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For a uniform electron gas of density n = n ~
+ n ~

=3/4mr, =nk, /192 and spin polarization
g=(n t

—n ~ )/n, we study the Fourier transformP, (k, r„g) of the correlation hole, as well as the correla-
tion energy e, (r„g)=j dk p, /m. . In the high-density (r, ~O) limit, we find a simple scaling relation

k,p, /ng ~f(z, g), where z=k/gk„g=l'{I+() +(1—g) ]/2, and f(z, 1)=f(z,O). The function
f(z, g) is only weakly g dependent, and its small-z expansion —3z/n +4v'3z /vr + is also the exact
small-wave-vector (k ~0) expansion for any r, or g. Motivated by these considerations, and by a discus-
sion of the large-wave-vector and low-density limits, we present two Pade representations for p, at any k,
r„or g, one within and one beyond the random-phase approximation (RPA). We also show that p, "
obeys a generalization of Misawa s spin-scaling relation for c, , and that the low-density (r, ~ ~ ) limit
of gRPA js p

—3/4

I. INTRODUCTION

The correlation hole surrounding an electron is essen-
tially the real-space analysis of the correlation energy, '

and its Fourier transform is the corresponding wave-
vector analysis (as reviewed in Sec. II). The correlation
hole of the uniform electron gas, a quantity of interest in
its own right, is also a common ingredient of models for
the hole in an inhomogeneous system, e.g., the weighted
density approximation or the real-space cutoff of the
gradient expansion. These models generate useful
nonlocal density functionals for the correlation energy
and potential. The aim of the present work is to de-
velop an accurate analytic representation of the Fourier
transform for the correlation hole of an electron gas with
uniform spin densities n& and n&. In the course of this
work, we derive several exact limits and scaling relations
for the hole.

The simplest construction which makes sense is the
random-phase approximation (RPA), in which the
Fourier transform of the hole is defined by an explicit fre-
quency integral (Sec. II) which must be evaluated numeri-
cally. We have fitted the result to a Pade approximant
(Sec. VII) which reproduces all features except the ener-
getically unimportant second-derivative discontinuity
that occurs when the wave vector equals the diameter of
the Fermi sphere (k =2k+ for (=0). (This unreproduced
feature generates long-range oscillations of wave vector
2kF in real space. )

In comparison with accurate values from quantum
Monte Carlo calculations, the RPA gives inaccurate
correlation energies and unphysical correlation holes' at
metallic or low electron densities. To go beyond the
RPA, we follow the general approach of Nozieres and
Pines, "who used the RPA only in the small-wave-vector
or high-density limits (Sec. III) in which it is exact. We
modify our Pade representation (Sec. VII) so that it has
the correct large-wave-vector (Sec. IV) and low-density

(Sec. VI) limiting behaviors, and fits the Monte Carlo
correlation energies. ' As a check on our results beyond
the RPA, we compare with the Fourier transform of the
correlation hole computed from Jastrow-Slater wave
functions.

We are not aware of other analytic representations for
the correlation hole in wave-vector space. In real space,
Contini, Mazzone, and Sacchetti' presented an analytic
model for the pair-correlation function at full interaction
strength A, =1. However, the correlation hole we seek is
the average' over the range 0 k+ 1, where the cou-
pling constant A, is the square of the electronic charge.
Chacon and Tarazona' presented an analytic model of
the exchange-correlation hole in real space for a spin-
unpolarized uniform electron gas. When the exact ex-
change hole is subtracted, their model is accurate in the
long-range (small-wave-vector) limit and in the domain of
metallic densities, but not in the high-density limit. Spin
polarization and an accurate account of both limits are
needed for the construction of a simple generalized gra-
dient approximation for the correlation energy from the
real-space cutoff of the gradient expansion for hole. In
fact, it is only the occurrence of scaling relations (Sec.
III) in these limits which permits the development of an
accurate analytic fit to the numerical results of the real-
space cutoff. '

II. BACKGROUND

Consider a many-electron ground state with inhomo-
geneous spin densities nt(r), n&(r). The total density at
position r is

n=n&+n&,

and the relative spin polarization is

g=(n
&

n&)!n . —

The total correlation energy is'
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—RPA(k rn (r)n, (r, r')
E, =—,

' d'r d r'— (3)
2

f dWIa~(r„g, W)
S —in[1+a&(r„g, W)]],

where

Q =k/2kF
d r'n, r, r' =0 . (4) and

where n, (r, r') is the density at r' of the correlation
hole' surrounding an electron at r, which obeys the sum
rule

(13)

(14a)

Only the average hole 8 =co/2kF~ (14b)

n, (R)=—f d r n(r) f n, (r, r+R)
4~ (5)

are the reduced wave vector and frequency, respectively.
Here c =(4/9')', and k~= 1/cr, is the Fermi wave
vector. Also

is needed to evaluate the correlation energy per electron

F., „n,(R )' f—dR 4~R
o R

In Eq. (5), X = J d r n(r) is the number of electrons, and
dR denotes the angular element in R space.

