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Using density-functional calculations, we examine the electronic structure of magnetite in the spinel
crystal structure in order to gain insight into the nature of the Verwey transition. The calculated
cohesive and magnetic properties are in agreement with experimental results. The magnetic structure is
analyzed using a Stoner model as well as from calculations within the framework of the local-spin-
density approximation to the density-functional theory. The calculations show a minority-spin band at
the Fermi energy consisting of ¢,, orbitals on the Fe(B) sublattice. These results suggest a three-band
spinless model Hamiltonian for the description of the Verwey transition. The hopping integrals and the
electron interaction parameters entering the model Hamiltonian are calculated using the ‘“constrained”
density-functional theory. The calculated parameters are consistent with the electronic origin of the

Verwey transition.
I. INTRODUCTION

Solids with strong electron correlation exhibit many in-
teresting physical phenomena and encompass one of the
lively areas of research in condensed matter physics.!
Some examples on which considerable attention has been
focused in the recent past are the heavy-fermion systems,
the transition-metal oxide Mott insulators, the high-T,
superconductors, and systems such as magnetite exhibit-
ing the peculiar Verwey metal-insulator transition, to
name a few. The nature of electron states in these sys-
tems and how electronic correlation manifests itself in
various physical phenomena that they exhibit are issues
of fundamental importance. In this paper we focus on
magnetite and examine the nature of the electron states
as a first step towards the understanding of the Verwey
metal-insulator transition.

The Verwey transition in magnetite is a peculiar
metal-insulator transition that has been studied for quite
some time.?> This is a first-order transition and is charac-
terized by an abrupt decrease in conductivity by two or-
ders of magnitude below the Verwey temperature of
T, ~120 K.? From the outset, the Verwey transition has
been interpreted as an order-disorder transition of the
Fe’* and Fe*" ions which arrange on the “so-called” B
sublattice of the spinel structure. The Fe?’' ion may be
viewed as an “extra” electron plus an Fe*" jon with the
“extra” electrons interacting via a repulsive Coulomb in-
teraction.

Quite early on Anderson* pointed out the remarkable
property of this sublattice that the short-range part of the
Coulomb interaction is minimized by ~(3)V/? different
configurations of the ions where N is the number of B
sites. Only a few of these configurations have long-range
order (LRO) as well. Anderson interpreted the Verwey
transition as a loss of the LRO of the “extra” electrons
on the B sublattice at temperature above T, while the
short-range order (SRO) is maintained across the transi-
tion. This interpretation is consistent with the observed
entropy change at the transition (0.3kN) (Ref. 5) which
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is decisively smaller than the entropy change (0.7kN)
corresponding to a total loss of order above T),. Experi-
ments indeed indicate the presence of LRO at tempera-
ture below T, however, the LRO seems to be much
more complicated than the simple Verwey® order where
the ions are ordered in alternate (001) planes of Fe?' and
Fe**. To date the exact ordering of the ions below T is
not precisely known even though recently significant pro-
gress has been made in this direction.®

Another area we will have to consider is the magnetic
structure of magnetite and its possible relationship to the
Verwey transition. The magnetic properties of magnetite
are by themselves quite interesting.” Discovered around
1500 B.C,, it is the earliest known magnet. A large num-
ber of magnetic materials have been discovered since
then; nevertheless magnetite remains one of the exten-
sively used magnetic materials for industrial applications,
notably in computer memory cores and in magnetic
recording.

Several models have been proposed to describe the
mechanism of electrical conduction in magnetite and its
behavior near the Verwey transition. Cullen and Callen®
have proposed a simple model in which the “extra” elec-
trons on the B sublattice move in a nondegenerate spin-
less band. Such a model has two parameters, viz., the
tight-binding hopping integral ¢ related to the bandwidth
of the “extra” electrons and the nearest-neighbor
Coulomb repulsion U,. Cullen and Callen estimated us-
ing their model that if the condition U,/t X 2.5 is true
then the material is metallic and for larger values of this
parameter a charge ordering similar to a Wigner transi-
tion occurs, resulting in an insulator. On the other hand,
isotope substitution experiments’ seem to propose that
electron-phonon coupling, leading possibly to polaron
formation, might play some role in the Verwey transition.
Yamada'® and Chakraverty'! in fact favor the picture of
molecular polarons or bipolarons. According to
Yamada’s molecular polaron picture, the Verwey transi-
tion is viewed as a cooperative ordering of the molecular
polarons presumed to interact via the strain fields that
they generate. One picture!? would then be that above
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Ty a “Wigner glass” of bipolarons is formed, some of
which dissociate and result in conduction as temperature
is raised, presumably by nearest-neighbor hopping. Con-
sidering the complexity of the problem, it is difficult to
choose among the various mechanisms for the metal-
insulator transition.

Lately it has become possible to derive the electron in-
teraction and hopping parameters from first-principles
local-density calculations. Knowledge of the magnitudes
of these quantities is important to differentiate the appli-
cability of various models to the Verwey transition and is
a first step towards an understanding of the metal-
insulator transition in this system. In this paper our pri-
mary goal is to study the nature of the electron states and
calculate the interaction parameters. Based on our re-
sults we propose a three-band electronic Hamiltonian for
the motion of the ‘“‘extra” electrons on the B sublattice of
the spinel structure.

