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The temperature-dependent behavior of short-range correlations in a homogeneous three-dimensional

electron gas at finite temperatures and finite degeneracies is presented. From the physical meaning of
the pair distribution function for two electrons at the same location, one would expect a function which

increases monotonically with the temperature. Instead, a decrease is found for small temperatures. This

effect is investigated extensively within the framework of the random-phase approximation of static-

local-field-corrected approaches. Moreover, by applying first-order perturbation theory the nonmono-

tonic behavior is proven to appear in the high-density limit also. Using a density-functional based model

for short-range correlations, a physical interpretation is obtained. Finally, the results are discussed in a

comprehensive way.

I. INTRODUCTION

In the course of the last decade thermodynamics and
correlational properties of Fermi systems have been stud-
ied comprehensively within the framework of the elec-
tron gas model, especially in the completely degenerat-
ed' and the classical' limits. However, in a substantial
number of physically interesting situations the finite de-
gree of Fermi degeneracy cannot be neglected. Examples
where an approximation by one of the above asymptotic
behavior fails, are liquid metals and plasmas used in
fusion experiments.

Extensive investigations on electron systems at finite
temperatures within the density-functional formalism
were performed both in three and in two dimensions.
In the present paper we consider a homogeneous three-
dimensional (3D) electron gas which can be characterized
by two parameters: the temperature T and the electron
density n, conveniently replaced by

0=k~ T/E~ Fermi degeneracy parameter,

r, =a /az density parameter,

where a =(4mn/3) '~ is the radius of a sphere contain-
ing on the average one particle, a~ =A /e m is the Bohr
radius, and EF=A kF /2m denotes the Fermi energy
[kz=(3m n)'~ ]. It should be mentioned that for com-
pletely degenerate systems 0« 1, while for classical ones
0))1. r, is a measure for the strength of the Coulomb
coupling in a degenerate system (r, =0 denotes the nonin-
teracting system).

For homogeneous three-dimensional systems static-
local-field-corrected theories have been proven to give
good results for the static correlations at zero tempera-
ture in the metallic density range. In addition, they
allow a largely analytical treatment of the calculations.
It was the merit of Tanaka and Ichimaru to extend the
T=O formalism to nonzero temperatures. Their de-
tailed work includes a comprehensive description of the
static correlations. Being interested in quantum correc-

tions to a mainly classical plasma, they used the so-called
plasma parameter I =e /ak~ T for their calculations. I,
however, combines two different properties of the system:
the Coulomb coupling strength, entering I through a,
and the kinetic energy k&T of the electrons. In highly
degenerate systems the latter has to be replaced by the
Fermi energy.

The purpose of the present work is the investigation of
the temperature dependence of the pair distribution func-
tion g(r, O), especially at zero distance r =0. For that
reason we consider an electron system with fixed density
parameter r, and vary over 0 in order to separate the
two effects stated above.

The physical meaning of g ( 0,0 ) can be expressed by
an integral over the region where the Coulomb repulsion
of an electron exceeds the kinetic energy. Since the latter
is increased by heating up the system, one would expect
an enlarged probability for electronic tunneling through
the Coulomb-barrier, and thus an increase of g (0,0). In-
stead, the result is a function g (0,0) having a negative
gradient for small 0's, which is rather unexpected at first
sight. At a temperature 0;„g(O, O) reaches a minimum
and then increases monotonically for higher 0's.

This paper is organized as follows. In Sec. II the basic
formalism for the calculations of the static correlations is
presented and the temperature dependence of the pair
distribution function is discussed in an extensive way.
Three theories, their characteristics and their inhuence
on the results are described and compared with each oth-
er: the random-phase approximation (RPA) and two
static-local-field-correlated theories; the Singwi-Tosi-
Land-Sjolander (STLS) and the Singwi-Sjolander- Tosi-
Land (SSTL) approximation. Moreover, the influence of
Quantum Mechanics on Fermi systems at high tempera-
tures is described briefly.