The Fourier or wave-vector analysis of the average
hole is

cr
2 2a&(r„gW) = [xiP(x ig, x iW)+xzP(xzg, xzW)],4~

where

x, =( I+g)-'",
x, =(i —g)-'",

(15)

(16)

n, (R)= dk 4vrk p, (k)
(2~)3 o

' kR

where the average structure factor

p, (k)= f dR 4irR n, (R)
0

(8)

~2+ 2 4
P(QW)= ' i+ +Q Q in

Q2 4Q3

W i Q+Q

W +Q (1+Q)
2+Q2(1 Q)2

lim p, (k) =0 .
k~o

Substitution of Eq. (7) into Eq. (6) yields

(9)

is the Fourier transform of the average correlation hole.
When n, (R) is sufliciently localized around R =0, Eq. (4)
implies that

g' —
Q (18)

(19)

For later use, we define the Thomas-Fermi screening
wave vector

E,
dkp, k

0
(10)

and display the Fourier transform of the exchange hole:

P (k, r„g)=—,'(I+/)F ((I+/) ' Q)

n =3/4m. r, =kF/3m

are independent of r, and

E, /N=E, (r„g) . (12)

The real-space analysis (6) decomposes the correlation en-
ergy into contributions from dynamic density Auctuations
at different distances R from an electron, while the wave-
vector analysis (10) displays the contributions from fluc-
tuations of different wave vectors k.

In a uniform electron gas, the relative spin polarization
g and density

where

+-,'(i —g)F, (( I —g)-'"g ),

—1+3Q /2 —Q /2, 0 & Q & 1
F (Q)= '0 Q)1

The small-wave-vector expansion of Eq. (20) is

p ( k, r„g)—+ —1+3gQ /2 —Q 3/2,

where

g(g)=[(I+()' '+(1—g)' ']/2 .

(20)

(21)

(22)

The wave-vector analysis within the RPA is easily found
from the work of von Barth and Hedin:

Note that the second-derivative discontinuity of Eq. (21)
at Q = 1 is not included in the Pade representation

F( )=
1+1.5Q +2.25Q +2.875Q +3.5625Q +24. 88Q

(24)

which reproduces the first four derivatives of F at Q =0
plus the integral of F„(Q) from 0 to oo.

All our equations are expressed in atomic units. The
unit of distance is 1 bohr=ao=h /me, and the unit of

energy is 1 hartree =e /ao, where e and I are the charge
and mass of the electron. With this understanding, our
equations apply for any values of e and I, not just the
physical ones. For example, the high-density limit of Sec.
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III means na 0
—+ ~, and may be achieved by n ~~,

e —+0, or I~0.2

III. SMALL-WAVE-VECTOR
AND HIGH-DENSITY SCALING

where

u =W/Q,
R(u)=1 —u tan '(u ') .

(26)

(27)

From Eq. (25),

QO cr,
0

d W a~(r„Q, W) = (x, z+x
z )+0 (Q),gt I

8Q
j

= 2 0(Q u ), u(1
13(Q, W)= R (u)+ '

o0 u, u)1, (25) and thus

We seek the k~0 or kz~~ behavior of the RPA
equations (13)—(19). In either limit, Q~O. Following
Gell-Mann and Brueckner, ' we find for Q «1

(28)

3 cr
p, (k, r„g)= ——', g(g)Q+0(Q )+ j du ln 1+

z R(x, u)+ R(xzu)
cr~ 0 2~Q x) xz

(29)

+0(Q ) .

To evaluate the integral in Eq. (29), we assume x& xz without loss of generality. As u varies from 0 to ~, the func-
tion R (u) decreases monotonically from 1 to 0. Thus for u 1/xz, the integrand will be dominated by

cr, 1 1
', cr, 1 1

ln 1+ — R(xiu)+ R(xzu) =ln R(xiu)+ R(xzu) (30)
2irQ

I
x) xz 2~Q x) xz

P, (k, r„g)= —
—,'g(g)Q+2

S

Q+0(Q ).