II. CRYSTAL STRUCTURE

Magnetite (Fe;O4) is typical of a class of materials
called ferrites forming in the spinel crystal structure
(space group Fd3m) or in closely related structures. The
spinel structure can be conveniently thought of as made
up by alternate stacking of two different cubes as shown
in Fig. 1. The large oxygen atoms form a close-packed
face-centered-cubic structure with the smaller iron atoms
occupying the interstitial positions. There are two types
of interstitial sites both occupied by the iron atoms: the
tetrahedral (8a) (Ref. 13) or A sites, and the octahedral
(16d) or the B sites. The Bravais lattice is face-centered
cubic (fcc) with two formula units (14 atoms) in the unit
cell. The valence of various atoms is described by the
formal chemical formula, Fe3*(Fe’"Fe?")(0%7),. The
Fe®* jons occur on the A sublattice while the B sublat-
tice contains a mixture of Fe>™ and Fe?", leading to the
so-called “inverse” spinel structure. Below the Verwey
transition temperature there is a small change in the crys-
tal structure which becomes monoclinic.®

The intrinsic magnetization of magnetite can be ex-
plained by assuming that the magnetic moments within
the A and the B sublattices are ferromagnetically aligned
while the two sublattices are antiferromagnetic with
respect to each other, and further by assigning, on the
basis of Hund’s rules, the magnetic moments of Sup and
4up to the Fe’t and the Fe’* ions, respectively. This
magnetic structure, indicated in Fig. 1, was first proposed
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FIG. 1. Cubic spinel crystal structure. The crystal is made
up of alternate stacking of the two cubes which form the basis
in a face-centered-cubic (fcc) lattice. In magnetite the magnetic
moments on the two Fe A and B sublattices are aligned ferri-
magnetically (b). The A sublattice consists of Fe** atoms while
the B sublattice consists of an equal number of Fe’" and Fe?*
atoms resulting in the “inverse” spinel crystal structure.

by Néel'* to explain the magnetization data and was sub-
sequently established by Shull, Wollan, and Koehler'
from neutron scattering experiments.

The band calculations reported here were performed
using the local-spin-density approximation (LSDA) to the
density-functional theory and the “‘constrained” density-
functional methods. The self-consistent linear muffin-tin
orbitals method in the atomic spheres approximation
(LMTO-ASA) was wused.'® We wused the von
Barth—Hedin exchange-correlation potentials.!” In addi-
tion to the 14 atoms in the unit cell, we included 18 emp-
ty spheres. Their positions and the sphere radii used in
our calculations are given in Table I. Electrons up to and
including Fe(3p) and O(ls) orbitals were treated as
frozen core electrons. In the basis set, only the muffin-tin
orbitals of angular momentum s, p, and d on the Fe and

TABLE 1. Atom positions and sphere sizes for the LMTO calculations of Fe;0,.

Muffin-tin-sphere

Atom Core Site index radius (A)

Fe (A site) [Ar] 8a 0.95
Fe (B site) [Ar] 16d 1.15
(o} [He] 32e (x=0.379) 1.20
E(1) 16¢ 1.12
E(2) 8b 0.80
E(3) 48 f (x=0.25) 0.84
Lattice constant a=8.396 A




44 ELECTRON STATES, MAGNETISM, AND THE VERWEY ...

O atoms, and s, p orbitals on the empty spheres were re-
tained. The one-electron densities of states were calculat-
ed with 56 k points in the irreducible Brillouin zone (BZ).
The “constrained” LDA method will be sketched in a
later section.

III. NON-SPIN-POLARIZED LDA BANDS
AND BAND MAGNETISM
WITHIN THE STONER MODEL

Before we present results of the spin-polarized LSDA
calculation, it is instructive to examine the salient
features of the results of the non-spin-polarized LDA cal-
culation. The LDA bands as well as the one-electron
density of states (DOS) are shown in Fig. 2. A key
feature is that the O(2p ) bands occur well below the Fer-
mi energy which lies in the middle of the Fe(3d) bands.
Since the position of the O(2p) bands is expected to
remain more or less unaffected as a result of spin polar-
ization of the Fe(3d) bands occurring at the Fermi ener-
gy, the important bands are the Fe(3d) bands for trans-
port properties such as conductivity with the O(2p)
bands playing minor roles. The density of states at the
Fermi energy is rather high, about 40+5 states/eV cell,

Energy (eV)

I i 1 1
L r X 5 15 25 35

DOS (states/cell eV spin)

FIG. 2. Non-spin-polarized electron band structure and the
density of states obtained from local-density LMTO calculation.
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indicating a ferromagnetic instability within the Stoner
model consistent with the magnetic nature of the com-
pound.

The Stoner model'® has been successfully applied to de-
scribe the ferromagnetism of the 3d transition metals.
Part of the reason for the success of the Stoner model
when used in conjunction with nonmagnetic, local-
density calculations is due to the fact that the local-spin-
density theory reduces to an effective Stoner model
within the first-order perturbation approximation.!®~2!
Recently the model has been applied to describe success-
fully the detailed magnetic behavior of iron.?? As men-
tioned earlier, in magnetite the magnetic moments of the
iron atoms are aligned ferromagnetically in each of the
Fe( A) and Fe(B) sublattices while the two sublattices are
aligned in the opposite direction. Below we apply the
Stoner model to each of the two individual sublattices
separately, justification for which will be given below.

Within the Stoner model, magnetism is the result of
competition between two energies: (i) increase in the ki-
netic energy as electrons are forced to occupy the higher
bands and (ii) reduction in the “exchange” energy which
is a reduction of the Coulomb repulsion brought about
via the Pauli exclusion principle. For a given magnetiza-
tion per atom, m, the net energy is given by the well-
known?? expression

118

E(m)=L ["_m

————dm—1Im?, (1)
270 N(n,m) ¢

where I is the Stoner exchange parameter and N(n,m ) is
the electron density of states per atom spin averaged over
the band energy range €, and €_, which are the Fermi
energies corresponding to the occupancy of n/2tm /2
states per atom spin:

Nn,m)=m/(e,—e_).

A ferromagnetic solution with net magnetization m is
given by the condition that the expression for energy (1)
is a minimum, i.e., dE (m)/dm |m0=0, which leads to the

Stoner condition,
IN(n,my)=1. (2)

The solution is stable if the second derivative of the ener-
gy with respect to the magnetization is negative, i.e.,
d*E(m)/dm 2|m0 <0, leading to the condition

dﬁ(n,m)/dm|m=m0<0. (3)

If the condition (3) is not satisfied, then the magnetic
solution is metastable.

The Stoner condition (2) may also be derived by equat-
ing the chemical potentials ., and pu_ for the up and the
down spins. The chemical potentials, defined as the ener-
gy needed to add or remove an electron from the respec-
tive spin band, are given by

Ho==t,+tIn 4)

—0

where o denotes the two spins and ny =(n/2tm /2).
The exchange part favors addition of the extra electron to
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the majority band in accord with Hund’s rules for isolat-
ed atoms. Equating the two chemical potentials one ob-
tains the Stoner condition (2).