The question whether the effect is of physical nature or
not is treated in Sec. III by making first-order theory for
r, & 1. Finally an explanation of the nonmonotonic tem-
perature dependence of the g(0, 8) function is given.
Section IV concludes with a discussion of the results.

44 13 291 1991 The American Physical Society



13 292 SCHWENG, BOHM, SCHINNER, AND MACKE

II. g(r, O) AND g(0, 0) WITHIN THE RPA
AND THE STATIC-LOCAL-FIELD-CORRECTION

FORMALISM

Before explaining the temperature dependence of the
pair distribution function, a description of the formalism
which is used to calculate the static correlations is given.
For a more detailed discussion, we refer to Ref. 9.

The starting point of the considerations is the well-
known density response function y(q, co). This function
can be expressed by the free-particle response function
y (q, co) and a local field correction 6(q, co)

x(q, ~)= x'(q, ~)
(3)

1 —[1—G(q, co)]U(q)y (q, co)

where U (q) =4vre /q is the Coulomb potential in
momentum space. Making use of the Auctuation-
dissipation theorem we obtain the dynamic structure fac-
tor and after a Fourier transformation from co to t =0 the
static structure factor:

AcoS(q, O)= — f de coth Imp(q, co) . (4)
27Tll 2Tk~

For the further evaluation of Eq. (4) two approaches can
be used. In the first one, which is useful for 0=0 stud-
ies"' and for 0 «1 considerations, the particle-hole
and the plasmon contributions to S(q, O) are calculated.
As there is no analytic expression available for the
plasmon dispersion relation, its evaluation is rather la-
borious. Therefore, the second one proposed by Tanaka
and Ichimaru is favorable for the rest of the 0 range.
This method derives advantage from the fact that y(q, co)

is separately analytic in the upper and the lower halves of
the complex co plane. The integration in Eq. (4) can be
carried out using the residue theorem. Introducing the
dimensionless response function
4(q, co) =— 2E~y(q, co)—/3n one arrives at

3 oo

S(q 8)=—8 g @(q z )
r= —~

where z~ denotes the so-called Matsubara frequencies:

zr 2i~yke T/h y 0 +1 +2

A further Fourier transformation from q to r (r de-
scribes the distance between two electrons) leads to the
pair distribution function g(r, 8). Here and in the fol-
lowing the dimensionless quantities q =q/kz and r =rk~
are used:

3 oo

g(p, Q~)=1+ f dq q sin(qr)[S(q, O') —1] .
2P" 0

For the response function of a noninteracting system
one finds (cf. also with Ref. 11):

1
@ (q, y)= dy

2g o expy 0—p +1

Xln (2my8) +(q +2qy)
(2~y8)'+ (q' —2qy)'

(9)

Equations (8) and (9) are obtained by replacing each step
function in Lindhard's formula' by the Fermi function

n (q, O~)=[exp(q /0" —P)+I] (10)

&+ e X
1

e'

2'
(13)

6 and S are to be determined self-consistently. This ap-
proach has led to excellent results ' for the pair correla-
tion function of the completely degenerate electron liquid
(0=0). It suffers, however, from a violation of the
compressibility sum-rule. ' In the classical limit
%co«k&T, additional minor deficiencies have been no-
ticed, ' ' e.g. , an unsatisfactory smal1-coupling behav-
ior. The latter is improved by accounting for screening in
U(q') in Eq. (12), as done in a later proposal by Singwi
et al. (SSTL)

(q)6ssTL(qQ) 1 d ' 'U( ')
(2~)' q' e(q')

which describes the momentum distribution of free parti-
cles at finite 8. The quantity p=p/kiiT denotes the re-
duced chemical potential of a noni. nteracting system and
can be obtained by solving the following equation:

n =(2m. ) f d q n (q, O) . (11)