For u ) 1/xz, we expand the functions R (x
&
u ) and

R (xzu) to all orders in (x, u )
' and (xzu ) ', respective-

ly. After some tedious analysis, we find
1/2 k,p, (k, r„g)/erg +f (z, g) . —

Moreover, we will show in Sec. V that

(34)

ter than k„we expect that the only important wave-
vector scale will be k„and Eq. (32) will sum to

(31)
f (z, 1)=f (z, O) . (35)

pk, ( kr„g)

Wg
+ +0( ) (32)

z =k/gk, . (33)

The term of Eq. (31) linear in Q is well known, at
least' ' for the spin-unpolarized case /=0: it cancels a
similar term in the Fourier transform of the exchange
hole [Eq. (22)]. Similarly, the long-range (R ~ ca) nonos-
cillatory behavior (-R ) of the correlation hole cancels
that of the exchange hole, as a result of screening. The
Q term in Eq. (31) is also known' '' in the special case
(=0. Since this Q term arises from plasmon zero-point
energy, ' '' it is independent of g.

Note the appearance of Qr, in Eq. (31). There are two
wave-vector scales: the Fermi wave vector kF, and the
screening wave vector k, of Eq. (19). It is convenient to
rewrite Eq. (31) as

The corresponding high-density limit of the correlation
hole is

—RPA(R ) g 3(gk )z g RPA(gk R ) (37)

The right-hand side of Eq. (37) is also the exact form for
the long-range nonoscillatory behavior of the correlation
hole [since this behavior is controlled by the small-wave-
vector behavior of P„Eq. (32)]. Following the general
ideas of Refs. 11 and 15, we expect the new scaling rela-
tions (32)—(36) to remain valid beyond the RPA.

By substituting Eq. (36) into Eq. (10), we find that the
high-density limit of the correlation energy scales approx-
imately like g . The exact analytic behavior in the high-
density limit is'

Our numerical study of the RPA (Table I) confirms Eqs.
(34) and (35), and further indicates that the g dependence
off is very weak: In the high-density limit,

k,p, (k, r„g)/erg =f(z, O) .

The leading terms of Eq. (32) depend on z, but not other-
wise on r, or g.

In this high-density limit r, ~0, where kz diverges fas-
I

(Er„g)=0.031 09I(g)lnr, +0 (r, ),
where

(38)

x, 'xz '(x, '+xz ') —(1+/)lnx, —(1 —g)lnxz —21n(x, '+xz ')
2

'+
2(1 —ln2)

(39)
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TABLE I. Comparison of the Pade approximation [Eq. (42)] with the exact [Eq. (13)]
—1000kP, (k, r„g}/~g(g}' near the high-density limit (r, =10 '), in a.u. , for various values of g and

z =k/gk, .

0.0

Method

Exact
Pade

24. 14
24. 14

0.6

51.53
51.21

z
1.0

44.43
44.27

2.0

28.04
27.94

4.0

15.09
14.94

6.0

10.21
10.09

10.0

6.17
6.11

0.3 Exact
Pade

24. 14
24. 15

51.64
51.26

44.58
44.34

28.18
28.02

15.17
15.00

10.26
10.14

6.21
6.14

0.6 Exact
Pade

24.15
24. 15

51.97
51.41

45.04
44.57

28.58
28.27

15.42
15~ 18

10.43
10.27

6.31
6.23

0.9 Exact
Pade

24.16
24. 15

52.31
51.60

45.57
44.86

29.09
28.59

15.73
15.41

10.65
10.45

6.44
6.34

1.0 Exact
Pade

24.14
24. 14

51.55
51.21

44.45
44.27

28.06
27.94

15.10
14.94

10.22
10.09

6.18
6.11

To order lnr„ the RPA correlation energy is exact. ' As
shown in Ref. 18, the functions I and g are equal for
/=0 and 1, and roughly equal for intermediate values of

Except at /=0 and 1, the function g(g) [Eq. (23)],
which enters the scaling relations (32—(36), differs from
the more obvious candidate

+2= —0. 181 18,
a3= —0.076 53,

Pi = 1.452 73,
p2=1. 10938 .