We now extend the Stoner model to the two coupled
sublattices in magnetite and we will show that to a very
good approximation one can treat the two sublattices in-
dependently. Since in establishing magnetic equilibrium
electrons can now shift between the two spin bands and
between the two sublattices (although we will argue that
the latter is small in general), we must include the varia-
tion of the effective on-site energies with the number of d
electrons caused by the on-site Coulomb interaction.
Thus the expression for the chemical potential for the 4
site is given by

$

ug=ei(ng,m,,>+UA(nA—n9,)+1A% (5)
with a similar expression holding for the B sites. Here,
nY (n4) is the total number of d electrons on an A-
sublattice atom before (after) magnetic polarization was
allowed. Since electrons can shift between the 4 and B
sublattices following magnetic polarization, the quantities
n 4 and nY can be different. The second term in (5) ac-
counts for the shift of the on-site energy because of the
Coulomb interaction U 4. Equating the two chemical po-
tentials in (5) to each other and to the chemical potentials
on the B sublattice, we now get the Stoner conditions for
the two sublattices:

I,Nim,,n, =1, (6)
IzN(mg,ng)=1, )
and
ed+ed+2U (n—n)+1,n,
=eB +e8 42U (ng—nd)+1Izny . (8)

Additionally, since the total number of electrons remains
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unchanged as a result of magnetic polarization, we have
the condition

ny+2np=n%+2nd . 9)

The factors of 2 in Eq. (9) arise since the Fe(B) sublattice
contains twice as many atoms as the Fe( 4) sublattice.
Notice that since Eq. (5) does not contain any exchange
interaction between the A and B atoms, the relative
orientation of the magnetic moments between the two
sublattices is not predicted.

In general, Egs. (6)-(9) have to be solved self-
consistently for the number of electrons, n 4, ng, and the
magnetization, m 4, mg, of the two sublattices. However,
in Eq. (8) since U is by far the largest of all energies in-
volved, we must have

nya~n% and nzy=~nj, (10)

which follows from Eqgs. (8) and (9) and is in fact verified
from the results of our LSDA calculations. This is a
statement that in a localized picture the electrons, when
given the degree of freedom to spin polarize, do not shift
appreciably between the atoms in the solid. The
Coulomb energy cost for this is too high. Rather, they
redistribute between the two spin states on the same
atom. The basic point here is that the number of elec-
trons on various atoms is controlled to a large extent by
the Coulomb U and is not affected significantly by spin
polarization. Thus we only need to satisfy the two equa-
tions (6) and (7) with n 4, np replaced by n9, nJ as indi-
cated from (10). The net result is that we have to fulfill
the Stoner conditions for the individual sublattices with
the average DOS N calculated from the non-spin-
polarized LDA results.

In Fig. 3 we show the graphical solution of the Stoner
equations for the two iron sublattices in magnetite. The
inputs needed are the Stoner parameter I as well as the
one-electron d orbital DOS obtained from the LDA cal-
culation. The d-orbital DOS for the individual sublat-
tices is shown in the left side of Fig. 3, from which one

d-orbital DOS (states/eV Fe atom spin)

I—1

Energy (eV)

1 2 3 35
m/ UB

FIG. 3. Stoner analysis of the band magnetism of Fe( 4) and Fe(B) sublattices following Egs. (6), (7), and (10). Inset shows the
predicted decrease of the sublattice magnetic moments with lattice compression.
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can easily compute N(m). By definition N(m =0) equals
the d orbital DOS at the Fermi energy as seen in Fig. 3.
The Stoner parameter I can be calculated in the LSDA.
In bee Fe, the value of I is ~65 mRy as calculated by
Poulsen, Kollar, and Andersen?* and ~ 68 mRy as calcu-
lated by Janak.?! Considering the spirit of the Stoner ap-
proach and the fact that our results of the Stoner analysis
are rather insensitive to small changes in I, we have taken
the value of I to be in the range 60—80 mRy. From the
graphical solution we find a magnetization of =~3.5ujp for
both A4 and B sublattices. We also notice from Fig. 3
that for the B sublattice there is another stable solution
with m =1.2up but this solution appears to have a slight-
ly higher energy.

The inset in Fig. 3 shows the results of our Stoner
analysis concerning how the magnetization would change
if we compress the lattice. The value of the Stoner pa-
rameter is expected to increase somewhat when the lat-
tice is compressed. In fact a simple derivation by Bloch?
shows that for the jellium model I < ¥ ~!/3, From a real-
istic calculation of the Stoner parameter for bcc iron by
Krasko?? it is seen that the Stoner parameter does indeed
increase with lattice compression roughly following the
Bloch expression. We have, however, neglected the small
volume dependence of the value for the Stoner parameter
I and further we have assumed the bandwidth to be in-
versely proportional to the fifth power of the distance be-
tween Fe atoms, which is how the hopping integrals be-
tween d orbitals fall off. With compression of the lattice
the bandwidth becomes progressively broader, which re-
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TABLE II. Cohesive properties of Fe;O, from LSDA calcu-
lation.
Lattice Cohesive Bulk
constant energy modulus
Theory 8.397 A —33 eV/cell 2.1 Mbar
Expt. 8.394 A —29.56 eV/cell

sults in a gradual reduction of the magnetic moment as
seen from Fig. 3.

