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We have developed an approach, based on the linear muon-tin orbital atomic-sphere approximation
(LMTO-ASAj formalism and the recursion method, that allows us to perform first-principles density-
functional calculations of electronic structure in real space. Using Zr2Fe as a test case, we compare our
results with those obtained by using the standard reciprocal-space LMTO-ASA method. The scheme de-
scribed here can be applied to nonperiodic systems and is also very useful in the study of complex metal-
lic systems with a large number of atoms per unit cell. To illustrate the application of the first-principles
real-space approach to a complex system, we calculate the electronic structure for a cluster of amor-
phous Zr. We use our results to evaluate the distribution of charge transfer among the sites of this ran-
domly packed system. As a first guess we take the potential parameters to be the same for all atoms.
The final self-consistent results show charge transfers that are almost an order of Inagnitude smaller than
the ones obtained in the initial run. The major e6'ect of the self-consistent process in this case is to rear-
range the center of the bands in order to screen large charge fluctuations. This explains why the
parametrized LMTO-ASA approach, where the relative position of the bands is fixed using approximate
charge neutrality, works so well when applied to transition-metal alloys.

I. INTRODUCTION

With the progress of fabrication and characterization
technique, there has been a renewed interest in complex
systems, which often lack periodicity. Real-space
methods such as the recursion method' do not require
periodicity, and their cost when solving an eigenvalue
problem grows linearly with the number of nonequivalent
atoms being considered. Therefore they should be very
useful to describe the electronic properties of complex
systems, for which the usual k-space methods are inappl-
icable or extremely costly. Real-space methods are not
very practical in general, but they can be extremely
efficient when the system in consideration can be well de-
scribed by a tight-binding (TB) Hamiltonian. Because lo-
calized d bands play a central role in the electronic struc-
ture of transition-metal alloys, for a long time
parametrized TB Hamiltonians and real-space methods
have been used to understand the behavior of these sys-
tems. Usually the parameters are obtained from a linear
combination of atomic orbitals (LCAO) fit to more exact
k-space calculations or adjusted to fit experimental re-
sults. It is assumed that these parameters can be
transferred to describe the more complex systems that
one wants to study. The LCAO parametrization has
often been extended, with encouraging results, to treat s
and p electrons but the lack of a sound theoretical back-
ground to justify the procedure leaves some fundamental
questions unanswered. Which are the approximations be-
ing used when one forces the Hamiltonian to be tightly
bound through a fit? Should the usually extended s-p
electrons be treated within the TB scheme? How do we

treat the wave function and quantities which depend on
it?

Major progress towards obtaining a tight-binding
Hamiltonian based on a solid theoretical understanding
of the problem came in 1984 with the advent of the linear
muon-tin orbital atomic-sphere approximation tight-
binding (LMTO-ASA-TB) formalism. The LMTO-ASA
is a linear method that treats s-p and d electrons in the
same manner. In this formalism, the Hamiltonian can be
expressed in terms of di6'erent sets of basis functions. '

It can be shown that there is always an appropriate
choice of basis set, which generates a tight-binding Ham-
iltonian for s-p and d electrons. The sound theoretical
framework of the LMTO-ASA formalism allows us to
evaluate wave functions, and to know exactly which ap-
proximations are being made. Within the LMTO-ASA
theory, simple parametrized TB Hamiltonians can be
built without the need of fits to more exact calculations
or experiment. There are no adjustable parameters in
this approach. The parametrized LMTO-ASA- TB
scheme is reliable for density packed systems with small
charge transfer between the sites and large values for the
local density of states at the Fermi level. It has been used
with success to obtain the electronic structure of several
ordered and disordered transition-metal alloys. In the
case of semiconductors, magnetic systems, vacancies in
metals, surfaces, etc., the parametrized LMTO-ASA-TB
approach may fail. To obtain reliable results for these
systems a more rigorous first-principles, self-consistent
density-functional scheme, similar to those implemented
in reciprocal space, may be needed. The possibility of us-
ing the LMTO-ASA formalism in conjunction with the
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recursion method in order to perform density-functional
calculations in real space was first pointed out by
Fujiwara. A more elaborate version of the original ap-
proach has recently been published. In both papers the
authors are interested in the general properties of amor-
phous Fe-B alloys. In these calculations they have used
for all Fe and B sites the same average Fe or B potential
parameters, ignoring, for the sake of simplicity, local
variations of the potential. Within this constraint, the
potential parameters for the average Fe and B sites were
made self-consistent. A site by site self-consistency, simi-
1ar to the ones implemented in reciprocal space, was nev-
er attempted.