(47)

(48)

(49)

(50)

g(g)= I [(1+/)'~ +(1—g)'~ ]/2(' (40)

which enters the static Thomas-Fermi dielectric function:

srF(k) =1+(gk, /k) (41)

f (z, g)=
n&z+o. 2z +a3z2 3

1/2

1+P,z+P~
2 (42)

In fact, g ~I+g, and I=(g g )'~ .
We can accurately represent the high-density limit

f (z, g) of Eq. (34) by a Pade approximant:
IV. LARGE-WAVE-VECTOR BEHAVIOR

Here we will show that, in the limit k —+ oo (and thus
k»k„k»kF),

—RPA(k r g) r g
—& (51)

[Equation (42) is in fact a reduced form in the high-
density limit of a general Fade for any density, Eq. (71);
an equally good fit to the high-density limit can be found
from a simple [2/3] Pade form. ]

From the small-wave-vector limit of Eq. (32),

3 == —0.303 964,
7T2

(43)

Qualitatively similar behavior is expected beyond the
RPA, where the limit (51) implies a cusp' in the correla-
tion hole at R =0.

We expand Eq. (18) in powers of Q
' and collect like

terms to find

a~ —2a,P, =4&3/~ (44)

The correlation energy in the high-density limit is essen-
tially

p(Q, 8)=2, + 16" 1) Q-'+O(Q-'),
1+u (1+u)

where

(52)

~, (.», )

E,(r„g}~g f dz f (z, (), (45)
0

where the cutoff z, (r, ) r, ' occurs—as k approaches
2kF. The z ' asymptote of Eq. (42) yields the lnr, term
of Eq. (38), provided that

u =W/Q (53)

Now it follows from Eqs. (13) and (15}that

p, ( rk„g)= f dWa&(r„g W) +O(Q '
)

S—
—,'a3/p2=0. 031 09 . (46)

Given conditions (43), (44), and (46), there are only two
independent parameters in Eq. (42), which are fixed by a
least-squares fit to our numerical RPA result at /=0 and
small r, (Table I). We find, in addition to Eq. (43),

Q + cr, g h(g)+O(Q ),
12m 8~'"'

(54)

in agreement with Eq. (51), where
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h (g)=r(1+/) +(1—g) ]/2 . (55)

Equation (54) is presumably useful when Q is so large
that the Q term is smaller in magnitude than the Q
term, i.e., when

Here we will derive an analogous relationship satisfied by
p, (k, r„g) within (but not beyond) the RPA.

First note that, as g~ 1, x2~ ~ by Eq. (17). Thus, by
Eq. (52),

Q &45h/2&45/2 . (56) x2/3(x2Q, x2W)=x2 —',(x2Q) /(1+v )~0 (58)
Since the Fourier transform of the hole is normally negli-
gible for Q &45/2, the details of the limit (54) are not
very useful for the Pade representation of p„and only
the general behavior (51) will be imposed.

V. GENERALIZED MISAWA SCALING IN THE RPA

for any v and Q. Therefore

CI's

a, (r„Q, W)= 2 ' /3(2 ' Q2 / W)
4~ (59)

Misawa has shown that, for all r„
RPA(r 1 )

1 ERPA(2 —4/3r p)C S~ 2 C s~ (57)
I

It follows from Eq. (13), after change of integration vari-
able from 8'to 8"=2 8' that

CTs CrS(kr 1)= f dW'2 2 ' P(2 '
Q W') —ln 1+ 2 ' P(2 ' Q, W')

cr, o 4m 4~

Comparison of Eq. (60) with

(60)

2
pRPA(k, r„p)= f dW p(Q, W) —ln 1+ p(Q, W)

cr, o 2m. 277
(61)

leads to the conclusion

/3
RPA(k r 1 ) pRPA(2k 2

—4/3r 0) (62)

VI. L(OW-DENSITY LIMIT

Integration of Eq. (62) over k, combined with Eq. (10),
implies the original Misawa relation (57). It is easy to
check that Eq. (54) obeys the generalized Misawa relation
(62). The high-density limit of Eq. (34) must also obey
this relation, which implies Eq. (35). E, (r„g)= h(g)

47TCP's
(68)

Although intermediate values of g were not examined, it
appears that, to order r, ', E„,(r„g) is independent of g.
That is not an unexpected result, since the exact change-
correlation energy in the low-density limit is essentially
the electrostatic energy of the Wigner lattice. Subtrac-
tion of the exchange energy

As the density n tends to zero, the ratio k, /kF
diverges. We expect that the only relevant wave-vector
scale in this limit is kF, i.e.,

from E„,(r„g)= E,„,(r„p) then implies that

E,(r„g)~ '
[ I —0.5177h (g) ]

—0.8851
I"

S

(69)

p, (k, r„p)~F, (Q) (63) as r, —+ ~.