IV. LOCAL-SPIN-DENSITY CALCULATION

In this section we present the results of our local-spin-
density calculation of the electron bands of Fe;O,. The
cohesive properties of Fe;O, as obtained from the LSDA
calculation are shown in Table II. Both the lattice con-
stant as well as the cohesive energy agree very well with
the respective experimental values. In Fig. 4 we show the
electron bands obtained from the LSDA calculation and
Fig. 5 shows the spin-projected densities of states. Like
in the non-spin-polarized calculation we find the O(p) or-
bitals to lie well below the Fermi energy, with the elec-
tron bands near the Fermi energy consisting primarily of
Fe(d) orbitals. The results of our spin-polarized calcula-
tions generally agree with the earlier augmented plane
wave (APW) calculations of Yanase and Siratori.?®

L r X W KL r X w K
1 T A
LSDA-LMTO
Calculation spin 1 /v_ﬂnﬁ
2~ P — —— —
FeCA) d % —
Fe(B) d
['EF Q .
o) SRR A NI S— S| = s == 1= 2g
eg <- {
L]
Fe(B) di -2 —Fe(A) d
— ] _ﬂ
trg [ —=
~
E -4
> BN —
g ——
i (o]
w  _s ::% =op
/ |
L r X W KL r . X W K
k k

FIG. 4. Spin-polarized electron bands obtained from the local-spin-density LMTO calculation. Only minority-spin (spin-|) elec-

trons are present at the Fermi energy.
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TABLE III. Calculated spin moments on various atoms in Fe;0,.

S

Atom Atomic number Charge Spin moment (up)
Fe( A) 26 23.52 —3.46 (X2)
Fe(B) 26 24.24 +3.57 (X4)
(0] 8 8.75 +0.10 (X8)
E spheres 0 0.33 —0.01 (X18)
Total 220 220 8.00/FecOy

As indicated from Fig. 5, the exchange splitting A, be-
tween the spin-up and -down d electrons on the Fe atom
is roughly 3.5 eV. This is consistent with the photoemis-
sion spectra of Bishop and Kemeny?’ where the separa-
tion between the minority- and the majority-spin peaks is
3-4 eV. In addition to the exchange splitting, the five-
fold d levels are split into ¢,, and e, orbitals by the crys-
tal field. The crystal-field splitting A, generated be-
cause of differences in covalent mixing and electrostatic
interaction with neighboring atoms, is approximately 2
eV for the Fe(B) atom while it is less than a few tenths of
an eV for the Fe( 4) atom. This difference may be attri-
buted to the large covalent mixing of the Fe(B) orbitals
with its six nearest neighbors of the same kind.

The calculated spin moments on various atoms are
shown in Table III. The calculated net magnetic moment
is 4.0up /Fe;0, formula unit compared to the experimen-
tal value of 4.1 units.?%?° The magnitudes of the magnet-

T - T T
Fe304 spinel l lspin 01
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Energy (eV)

FIG. 5. Spin-projected one-electron densities of states and
numbers of states for magnetite. The calculation predicts a net
magnetic moment of 8.0up per unit cell which consists of two
formula units.

ic moments on the individual Fe( 4) and Fe(B) sites are
roughly 3.5u in agreement with the results of the Stoner
analysis of the previous section. The magnetic moment
on an atom in a solid is of course an ill-defined quantity
as charge cannot be unambiguously partitioned to be be-
longing to a certain atom. Thus the magnetic moment on
individual atoms would depend on the choice of the
muffin-tin radii. It is nevertheless interesting to point out
the measurement of the magnetic form factor using the
polarized neutron diffraction which indicates a moment
of 3.82up for the A site.’® This value is very different
from the value of 5y obtained from Hund’s rules and us-
ing the nominal Fe3™ charge for the ion atom on the A
site indicating the itinerant nature of magnetism in mag-
netite. The high-spin state of the Fe atoms is consistent
with the argument’! that a high-spin state is indicated if
the exchange splitting A, is greater than the crystal-field
splitting Acp. Additionally, we find that the magnetic
moments on the A4 and the B sublattices are antifer-
romagnetically aligned consistent with experiment. We
find the charge distribution to be consistent with the
rough chemical formula of Fe( 4)**[Fe(B)*°"1,0,2.

A remarkable feature of the spin-polarized bands (Figs.
4 and 5) is that the spin-T bands (majority spins) are semi-
conducting while the spin-l bands (minority spins) are
metallic. Only spin-| electrons are present at the Fermi
energy and, moreover, these electrons have predominant-
ly Fe(B) character. The spin-| character of the Fermi-
energy electrons is in agreement with the earlier APW
calculations of Yanase and Siratori?® as well as with the
spin-polarized photoemission experiments of Alvarado
et al.*?> In this experiment, predominantly spin-| elec-
trons were photoemitted from Fe;O, at the photon ener-
gy corresponding to the photoelectric threshold con-
sistent with the key feature of the LSDA bands at the
Fermi energy. The fact that the observed spin polariza-
tion in Ref. 32 at the photoelectric threshold is less than
100% may be ascribed to experimental difficulties such as
complications introduced by surface effects on the mag-
netic structure as the photoelectric probing depth is typi-
cally only a few atomic layers. Furthermore, collision
processes could induce spin flips before the electron is
photoemitted out of the sample.

V. ELECTRON BANDS NEAR FERMI ENERGY:
MODEL ELECTRONIC HAMILTONIAN

Since electrons near the Fermi energy are important
for the transport properties we examine the nature of the
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TABLE IV. Wave-function characters of the minority-spin (| ) bands near Fermi energy at the I" point.
Orbital contribution to the charge density (%)
Energy?* Fe( A4) Fe(B) (o) Empty

Symmetry Degeneracy (eV) total s +p,d total total

Iy 3 0.9 0 1,92 5 2

Ty 3 0.8 0 0,98 0 2

g 3 0.15 2 0,88 6 4

r, 1 —0.44 2 1,75 14 8

Ty 2 —0.65 12 0,67 12 9

*Energy eigenvalues are with respect to the Fermi energy.

electron bands near the Fermi energy in some detail and
propose a simple model Hamiltonian which, we believe,
contains the key physics of the metal-insulator transition.

As discussed earlier only spin-| bands (minority spins)
are present near the Fermi energy. The bands, about 1.55
eV wide, are shown in Fig. 6 and have the predominant
contribution from d orbitals of the Fe(B) atoms as seen
from the wave-function characters at the I' point (see
Table IV). In fact the bands consist primarily of the 7,,
(xy, yz, and zx) orbitals centered on the Fe(B) atoms as is
clear from the following discussions. There is exactly
half an electron per Fe(B) atom (in total two per unit
cell) occupying these #,, bands.