The simplest theory within the presented formalism
[cf. with Eq. (3)] is the RPA, which is a pure mean-field-
theory based on G(q, co)=0. This approximation works
well in the high-density limit, but gives negative and
therefore unphysical results for g(r~0, 8=0) for
r, 0.75. In overcoming this most striking deficiency of
the RPA extended mean-field theories using GWO, but
still neglecting its cu dependence, have proved successful
for metallic densities (r, 6). Assuming local equilibrium
for the two-particle function Singwi et al. (—:STLS)
decoupled the classical hierarchy of equations of motion
and thereby derived the following expression for the
local-field 6 (q):

1
U (q)G (q, 8)= ——f (2m. ) q

XU(q')[S(q' —q, O) —1] (12)

or, equivalently, (in dimensionless units)

6 (q, 8)=——f dyy [S(y,8)—1]
4 o

4 (q, 0)= f dyy y — ln +qy
Oq o

X [S(q' —q, O) —1] . (14)

exp(y /8 —p)
[exp(y /0 —P ) + 1 ]z

A difFerent suggestion has been made by Ichimaru, '

who uses S(q') instead of the inverse dielectric function
1/c. In the classical system both approaches yield the
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lim S(q, 8)=1— 8

q —+ oo 3ma~k~q4
(15)

This simple relation is very important for the calculation
of the large q contributions to g (r, O) in Eq. (7) and for
Kimball's relation. ' ' It should be noted that there is
no 0 dependence left in Eq. (15). In particular, it differs
from the classical limit which is expected to yield a good
description of the O)&1 region. The classical analogue
to Eq. (15) is expressed by

correct weak-coupling expansion beyond the RPA. The
SSTL approximation has the further advantage of closely
fulfilling the compressibility sum rule for T =0, although
for the classical system the conformity is less satisfacto-
ry. ' In the low-temperature region, however, the SSTL
constitutes an interesting alternative to the STLS. Addi-
tional modifications and improvements of the STLS
yield close to those of either STLS or SSTL, and are not
considered here. It should be mentioned, however, that
some of those approaches listed in Ref. 8 are based on a
dynamic local field correction and therefore hold the po-
tential of new effects arising from the additional tempera-
ture dependence of the Matsubara frequencies as can be
seen from Eqs. (3) and (6) (cf. the discussion in Sec. IV).

Using one of the static-local-field-corrections stated
above, S(q, 0) is obtained from Eq. (5). To avoid numeri-
cal difficulties it is advisable to treat Eq. (5) in the way
suggested in Ref. 9. It is noteworthy that for 0~0.01
the sum over y converges rather slowly. From the nu-
mericaj point of view it is therefore much more con-
venient to obtain S(q, 8) from the other method men-
tioned above.

Although the sum over the Matsubara frequencies can-
not be simplified in general, one finds in the short wave-
length limit:

t .00-

0.00-
bQ

—1.00
0.00 0.50 100 150 200 250 300

kr

FIG. 1. Pair distribution function g(r, O) of Eq. (7) in RPA
as a function of r and for r, =2. Solid line, 0=0; dashed line,
0=1;dash-dotted line, 0=5.

above we first obtain g(r, O) in the RPA. In Fig. 1 the
result for r, =2 is depicted. Here the effect described in
the introduction arises: at r =0 the g(r, 8,=0) exceeds
the corresponding result for Oz= 1. For large values of r
these functions show the opposite behavior, i.e., in this
limit g(r, Oi))g(r, 8z). This is a consequence of the
sequential relation, which is a normalization condition
for g(r, O):

f d r[g(r 0") 1)= 317 (19)

Extensive calculations show that this nonmonotonic 0
dependence exists in the whole density range up to
r, =10, even in the high-density limit, and there is no ob-
vious reason why it should vanish for lower densities.
However, as the RPA violates Kimball's relation'

lim S"(q,8)= 1 —const/q
q~ oo

(16) g'(0, 0)
g(0, O) (20)

To explain this apparent contradiction we look at Eqs. (8)
and (9). For high temperatures (0) 100) and q smaller
than a certain wave vector q,~(8) only the static response
function contributes to S(q, 8). In that case one finds