E,(r„p)~y/r, ,

where

(64)

as r, ~ oo, a result consistent with Eq. (31). Then Eq. (10)
would seem to imply

The standard analytic parametrizations ' ' of the
RPA correlation energy assume that Eq. (64) is also valid
within the RPA. Surprisingly, our numerical and analyt-
ic studies show that

y= f dQF (Q) . (65)
RPA( g) p 4p/ 3/4 (70)

( 0)
—0.8851 1.435 +g( 2)

~S r 3!2

( 1)
—0.885 1.420

XC S&
r, ~S

3/2 S

(66)

(67)

These expectations are apparently satisfied beyond the
RPA. In a Monte Carlo study, Ceperley found the low-
density limit for the exchange-correlation energy of a uni-
form electron gas to be '

as r, ~ oo. [The g independence of Eq. (70) is consistent
with the Misawa scaling relation (57).j This discovery
has motivated a more accurate parametrization of
ERPA(

The reason for the failure of the expectation (64) within
the RPA is the divergence of the integral defined in Eq.
(65). From our numerical studies for r, ~ 10, it appears
that F, (Q)= —1 F(Q), where F (Q—) is the Fourier
transform of the exchange hole. In other words, the
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RPA exchange-correlation hole n „, (R) tends to a delta
function —5(R) (on the scale of the Fermi wavelength) in
the low-density limit. This is obviously an unphysical
feature of the RPA, since the true exchange-correlation
hole cannot be more negative than —n. Only in the low-
density limit (k~ &&k, ) can the RPA "screen out" all of
the exchange hole, including all of its second-derivative
discontinuity at k =2kF.

In the Appendix, we present an analytic derivation of
the r, /" dependence of Eq. (70).

VII. PADK REPRESENTATION
FOR ARBITRARY DENSITIES

As a possible generalization of Eqs. (34) and (42) away
from the high-density limit, consider

kp, ( kr„g)
kg

z +p3(g)r~z'+p4(g)r, z

a,z+a2z +a3z +a4(g)r, '/ z
1/2

1+p,z+p2

(71)

k,p, (k, r„g)/erg r, z— (72)

as k~ ~.
To study the low-density limit r, ~~, we change vari-

able from z to Q. In this limit, Eq. (71) reduces to

where p ) 1, and a4(g), p3(g), and p4(g) are functions to
be determined. Clearly, Eq. (71) reduces to Eq. (42) in
the high-density limit r, ~0, and to Eq. (32) in the small-
wave-vector limit k~0. Moreover, Eq. (71) satisfies the
large-wave-vector limit of Eq. (51), i.e., neglecting the g
dependence,

C =0.2055, (82)

The coefficients in Eqs. (80) and (81) are chosen by a
least-squares fit to the correlation energies E, (r„g).

Within the RPA, we fit to the exact numerical
(r„g) at r, =0.5, 1, 2, 5, 10, 20, 50, and 100 for

/=0. 0, 0.2, 0.4, 0.6, 0.8, and 1.0, as tabulated by Vosko,
Wilk, and Nusair. [More precisely, we minimize the
square absolute error of Eq. (71) separately for each g,
then minimize the square absolute error of Eqs. (80) and
(81)]. We vary not only the coefficients in Eqs. (80) and
(81) but also Co of Eq. (77), and find

p, (k, r„g)~—
—,'gQ/(1+BQ )

where
3/2

7T'B=
C

p —3/2
3

I's

The low-density limit of the correlation energy is then

ag (g) = —0.001 79(1+12.332( +6.909/
—9.359/ —10.252$ ),

P4 (g)=0. 1279(1+0.473( +0.0585/
—0.0929( —1 .0417(8 ) .