In total there are twelve ?,, orbitals since we have four
Fe(B) atoms per unit cell. As seen from Table V these
orbitals span the I')+T";,+1I';5+2T,s irreducible repre-
sentations of the O, point group which is the appropriate
group at the I" point for the spinel structure. This sym-
metry combination is consistent with the symmetries of
the calculated spin-! bands shown in Fig. 6.
Confirmation of the predominant participation of the ¢,,
orbitals is seen from the right part of Fig. 6 where we
have projected out the contribution of the Fe(B) t,, or-
bitals to the total density of states from which we find
that the 7,, orbitals have about 90% contribution to the
total DOS. It is therefore clear that these orbitals will
dominate electrical conduction and other transport prop-
erties. We may point out here that the electron bands
near Fermi energy are similar to those in the LiTi,O,
spinel compound, except that there states with both spins
occur at E.

At the B site in the spinel structure the crystal field is

trigonal which causes the five d orbitals to split into two
doublets (e, ) and one singlet (a,,). The octahedral com-
ponent of the crystal field at the B site is strong enough
that the 7,, (xy, yz, and zx) and e, (x2—y? and 3z2—1)
orbitals originating from the five d orbitals form two
separate and nonoverlapping bands. The ¢,, orbitals fur-
ther split into a;, and e, symmetry combination by the
trigonal component of the crystal field to produce the
overall 2e, +a,, splitting. However, for the present com-
pound the a;, —e, splitting of the 7,, band is negligible in
comparison with its width. This may be seen, for in-
stance, by examining the bands at the I' point at which
the singlet a;, level spans the I';+1T',s representations.
As seen from Fig. 6 there are two states of I',5: symmetry;
of these the one with the higher energy and the I'; state
are made out of the a,, orbitals. From the I'-point ener-
gies it is clear that the average of the energies of the a,-
derived orbitals is roughly the same as the average of the
rest, which are the e -derived orbitals.

This is in contrast to the key assumption that Cullen
and Callen had made®* in proposing the one-band model
Hamiltonian, where it was assumed that the “extra” elec-
tron moves in the a,, band split off below the rest of the
d bands of other symmetries. Rather we propose from
our above results a model Hamiltonian similar to the
Cullen-Callen Hamiltonian, but one where the ‘“‘extra”
electrons move in a three-band Hamiltonian formed by
the t,, (xy, yz, and zx) orbitals on the B sublattice:

3 3
H=3 3 t,ala,+3 3 Uy, nyn, . (1D
ij pv=1 Lj p,v=1
Here ¢ and v denote the three orbitals xy, yz, or zx and i

TABLE V. Irreducible representations of the O, point group spanned by selected atomic orbitals in

Fe;0, at the I point.

Number of orbitals

Atomic orbitals

per unit cell of each spin

Irreducible representations

Fe( A)d 2X5
Fe(B)t,, 4X3
Fe(B)e, 4X2
Fe(B)a, 4X1
O(p) 8X3

I‘12_|_F15_'_ 1-\17."*‘1-‘25’
[+ p+T s +2Ts
Cpt+ s+ T

I +Ts

I +Tp+20 s+ s
+y+ T+ s +20s
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FIG. 6. Details of the minority electron bands near Fermi
energy. Right part of the figure shows the total DOS and the
partial DOS corresponding to the ¢,, orbitals of the Fe atom on
the B sublattice.

and j are the site indices on the B sublattice. The first
term in (11) is the near-neighbor hopping term and the
second term is the Coulomb interaction term. The pa-
rameters of the three-band Hamiltonian (11) are estimat-
ed in the next two sections.

VI. CALCULATION OF HOPPING INTEGRALS

We now calculate the hopping integrals in a simple
tight-binding model where we retain only the ¢,, orbitals
on the Fe(B) atoms and in addition only the nearest-
neighbor interactions between these orbitals. Further-
more, since the a,, —e, splitting caused by the trigonal
crystal field is small, in the following tight-binding fit we
ignore this small splitting so that the on-site energies of
the three orbitals are taken to be equal. We choose the
tight-binding parameters by fitting the LMTO bands near
the Fermi energy, Fig. 6, from the procedure sketched
below.

The Bloch function |Ak ) may be expanded in terms of
the 12 7,, orbitals per unit cell denoted by IR,n):

Ak)= 3 e® RS pMe " Tn|Rp ) . (12)
R n

Here R denotes the unit cell, # denotes the 12 orbitals in
the basis set, 7,, is the position of the basis atom on which
the nth orbital is located, A is the band index, and k is the
Bloch momentum. For the Bloch function (12) to be an
eigenfunction, the coefficients b,f‘k must satisfy the stan-
dard eigenvalue equation

S H,,(K)b*=E(AKk)b (13)
where
Ho, (k)= "™ (om|HRn) . (14)
R
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Here (Om |H|Rn ) are the hopping integrals between the
localized orbitals. Since we retain only the nearest-
neighbor matrix elements in our tight-binding fit, apart
from the onsite matrix element which merely serves to
redefine the zero of energy, we have only three indepen-
dent dd matrix elements, viz., t4,,, tyy» and ty,5. With
these three matrix elements, one obtains the tight-binding
band structure by diagonalizing the 12X 12 Hamiltonian
given by Eq. (14) at each k point.

The tight-binding matrix elements may be estimated
from the universal tight-binding parameters of Harrison*
or from the LMTO theory using potential parameters
calculated for Fe;O,. The LMTO matrix elements are
obtained from the expression

lad(o,m8)~ BaSad(o,m8) » (15a)

where A, is the bandwidth parameter. The structure
constants S, fall off as the fifth power of the inverse dis-
tance:

Sudio.ms=(—6,4,—1)X10(S/R)* , (15b)

where R is the distance between two orbitals and S is the
muffin-tin sphere radius. From LMTO theory we obtain
the hopping integrals ¢4, 5= —0.23, 0.16, and —0.04
eV, respectively, while by using Harrison’s universal pa-
rameters we get —0.27, 0.14, and 0.0 eV for the same
quantities. It is not surprising that Harrison’s universal
dd parameters agree with the LMTO matrix elements
since the former were in fact derived using parameters
from LMTO calculations of Andersen and Jepsen for ele-
mental solids.>® However, since we retain only the tyg OI-
bitals on the B sublattice and then again only the
nearest-neighbor (NN) hopping integrals between these
orbitals, the effective values of the tight-binding parame-
ters are expected to change substantially from the above
estimates. For instance, the effects of the second nearest
neighbors, which are as many as 12 in number and as
close as only V'3 of the NN distance, will be significant
even with the R ~° scaling of the matrix elements. Thus
the effects of the further neighbor interaction will have to
be renormalized into our NN matrix elements.