0& (q Sq„,0)=2/30

Insertion of Eq. (17) into Eq. (3) leads to

(17)

S(q ~q„,8)= 1+ [1—G(q)]U(q)
g T

This is the classical result obtained by Berggren. ' It fol-
lows from Eqs. {8) and (9) that q, i(O) is a monotonicaliy
increasing function. The region where the quantum char-
acter is crucial for the system and where the dynamics of
the response function becomes important is therefore
continually restricted to higher temperatures. For the
pair distribution function this means that the exchange
and correlation hole is smeared out with increasing 0. In
the 8~ ~ limit only g (0,0) has to be calculated within
the quantum mechanical formalism.

We now return to the calculation of the pair distribu-
tion function. Making use of the formalism discussed

it is not a good theory for small distances r. In the RPA
the connection between g'(0, 0) and the short wavelength
limit of S(q, O) derived first by Niklasson' leads to

g'(0, O) = 1

Qg
(21)

Bg(0,8)
$0~

=0
Q~ =Q

(22)

Equation (22) is valid for all static-local-field approaches.
In addition the behavior of the pair distribution function
within the SSTL approach was studied. For 0=0 the

A theory which satisfies Eq. (20) is the STLS scheme. 9

Here the effect of the nonmonotonic 0 dependence of
g (0,8) appears again, even in this excellent approxima-
tion. To make this transparent, we plot g {0,0) as a func-
tion of O. This is done in Fig. 2. Two important facts
can be stated. Firstly, the minimum of g (0,0) tends to-
wards higher values of 8 with increasing r, . Secondly,
0;„ is higher than 0;„.Moreover, an analytical ex-
pression can be obtained for the temperature derivative
of g (0,8) at 0=0:



13 294 SCHWENG, BOHM, SCHINNER, AND MACKE

0.20
t

0.00-.

—0.20---------------------

~ -0.40-

—0,60-

nkn (1 —n )(1—nok+ )
( )

p p q k+q
&'

q, p, k ~i +~p Ep —q Ek+q

9~&~
3 3 3 1 nknp(1 2np+q)d3k d3 d3 p P+q

Ag(0, 8)=—

the Fermi functions. This results in the following U'-
corrections to g(0, 0) [with nk ——n (k, O), ek =—fi k /2m
and a —=4/9m. ]
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FIG. 2. Pair distribution function g(0,0) as a function of 0
for 6xed value r =0 and r, =2 calculated in various theories.
Solid line: STLS, dashed line: SSTL, dash-dottted line: RPA.

compressibility sum rule is fulfilled in this theory for
r, —=3.5 and can thus be assumed to hold for small tem-
peratures in the density range investigated. Here a com-
pletely different trend is observed: 0;„decreases as a
function of r, and becomes zero for r, =—6. In order to
elucidate the properties of g(0, 8), the comparison of
Omin ~ emin ~ and min for several values of r, is given in
Table I.

Here the question arises: is the minimum in the g (0,0)
function only a failure of the static-local-field-corrected
theories or does it reflect a physical property of the elec-
tron gas which has not been reported yet? The latter as-
sumption in conjunction with the definition of g(0, 0)
which has been given in Sec. I implies a temperature
dependence of the effective exchange and correlation po-
tential. In order to decide whether this hypothesis is val-
id or not, the r, « 1 limit is investigated, since this densi-
ty range is accessible by perturbation theory.

III. PHYSICAI. INTERPRETATION
QF THE 0" DEPENDENCE QF g (0,O")

(24)

Equation (24) has been integrated numerically, the result
is shown in Fig. 3. Again g (0,8) first decreases with in-
creasing temperature. It can thus be concluded that the
nonmonotonic 0 dependence of g (0,0) is an exact prop-
erty of the electron gas system, at least in the r, «1 re-
gime. Furthermore, it should be noted that in contrast to
the previous section this result is not based on the as-
sumption of a static-local-field correction, but is con-
sistent with the dynamic first-order local-field corrections
described in Refs. 21 and 22.