(83)

(84)

2k~ „——,'gQ
dQ

vr 0 (1+BQ )

—3g (23/3~/27)
~CI;

(75)

Within the RPA, we equate Eqs. (75) and (70) to find

RPA 9 (76)

pRPA(g) CRPAg9/2 (77)

p(g)cg9/2( 1 cg)3/2 (79)

where the a priori constants are Co =0.0515 and

Ci =0.5177.
It remains to determine the functions a4(g) and p&(g),

which we assume are of the form

a4(0)= y a
n=0

(81)

where the a priori value of Co is 0.17. Beyond the
RPA, we equate Eqs. (75) and (69) to find

(78)

Because a4 (1)=2 / a4(0) and Pq (1)=2 P4(0),
the RPA Pade (71) satisfies the generalized Misawa scal-
ing relation of Eq. (62).

Figure 1 compares the RPA Pade approximation (71)
against the exact numerical RPA result. The Pade repre-
sentation is accurate, apart from a "crossover" behavior.
This crossover is to be expected, because the Pade form
cannot reproduce the second-derivative discontinuity of
the exact numerical RPA, which occurs at k =2kF when

g =0, and at k =2 kF when g = 1. Table II compares
the RPA correlation energies generated by the Pade (71)
and Eq. (10) against the exact numerical RPA correlation
energies, and also the analytic representations of
E, (r„g) by Vosko, Wilk, and Nusair (VWN) and Per-
dew and Wang (PW). The Pade values for E, (r„g) are
more accurate than the VWN value, especially for large
r, . This reAects the fact that our Pade yields the correct
low-density limit of Eq. (70), while the VWN analytic
representation does not.

Beyond the RPA, we would like to follow the same
fitting procedure, replacing the numerical RPA correla-
tion energies c,, (r„g) by Monte Carlo values E, (r„g).
While the latter are known only for /=0 and 1, a plausi-
ble interpolation in g has been presented by VWN. We
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TABLE II. (——1)XRP gy~" (:E. . : 1t tt fR
.) Pd.

analytic re r '
o

r,

representation of Ref.

0.5 Pade
Exact
PW
VWN

194.6
194.6
194.4
195.3

192.8
192.7
192.5
193.3

187.2
186.6
186.4
187.3

176.7
175.5
175.6
176.4

159.8
158.1
157.4
158.0

123.6
123.7
123.6
123.6

Pade
Exact
PW
VWN

123.6
123.6
123.6
124.9

122.5
122.5
122.4
123.8

119.2
118.9
118.9
120.2

113.0
112.5
112.6
113.9

103.3
102.6
102.4
103.5

84.8
84.8
84.8
85.0

Pade
Exact
PW
VWN

85.0
84.9
85.0
86.2

84.3
84.2
84.3
85.5

82.2
82.0
82.0
83.3

78.4
78.1

78.2
79.3

72.4
72. 1

72. 1

73.1

62.0
62.0
62.0
62.3

100 Fade
Exact
PW
VWN

16.5
16.6
16.6
15.0

16.5
16.5
16.6
15.0

16.3
16.3
16.3
14.7

15.9
15.9
16.0
14.4

15.3
15.4
15.4
14.0

14.5
14.5
14.5
13.9
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TABLE III. (
—1) X beyond-RPA correlation energy c,,(r„g) in mRy. See caption of Table II. PZ:

analytic representation of Ref. 14.

0.5

Method

Pade
PW
VWN
PZ

0.0

153.3
153.2
154.1

152.1

151.3
151.2
152.1

149.7

0.4

145.5
145.0
145.9
142.2

0.6

134.6
133.9
134.8
129.3

0.8

116.2
115.2
115.9
110.0

1.0

80.5
80.4
80.2
80.6

Pade
PW
VWN
PZ

89.3
89.5
89.6
90.2

88.1

88.3
88.4
88.7

84.5
84.4
84.7
84.4

77.9
77.7
78.1

76.8

67.1

66.8
67.2
65.4

47.6
47.8
47.7
48.2

Pade
PW
VWN
PZ

56.5
56.4
56.3
56.7

55.8
55.6
55.5
55.8

S3.4
53.2
53.2
53.1

49.3
48.8
49.0
48.5

42.6
42. 1

42.4
41.6

31.0
30.9
30.9
31.0

100 Pade
PW
VWN
PZ

6.0
6.4
6.4
6.3

5.9
6.3
6.3
6.3

5.7
6.1

6.1

6.0

5.3
5.7
5.6
5.6

4.7
5.1

5.0
5.0

3.8
4.1

4.1

4.1

Ci =0.5693,

a„(g)= —0. 1057(1+0.7422( +0.6510$

—0.6406$ —0.4176$ ),
P4(g) =0.8796(1+0.3674/ —0.2557/4

+1.3072( —1.3698$ ) .