We may obtain the tight-binding matrix elements by
fitting the LMTO bands with the tight-binding bands at
the I' point. At this point in the BZ, the Hamiltonian
matrix (14) can be diagonalized for the I';, T';,, and the
I'}s states taking advantage of the symmetry of the wave
functions. This yields the energy eigenvalues

E(Fl)zsd +%tdd0_4tdd17+%tdd8 5 (163,)

E(T)=¢€q+3tuao~ tagr™ 3taas » (16b)
and

E(FIS'):Ed_%tddo'_*_tdd‘rr_—%tddﬁ . (16C)

Here €, is the on-site d energy which as mentioned ear-
lier can be put equal to zero by redefining the zero of en-
ergy. The energies of the triply degenerate I',s states
may also be easily obtained but since the #,, orbitals span
two irreducible I',5 representations (see Table V), one has
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FIG. 7. Nearest-neighbor tight-binding fit to the LMTO
minority bands near Fermi energy. The LMTO bands are
shown in Fig. 6.

to obtain explicitly the symmetry-adapted partner func-
tions in order to reduce the 6 X 6 Hamiltonian matrix into
2X2 matrices which can then be easily diagonalized.
The three dd matrix elements determined by comparing
the LMTO calculated energy eigenvalues with the tight-
binding results (16) are t,;, = —0.406 eV, t,,,=0.054 eV,
and ?7,,5=0.122 eV. With these tight-binding parame-
ters, we calculated the tight-binding bands in the entire
BZ to see the quality of the fit. This is shown in Fig. 7,
which compares reasonably well with the LMTO bands
of Fig. 6. We attempted to obtain a better set of parame-
ters from a least-squares fit of the tight-binding bands
with the LMTO bands in the entire BZ. The quality of
the fit did not improve significantly, however, indicating
that if a better description of the electron bands is need-
ed, one must go beyond the nearest-neighbor interaction
and one may perhaps even need to retain interactions of
the Fe(B) t,, orbitals with the e, orbitals on the same
atom as well as with orbitals located on other atoms in
the crystal. This can be easily accomplished if desired
but is not done here since we believe that it is sufficient to
retain the NN interaction in the Hamiltonian for the pur-
pose of studying the Verwey transition. The hopping in-
tegrals between the individual ¢,, orbitals can be obtained
from the calculated dd parameters in conjunction with
the Slater-Koster tables®’ of interatomic matrix elements.

VII. “CONSTRAINED” DENSITY-FUNCTIONAL
CALCULATION OF COULOMB PARAMETERS

We now describe the calculation of the on-site and the
nearest-neighbor Coulomb parameters for the Fe(B) site.
The “constrained” density-functional method is a simple
but useful extension of the density-functional theory
(DFT). Quite early on, Gunnarsson and Lundqvist’®
showed that in the DFT, in addition to the true ground
state the lowest-energy state of each symmetry can be cal-
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culated by constraining the symmetry of the ground
state. Subsequently Dederichs and co-workers>® worked
out a formalism for calculation of the lowest energy with
a more general constraint and successfully applied the
method to the calculation of the Coulomb energies for
cerium impurities in metals. Here we use this method to
calculate the necessary Coulomb interaction parameters.
In the “constrained” DFT, the total energy functional is
minimized as in the DFT except that now the minimiza-
tion is performed subject to the constraint that the num-
ber of electrons of a particular symmetry within a certain
volume Q be fixed. In our case we will constrain the
number of d electrons on the Fe site, i.e., the number of d
electrons within the Fe muffin-tin sphere. The constraint
is incorporated into the DFT by using the Lagrange mul-
tiplier technique so that we now need to minimize the
functional F(n(r),n,):

F({n(r)},nd)ZE{n(r)}+7L[fnd3rnd(r)—nd . an

where A is the Lagrange multiplier and the total number
of d electrons within the volume () is constrained to have
the value n;. Minimization of (17) with respect to n(r)
leads to the Kohn-Sham local-density equations except
that the Lagrange multiplier A appears as an extra poten-
tial to be added to the potentials seen by the electron of
the particular symmetry within the volume Q. Denoting
the minimized energy by E(n;) one gets, from the
Hellmann-Feynman theorem,

AE(nd+An,)=E(nd+Any,)—E(n?)
n9+an,

0 dnyAMng) (18)
which expresses the increase in energy in terms of the
Lagrange multiplier A(n,) if the ground state is con-
strained to have An, number of extra electrons on top of
the unconstrained value of nJ. Now expanding the on-
site energy on the atom to second order in n,, we have

E(ng)=ggng+1Uny(ng—1) . (19)
From (19) the on-site Coulomb energy is given by
U=EnJ+1)+EnJ—1)—2E(n?)
=AE(nd+1)+AE(nJ—1) . (20)

If we assume that the Lagrange multiplier A(n,) is pro-
portional to the difference of n,; from its unconstrained
value, i.e., A(ny)= —constX(ndwn,‘}), we find from Egs.
(18) and (20) that U in fact is equal to the slope of A(n,).
However, this assumption is not necessary in the calcula-
tion of U and in general Eq. (20) is used.

In magnetite the relevant atom is the B-site iron atom.
It is therefore instructive to present results of our calcula-
tion for the isolated Fe atom before we discuss the results
for the atom in the crystal. In Table VI we summarize
the results of our “constrained” DFT calculations for the
isolated Fe atom and compare them to the experimental
values. For a certain atomic configuration, e.g., d 352,
etc., the atom can exist in many symmetry states; the ex-
perimental values quoted in Table VI are obtained by us-



13 328

ZE ZHANG AND SASHI SATPATHY

S

TABLE VI. Results of constrained local-density calculations for the Fe atom.

