs
are randomly twisted. The existence of six-membered
rings is not incompatible with the model, but no evidence
for planar or bridged-like structures are evident.

Currently underway are efforts to develop further the
modeling techniques used in the present study. A bond-
switching mechanism is being incorporated into the
growth process to relieve built-in stress. The program is
being made more efticient to allow growth of larger mod-
els so as to further minimize the effect of the surface and
more carefully compare the model to observed x-ray
diffraction data taken on the real material.
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APPENDIX A

The model-building process is outlined in the Aow dia-
gram of Fig. 9. The program begins by reading any pre-
vious data that were left the last time the program was
run. A model is begun with an AsS3 pyramid which is
used as a seen. Next, the program finds the neighbors of
all existing atoms. The neighbors of a given atom are all
atoms within 5 A of that atom. These neighbors are used
in the calculation of the lone-pair potentials and in the
building and bad-pair correction potentials. Next the
program adds additional atoms to the model five atoms at
a time. For each atom, it finds the innermost atom of the
model which has unfulfilled bonds. It then attached an

Start

Read In

Old Data

IV. CONCLUSIONS

A model of a-As2S3 has been constructed in a comput-
er that has avoided or minimized many of the shortcom-
ings of previous models. In particular the model: (i)
agrees substantially with all experimental checks that can
be made on it and on the real material; (ii) avoids building
biases inherent in models constructed by hand-built
means or by adapting models of similar materials; (iii) is
appreciably larger than other finite-size models, thus di-
minishing the effect of the surface; (iv) does not depend
on periodic boundary conditions; (v) includes subtleties in
its bonding potential that are known to determine struc-
ture in the crystalline counterpart; and (vi) is constructed
with considerable economy in use of computer time.

A study of dihedral angle statistics in the model sug-
gests that intermediate-range order in a-As2S3 may best
be characterized in terms of small helical segments
comprised of linked AsS3 pyramids. In addition there is
evidence for the existence of six-membered rings that
form the termination of two intersecting helical chains.
There is no suggestion in the model of planar or bridged-
like structures.
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FIG. 9. Flow diagram of the modeling process.
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additional atom, places it at a random position, relaxes it
into place, and determines its neighbors. Next the pro-
gram performs a local relaxation where the local struc-
ture is defined as the neighbors of the additional atom.
For each relaxation step, the program attempts to form
additional bonds within the local structure and performs
a relaxation on each of the local atoms. This process is
repeated for 25 relaxation steps. The entire placement
and local relaxation process is repeated for each of the
five additional atoms. After adding the additional atoms,
the program relaxes all atoms in the model 40 times.
This allows any additionally introduced stress to be re-
moved from the model before more atoms are added.
The program writes the model to a file after every global
relaxation. This allows one to monitor its progress and it
minimizes losses in the event of a computer crash. This
entire process can be repeated until the model is as large
as one wants. The relaxation process used on all the
atoms involves randomly moving the atoms to lower en-
ergy positions as determined by our potential equations.
We use the four-part potential and the correction poten-
tials described in the text.

APPENDIX B

The radial distribution function FRD describes the den-
sity of the model as a function of distance from any atom.
This is calculated by tallying up the number of pairs in
the model which are a certain distance apart. This sum,
taken for all possible distances is the radial distribution
function. This sum is given by the equation

FaD(r)=g g W(r; ) .
i j@1

For an infinite model, the function W(r, )is unity for"
all values r; . Since models are finite, one must use a
weighting function which takes the size of the model into
account. The function employed in the present study is
given by

which is the equation for the volume enclosed by two
overlapping spheres of radius r with distance r between
the centers. This function gives extra weight to longer
pairs in the model which occur less frequently than they
would if the model extended infinitely.

As expected, the radial distribution functions derived
in this manner are quite accurate for low-r values, but
tend to display unrealistic features of r values greater
than the radius of the model. For this reason, for further
calculations and for comparison to experimental results
the FRD out to one model radius only was used.

The calculation of the x-ray diff'raction intensity I (k) is
simply a transform of pair distribution functions to k
space. The pair distribution function 6(r) is calculated
by subtracting the radial distribution function for a
homogeneous sphere from the radial distribution curve,
i.e.,

6 (r) =FRD(r) —
po( —', try') .

Given the pair distribution function, the x-ray-diffraction
intensity is given by

~ f G(r) sin(kr) dr,
0 kr

where f is the scattering factor of the material.
Since arsenic sulfide consists of two elements with

different scattering factors, one must expand upon this
definition. The pair distribution function must be split
into four possible atomic pairings, As-As, As-S, S-As,
and S-S. Using the partial pair distributions 6 „(r) and
the individual scattering factors f~ and f„, Eq. (4) be-
comes

f f„G „(r)sin(kr)I(k)=Q g

1 3 I" 1 r
W(r) 4 r 16 r

3 Finally, the scattering intensity is multiplied by an e
factor to simulate the decay of the function found in ex-
perimental data.
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