A possible criticism of the perturbational approach
might arise from the fact that for dynamic properties a
nonphysical behavior is found at the boundaries of the
particle-home continuum. These effects and possibilities
for their renormalization have been discussed extensively
in Refs. 21 —24. Therefore static quantities like S(q, 8)
and g(0, 0) can be considered to be exact to O(r,') and
the above result gives strong evidence that the nonmono-
tonic 0 behavior of g (0,8) is a property of the exact sys-
tem, too.

In order to understand the physical origin of this effect
one has to take into account temperature-dependent
screening, too, which can be investigated best within a
simple, density-functional based model for the short-
range correlations: The probability of finding two elec-
trons at the same location can be estimated by one-
particle scattering in an effective potential. Thus we
write the pair correlation function at zero particle separa-
tion

For weakly coupled systems the calculation of g (0,0)
is based on evaluating expectation values of pair opera-
tors to lowest order in the interaction only. Starting
point is the static structure factor,

=1 X (Ckck —qCkCk+q ~

0.600-

0.550-

)
1 p(0, 8i V)

Po
(25)

=S (q, 8)+AS(q, 8) . (23)

F y O~RPA, OsTLs and OssTL for several values r .

Leaving detailed calculations to the appendix, ES is
found to be formally the same as derived by Kimball' '

for 8=0 [cf. Eq. (A4)]; the 0 dependence enters only via
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FIG. 3. Pair distribution in. first-order perturbation theory.
Here the r, -independent correction of Eq. (24j is plotted as a
function of O.
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as a functional of the effective scattering potential
V(r;8). Here, p(r;8 ~

V) is the one-particle density

p(r;S~ V)—=g nk(8))yz (r~ V)(
k, o.

(26)

where the yk are the normalized solutions of
Schrodinger's equation with potential V. po= p(—r; 8~0) is

I

the mean density of electrons in the gas. Because the
effect investigated here is also present within pure first-
order perturbation theory, we can confine these calcula-
tions to first order in the scattering potential, too. Conse-
quently, we linearize the functional given by Eq. (26) with
respect to V using Born's first approximation, which
leads to

g(0, 8~ U)= — 1 —3(ar, ) f dx U(x) f dk k sin(2kx)nk(8) +O(U ),
2 0 0

(27)

where we are using the common dirnensionless variables;
furthermore, the potential U(x) is measured in Rydbergs.
In order to close this model we remember the physical in-
terpretation of U(x) as an elfective scattering potential
caused by one electron at the origin plus the surrounding
"screening cloud. " Therefore Poisson's equation

4n
~

1 —g(x)
3

(28)

with the well-known solution

U(x ig) = 1

nr x
1 ——f"ds s'[1 —g (s)]

3& 0

+x dss 1 —g s

(29)

IV. SUMMARY AND DISCUSSION

In the electron liquid, short-range many-body correla-
tions lead to a reduction of the bare Coulomb potential
on account of the Pauli principle and due to screening.

is used. Being again interested only in first-order contri-
butions, we replace the pair correlation function g (s) in
the functional [cf. Eq. (29)] by the interaction free g (s)
whose temperature dependence is known exactly. From
Eq. (29) the physical origin of the negative slope in
g(0, 0) becomes quite clear: In the ground state (i.e.,
O=O the brace tends to zero for large x, which means
that the pure Coulomb interaction is replaced by a
screened one of shorter range [cf. Fig. (4)]. For 8~ ~
the pair function g (x,8) becomes one and the screening
terms vanish. Thus we find two competing efFects con-
tributing to the temperature behavior of the short-range
correlations: On the one hand, raising 8 increases the
mean kinetic energy of the particles and consequently
also the tunneling probability through the potential bar-
rier surrounding the "target" electron [cf. Eq. (27)], but
on the other hand, according to Eq. (29), the width of this
barrier is increased too. As it is seen from Fig. 5 the
latter effect is dominant in the range of low temperatures,
while for high 8, i.e., when g =1, only the "broadening"
of the momentum distribution n (k, O) remains relevant.
So th1s mechanism turns out to satlsfacto11ly explain the
observed temperature dependence of the short-range
correlations.