Expt.? Present calculations (eV)
Quantity Definition (eV) LDA LSDA
U; E(d)+E(d’s*)—2E(d®%) 3.12 3.35 4.00
U E(d%?*)+E(d**)—2E(d’s?) 15.75 20.07
U? E(d%?2)+E(d®% —2E(dS) 8.28 7.51 8.93
I(1)P E(d%)—E(d%?) 7.9 9.39 8.58
I(2)® E(d%)—E(d%") 16.18 16.89 17.52
Ay E(d’s)—E(dS?) 0.86 —0.77 0.35

*Reference 40.

®I (1) is the first ionization potential, I(2) is the second ionization potential, A, is the s-d promotion energy.

ing the state with the minimum energy. As seen from the
table, the calculated values differ from the experiment
typically by ~1 eV, an uncertainty we may anticipate in
the solid as well. Furthermore, since we might expect
that in the solid the on-site U would be bracketed by the
screened and the unscreened values in the atom, U; and
Uf}, respectively, from the atomic calculations we should
expect 3.1 U 520 eV.

There is an additional point that needs to be discussed.
Ideally one would like to apply the constraint to a single
atom in the solid while the rest of the solid serves as the
background. This was the approach followed by Deder-
ichs et al. in their original paper using the Green’s-
function formalism. However, from a computational
point of view, it is much simpler to perform supercell cal-
culations with the constraint applied to a periodic array
of atoms. This is necessary especially for solids with a
large number of atoms in the unit cell in order to keep
the computations manageable. Such supercell techniques
have been successfully used to calculate Coulomb param-
eters in earlier work.*! In magnetite, the unit cell is quite
large with a total of 14 atoms including four Fe(B)
atoms. In our calculation of U, we applied the constraint
to one of these four atoms. Thus the unit cell itself was
used as the supercell for calculation of the Coulomb pa-
rameters.

In Fig. 8 we show the results of our ‘“constrained”
DFT calculation of the Coulomb parameters of the Fe(B)
atom. This figure shows in fact the calculation of both
the on-site (U) and the nearest-neighbor (U;) Coulomb
parameters. First we focus on the calculation of U. The
solid line in Fig. 8(a) shows the variation of the Lagrange
multiplier A as a function of the number of d electrons
ng. AE(nd+An,) as obtained by Eq. (18) is shown in
Fig. 8(b) from which we obtain the value U=4.08 eV us-
ing Eq. (20).

We will now discuss the method we used to calculate
the nearest-neighbor Coulomb parameter U; on the
Fe(B) lattice. Consider constraining the occupation of d
electrons on two neighboring atoms in the crystal simul-
taneously. Proceeding as before we now need to mini-
mize, analogously to (17), the functional

Fl{n(M},n},n21=E{n(r)]+2, [fﬂ d3 ny(r)—n}
1

2, , @1

fﬂzd3r ng(r)—n2

where the two neighboring sites are constrained to con-
tain, respectively, nt} and n3 numbers of d electrons. Just
like the earlier case, minimization of this functional with
respect to {n(r)} now leads to the Kohn-Sham DFT
equations, except that the potentials A; and A, are added
to the d-electron potential on the two neighboring atoms.
If we now have the further constraint that n)=n2=n,
then from symmetry A;=A,=A. Analogously to Eq. (19),
we now have the expression

2.0 |- (@) ! .

A (eV)

-2.0 |- -

-1.0 -0.5 0.0 0.5 1.0
Ang

)
=
I

Emg) (eV)

=
T

E(m + Ang ) -
T

0.0 |
-1.0 -0.5

Ang

FIG. 8. Results of the “constrained” density-functional cal-
culation of the Coulomb parameters. The solid lines correspond
to the case where the d-orbital occupation n,; of only one Fe
atom in the unit cell is constrained. The dashed line corre-
sponds to the case where those of two neighboring atoms were
constrained as discussed in the text.
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E(ng,nj)=eg(nj+nd)+1U0[nJ(n}—1)+ni(n}i—1)]
+Ungng (22)

for the energy of a pair of atoms on NN sites with U, be-
ing the NN Coulomb interaction energy. Equation (22)
then gives

E(nd+1,nd+1)+Eni—1,n0—1)—2E(ng,n?)
=2U0+2U, . (23)

We then get
. n3+1 ,,1(1),
U+U,= f,,g +f,,g —AMng)dn, . (24)

However, since our calculations are supercell calculations
where we constrain n; of two Fe(B) atoms in each unit
cell, the connectivity of the B sublattice (see Fig. 9) is
such that we get a factor of 2 in the coefficient of U, in
(24).

Similarly, one can show that if the constraint on the
two neighboring atoms is such that Anj=—An2, then
A= —A,=A, in which case we have

0 0_
ngt+1 ng—1

Jo +1g

In our calculation we constrained the number of d elec-
trons on two neighboring Fe atoms on the B site to be
nl+An, and nl—An,, respectively. The result of this
calculation is shown by the dashed lines in Fig. 8, from
which we get the value U—2U,=3.46 ¢V.

We now describe an alternative way of calculating U,,
where we constrain the occupation of one Fe(B)
atom/cell and examine the on-site one-electron energies
of the d orbitals on various atoms as, for instance, given
by the band-center energy in the LMTO calculation. The
four Fe(B) atoms in the unit cell are now inequivalent.