(86)

(87)
P, (k, r„g)=J(Q, r„g),

and then construct

(89)

J(Q, r„g)+r, J(Q, r„g) .' Br,

constant, may be constructed by the following prescrip-
tion: First write

Figure 2 compares the beyond-RPA Pade (71) against
the result' of a Jastrow-Slater wave-function variational
calculation. As in the RPA, there is good agreement
apart from a crossover at k=2kF. Table III compares
the beyond-RPA correlation energies generated by Eqs.
(71) and (10) against those from the PW analytic represen-
tation of e, (r„g), that of VWN, and that of Perdew
and Zunger (PZ).

Figure 3 compares the real-space correlation holes
n, (R) within and beyond the RPA for (=0 and r, =4.
These curves were generated by inverse Fourier transfor-
mation [Eq. (7)] of the Pade form (71). As expected, ' the
RPA hole is too deep close to the electron, but correct far
away.

In summary, our Pade representation for the Fourier
transform of the correlation hole is Eq. (71), supplement-
ed by Eqs. (23), (33), (39), (43), and (47)—(50). Within the
RPA, we use Eqs. (76), (77), and (80)—(84). Beyond the
RPA, we use Eqs. (55), (78), (79), and (85)—(88). By con-
struction, Eq. (71) obeys the exact scaling relations
(32)—(36). (For other scaling relations obeyed by the
correlation hole, see Ref. 25.)

Finally, we recall that the correlation hole n, (R, r„g)
and its Fourier transform p, (k, r„g) are averages over a
coupling constant. ' ' The Fourier transform of the
Coulomb hole density, which expresses the real pair
correlations of the electron gas at the physical coupling

0 ~ 01

-0 ~ 01

-0 ~ 02

-0.03

-0.04

I I I I I I I I I

0 12 14 16 18
R

(a.u. )

orrelation hole
= real space

=0

-0.05

-0.06

FIG. 3. The correlation hole density n, (R) in real space, ob-
tained by inverse Fourier transformation of the Pade represen-
tations (71) within (dashed curve) and beyond (solid curve)
RPA.

Starting from Eq. (71), the first step is achieved by
the substitutions k, —+1.563 185r, ' and z
~2.455446r, '~ Q/g, and the second step generates the
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Pade representation for the Fourier transform of the
Coulomb hole density.

J. G. Zabolitzky for permission to reproduce parts of
Figs. 14 and 1S of Ref. 12.
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APPENDIX: LOW-DENSITY LIMIT OF RPA
CORRELATION ENERGY

To derive the r,. behavior of Eq. (70), consider the
spin-unpolarized RPA correlation energy of Eqs. (10) and
(61):

RPA( 0) , , f dQ f dWQ' '
P(Q W) —ln 1+ ')t3(Q W)

S

(A 1)

For r, ))1 we might expect (Al) to be dominated by its first term, leading to the result s, (r„0)—r, ' as r, —+De.
However, the condition (r, /2m )P(Q, W) )) 1 cannot be obeyed everywhere, no matter how large r, is.

According to Eq. (52), we have for large Q

Cf' cr,
P(Q, W)= +O(r, Q ) .

3~ ]. +v~

Clearly (cr, /2')P(Q, W) & 1 for Q )Qo, where
1/4

Qo= (1+ 2) —1/4 1/4

3K

(A2)

(A3)

Now we calculate the contribution from this region Q )Qo to the correlation energy of Eq. (Al):

RPA( 0) f du f dQ Q g —)33(Q, W)
7l =2

tl n

f dQQ P(QW) = f dQQ" 1 c
4n —S 3~

(1+ 2) —5/4 S/4
S (A5)

where we have used the fact that (cr, /2') P(Q, W) & 1 to make the Taylor expansion. It is straightforward to evaluate

5/4

Substitute (A5) into (A4) and find

g( RPA
RPA( () )

~s

where

AC = (3~) / c / du(1+u ) =0.06 .
12 -

( —1)"+'
77 , (n+I)(4n —1) o

(A6)

(A7)

Equations (A6) and (A7) include only the contribution to Eq. (70) from Q & Qo, but the contribution from Q & Qo
must have the same sign [since the integrand of Eq. (Al) is everywhere positive. ] The derivation is readily extended to
the spin-polarized case.
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