1.10-

'I, OO

~ 0.90-

~ o.8o-

0,70-

0.60-

1 I I I

0.00 0.20 0.40
I

0,60
kr

I

0.80

FIG. 4. Effective potential in the density-functional based
model described by Eqs. (25)—(29) as a function of r. Solid line:
temperature-dependent effective potential of Eq. (30) at 0= l.
Dashed line: effective potential at O= ~ (smallest screening
effect), dash-dotted line: effective potential at 0=0 (largest
screening effect).

The resulting effective potential exhibits a strong temper-
ature dependence, caused by the according 0-induced
rearrangement of the exchange and correlation hole. In
particular, the latter is smeared out with increasing 0,
thus enhancing the effective strength of the barrier. This
determines the small 0 behavior of the short-range pair
correlations and leads to a decrease of the tunneling
probability. At some temperatures 0;„the increase in
the potential is compensated by the gain in the mean ki-
netic energy, which finally dominates the high-
temperature regime.

While the RPA yields the minimum of g(0, 0) only
modestly raising with r, at 0;„=1,in STLS a very shal-
low structure with a strongly r, -dependent 0;„is ob-
served. This can again be qualitatively explained by us-
ing Eq. (29) (although, strictly speaking, the latter is valid
only for r, « 1). Compared to g, the change of g
with r, is rather weak, resulting in a correspondingly
smaller modification of the effective potential. As a
consequence, the position of 0;„ is shifted towards
higher values for growing r, .

The SSTL approximation gives less satisfactory results
for the pair function at zero distance. It proves, ho~ever,
that the decrease of g(0, 0«1) cannot be due to the
violation of the compressibility sum rule and thus sup-
ports the quality of the STLS results. Further improve-
ment could be obtained by c'alculating g (0,8) with use of
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FICT. 5. Pair distribution function in the density-functional
based model. The r, -independent correction term to the result
obtained in a noninteracting system is depicted as a function of
O. Solid line: correction term of Eq. (28). Dashed line, correc-
tion term obtained by using U(r, 0=0); dash-dotted line,
correction term obtained by using U(r, O= ~ ).

G(q —+ co ) =1—g(0, 0) . (30a)

It is stressed again that both the STLS and the SSTL ap-
proach satisfy Eq. (30a) and thus ensure that Kimball's
relation has been properly accounted for. A useful
G(q, co) should, of course, comply with Kimball's rela-
tions, too. The corresponding sum rule reads' '

G(q~ ~, co) =2/3[1 —g (0,0)] . (30b)

It should be noted that Eq. (30b) is based on Niklasson's
convention' of evaluating y (q, co) in Eq. (3) with the ful-
ly interacting momentum distribution. The contrast be-
tween Eq. (30a) and Eq. (30b) gives again strong evidence
for the mutual dependence of g (0,0) and dynamic corre-
lations.

An investigation of the dynamic local-field correction
I

a dynamic local-field correction. As already mentioned
above these approximations contain the Matsubara fre-
quencies. They have therefore the advantage of describ-
ing the inAuence of the temperature-dependent effective
potential on g (0,0) in an even better way than the STLS
does.

In addition, the cusp condition given by Eq. (20) im-
plies the following limiting behavior for a static G (q)

presented by Devreese and Brosens and by Holas, Ara-
vind, and Singwi ' appears promising since it provides
the possibility of independently studying the finite tem-
perature effects on the interacting momentum distribu-
tion and those on the vertex correction of the polariza-
tion. The local-field correction of Dabrowsky, based on
an interpolation between exact limiting forms of G(q, co)
known from sum rules, or the dynamical version of the
STLS, a theory that yields g (0) & 0 up to r, =20 at 8=0,
and other dynamic local fields presented in the litera-
ture' ' ' provide interesting alternatives. Further
work towards this direction is in progress.