U—2U,= —Mng)dn, . (25)

FIG. 9. Connectivity of the B sublattice in the spinel struc-
ture. The four B sites forming the basis of the unit cell are num-
bered one through four. Each site has six nearest neighbors and
12 second nearest neighbors. The on-site and nearest-neighbor
Coulomb energies, denoted by U, U, and U,, are schematically
shown.
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The B sublattice is such that each Fe(B) atom is sur-
rounded by two each of the other three inequivalent
Fe(B) atoms (see Fig. 9). The on-site energy on atom 1 is
therefore given by

(=g, +UnP—1)+2U0,(nP+n>P+n?) , (26)
d d d 1\ *q

where n}” is the number of d electrons on the ith atom
and the factor of 2 in the last term in (26) comes from
taking all nearest neighbors into account. Combining
(26) with a similar expression for atom 2, we obtain the
equation for the difference in the on-site energies

(1) —E,(2)=(U—2U)(n{V—n®) . 27)

In the actual calculation, we added the extra potential
A to one of the four Fe(B) atoms in each unit cell and
used the LMTO band-center energies as the on-site d en-
ergies. Figure 10 shows the variation of the on-site ener-
gy difference plotted against the difference in the number
of d electrons. As indicated from (27) there is a linear re-
lationship between these two quantities which is followed
by our numerical results (see Fig. 10). From the slope we
obtain the value U—2U;=3.32 eV which is somewhat
less than the value of 3.46 eV obtained from the method
of Dederichs et al. (Fig. 8). This difference may be taken
as a measure of the uncertainty in the methods used. Us-
ing the value of U=4.1 eV, we then obtain the value of
U,=0.3-0.4 eV. These values of the Coulomb parame-
ters as well as the tight-binding parameters for the spin-
down band at the Fermi energy are summarized in Table
VII.

The retention of the second nearest-neighbor Coulomb
interaction U, in addition to U, in the model Hamiltoni-
an (11) may be important to the stabilization of the long-
range order. In fact Ihle and Lorenz*? working within
the one-band model have argued that for the LRO to be
stabilized U, should be greater than ¢3/U?, ie., 20.02
eV estimated from our parameters. Unfortunately we
cannot at present calculate U, reliably from the “con-
strained”” DFT calculation because the energy differences

~ 2 [

>

L.

S o L

%

T L U-2Uq = 3.32 eV
3 .,

| ]
-1.0 -0.5 0.0 0.5 1.0

n{ -n@®

FIG. 10. Calculation of the Coulomb parameter U —2U, us-
ing Eq. (27).
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TABLE VII. Summary of the calculated relevant hopping in-
tegrals and Coulomb parameters for the Fe(B) site in Fe;0,.

Tight-binding hopping

integrals Coulomb parameters
tigo=—0.41 eV U=4.1£0.5 eV
taa»=0.05 eV U,=0.3-0.4 eV
t405=0.12 eV U, <0.05-0.1 eV
W=1.55 eV
=—0.13 eV

are too small and, furthermore, the supercell size be-
comes excessively large. We have in fact neglected it in
the calculation of U,;. Now, if we suppose that the
Coulomb repulsion scales roughly as the inverse of the
distance, U ~e?/ka, then from the calculated value of U 1
and the ratio of the distances we might estimate
U,~U,/(3)!/2~0.2 eV. However, for a poor metal like
magnetite screening is not expected to be complete by the
nearest-neighbor distance in which case we would expect
the value of U, to be much lower than 0.2 eV. Consider-
ing this, a value of U, $0.05-0.1 eV seems to be a
reasonable estimate.

VIII. CONCLUDING REMARKS

From the results of our LSDA calculations it emerges
that the relevant electron orbitals responsible for conduc-
tion are the Fe t,, orbitals on the B sublattice, since these
orbitals exist at the Fermi energy. Furthermore, since
only minority spin bands occur at the Fermi energy, the
majority spin states are unavailable for transport proper-
ties. Our calculations therefore provide direct support to
the earlier models of conduction where the charge car-
riers move on the B sublattice in a spinless band. Howev-
er, in contrast to the earlier models such as the Cullen-
Callen model our results indicate that the electrons move
in the triplet band formed out of the ¢,, orbitals on the B
sublattice. Furthermore, there is exactly one-half elec-
tron per Fe(B) atom occupying the Fe(B) t,, bands.
These are the so-called ““extra” electrons that order in the
ground state to minimize the Coulomb interaction be-
tween them. This is equivalent to ordering of Fe?" and
Fe3" ions on the B sublattice.

Since there is only half an electron per atom in the B
sublattice and since the on-site Coulomb U of 4.1 eV is
rather large, this effectively eliminates double occupancy
of the atoms to a very good approximation. This leads to
the simplification that in the three-band model Hamil-
tonian it is reasonable to omit the on-site Coulomb term
(U=o0 limit). Thus the most important relevant
Coulomb parameter is the NN Coulomb repulsion term
U,.
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To our knowledge there exists no theoretical work on
the three-band spinless model Hamiltonian. On the other
hand, there exists a wealth of literature on the one-band
Cullen-Callen model:

H=t 3 ala;+U, 3 nn;, (28)
(ij) (if)

on the basis of which the nature of the Verwey transition
has been examined in earlier works. In (28) the angular
brackets indicate that only nearest-neighbor interactions
are to be retained. To make a connection with the
Cullen-Callen model one may calculate an effective one-
band hopping integral ¢ from our calculated parameters
by the following average:

3
2= El ,txy’ulz (29)
Py

which represents the average hopping matrix element
from one of the t,, orbitals (say xy) of a certain atom to
its nearest neighbor whose orbitals are denoted by u=xy,
yz, or zx. Using (29), we get an effective hopping integral
=—0.13 eV. Another way to estimate an average ¢
would be to divide the calculated bandwidth W by two
times the number of nearest-neighbor z, t ~w /2z, which
also gives a value of |¢t|~0.13 eV. With the value of
U,;=0.3-0.4 eV, we therefore get U, /t ~2-3.

In their original paper Cullen and Callen,** based on a
Hartree-Fock analysis, had estimated that for the value
of U, /t 2 2.5 the Coulomb term is strong enough to pro-
duce an ordering of the “extra” electrons. The model is
in fact exactly solvable in one dimension** which shows a
Coulomb gap for U,/t>2. Ihle and Lorenz*? argued
that for the spinel B sublattice of magnetite a Coulomb
gap would form for U, /t X 3. Since the calculated pa-
rameters are in this range of values, this indicates that an
electronic Hamiltonian may be enough to treat the
Verwey transition. We are currently studying the proper-
ties of the three-band model with regard to the Verwey
transition.

In conclusion, we have examined the electronic band
structure of magnetite in the spinel structure from a
local-density calculation and have suggested a three-band
model Hamiltonian for the description of the Verwey
transition. A study of the proposed three-band Hamil-
tonian seems to be necessary for the understanding of the
Verwey transition.
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