Independently of the method chosen, a detailed study
of the temperature dependence of the screening potential
in the electron gas and an exact evaluation of the cross-
over temperature 0;„appear to be of high interest. In
addition, being a property of the exact system, 0;„could
be used as a means for testing the quality of certain ap-
proximations.

In summary, arising from the competition between the
increase of both the effective potential and the kinetic en-

ergy, a nonmonotonic temperature dependence is found
for the zero-distance pair correlations in an electron
liquid. Moreover, the crossover temperature 0;„ is a
characteristic property of the exact system.
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APPENDIX

In order to obtain the U
' contributions to S(q), the ex-

pectation value of two pairs of C~C operators must be
evaluated in first-order perturbation theory. The free-
fermion system is determined by

& c',c,'c, , c,, &'=( c',c,, &'& c,'c, , &'

—
& c',c,, )'( c',c,, &'

0 0
1n 2 I. ~11'~22' ~12'~21']

The interaction gives rise to two types of corrections to
(Al). Firstly, the Fermi functions n& —=n (k, 0) are
modified according to

f d'p n', (1 n', )n', , —
n=k+nkP '„(1—

n)Vkot 'yv, n'„,
q d pn (1 n)—

(p= I/k21T). Though contributing to S(q, O) and g(r, 8), however, these corrections have no inhuence on the zero-
distance pair correlation and are thus omitted in the following. The remaining additions to (Al) have been evaluated,
e.g. , by Gasser and Fischer and can be written in the following form:

n, n2. (l —n2)(1 —n1) —(1—n2, )(1—n1 )n, n2
C,C,C, c, ) —5„+„„~+„2['( I' —1)6~1 ~1

—
U (2' —1)5~1 ~2 ]

Ej +62 Fp E)

(A3)
Obviously, (A3) describes transitions from the (occupied) states (1',2') to the empty states (1,2) and the reverse process,
the appropriate excitation energy being given in the denominator. Insertion of Eq. (A3) into the expression (23) for the
static structure factor yields a result derived previously' for 0=0, namely,
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bS(q, 0)=——g [u (q) —5 .u (k —p)]+ k, p Ek —q/2+Ep+q/2 Ep —q/2 Ek+q/2)
(A4)

The evaluation of bg(0, 0) is then easily performed.
In order to elucidate the point that the results obtained in the first part of Sec. III have not been restricted to the use

of a static-local-field correction, an alternative way of deriving Eq. (A4) is brieily sketched now. The starting point is
the first-order contribution to the dynamic local-field correction, identical to the expression for the first-order parts of
the proper polarization. ' In the following H and II denote the self and exchange part of first-order polarization,
while G, (q, co) and G2(q, co) are defined as

Ii"(q,~), ,
II' (q, ~)

u(q)[X'(q ~) l' u(q)[X'(q, ~)]'
According to Refs. 21 and 22 the following expression holds:

(A5)

(A6)ilsE( ) + IIEx( ) y g (k )
k —q/2 k+p/2 p

—q/2 p+q/2 1 1(n' —n' )(n' —n' )

co —p q/m co —p.q/m co —k.q/m
CJ, 0

The static structure factor can then be obtained by making use of Eq. (4). In doing so, Eq. (A6) is supplemented by the
RPA, i.e., the direct contributions in U, which are conveniently grouped together with the last term in the above for-
mula. The frequency integration then immediately yields

I dao coth Im[u (q)[y (q, co)]'+11 (q, ~o)]
0 2

0 0 0 0
1 k —q/2 k+q/2 )(n p —q/2 p+q/2 )= ——g [u(q) —5 u(k —p)]
N k ck —q/2 ~k+q/2 ~p —q/2+ ~p+q/2

CJ, O

cot
2 I

(A7)
The properties of the Fermi function given by Eq. (10) imply the identity of Eqs. (A7) and (A4). Again additional con-
tributions to S(q) arising from II (q, co) have no inAuence on g (0,0) and are therefore of no relevance.
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