In this paper we develop a first-principles, self-
consistent, LMTO-ASA density-functional scheme,
which is implemented in real space. The procedure is
very similar to the regular k-space LMTO-ASA formal-
ism, but the solution of the eigenvalue problem is done in
real space (RS) with the help of the recursion method. '

This RS-LMTO-ASA approach, in the spin-polarized
form, was recently used' to obtain the electronic struc-
ture of the ferromagnetic FeNi3 and antiferromagnetic
FeMn. In the present paper we obtain the electronic
structure of Zr2Fe in real space and compare the results
with those obtained using the standard reciprocal-space
LMTQ-ASA formalism. To illustrate the advantages of
the real-space approach developed here, we also study the
e1ectronic structure of a large randomly packed cluster of
amorphous Zr, simulated by a cubic unit cell of 40 non-
equivalent sites. The distribution of charge transfer be-
tween sites at self-consistency, which cannot be obtained
via the usual parametrized schemes, is evaluated.

The paper is organized in the following way: In Sec.
II, we give a description of the LMTO-ASA and of its
several representations. In Sec. III, we describe the real-
space self-consistent approach and present some results
for Zr2Fe. In Sec. IV, we discuss the results for the
amorphous cluster of Zr and the behavior of the distribu-
tion of charge among the Zr sites. Finally, in Sec. V, we
present our conclusions.

II. LMTO-ASA-TB FORMALISM

The LMTO-ASA formalism is a well-known first-
principles method and has been described in several pa-
pers. ' "" A review of the method and its several rep-
resentations, from a simple real-space fixed-basis point of
view, has also been published. A brief description of the
method will be given here, to point out which approxima-
tions are used in the paper and establish the notation.
We work in the atomic-sphere approximation, where the
space is divided into Wigner-Seitz (WS) cells, which are
then approximated by WS spheres of the same volume.
The LMTQ is a linear method and the solutions are most
accurate near a freely chosen energy E . Here, as in
most of the literature, E is chosen at the center of gravi-
ty of the occupied part of the given (s, p, or d) band.

The LMTO-ASA basis functions are chosen in order to
optimize the efticiency in solving a given problem. To
build the basis set we first consider the solutions for an
isolated mufFin-tin sphere of radius s, with a given spheri-

cal potential for r & s and a fIat potentia1 outside. It is as-
sumed that the kinetic energy for an electron outside the
muffin-tin sphere is approximately zero and the solution
of the Schrodinger equation, in this region, reduces to the
solution of Laplace's equation. Therefore the nondiver-
gent solution outside the sphere goes as r ' ' where
l =0, 1,2 for s, p, and d orbitals, respectively. The solu-
tion inside the sphere should match the one outside at the
sphere boundary. This set of functions will be used as an
envelope in order to force the LMTQ-ASA basis set to be
continuous and difI'erentiable in all space. The functions
y (r), defined as the radial part of the solution of the
Schrodinger equation for a spherical potential inside each
WS sphere at energy E and its energy derivative jp (r)
defined at energy E, are very fundamental quantities in
the LMTQ-ASA formalism. They will be used to obtain
the LMTO-ASA basis functions, starting from the en-
velope functions, as described below. First we consider
the orbital centered at a site R. The tail of the envelope
function goes as ~r —R~

' ' outside the central sphere.
It is a regular function within every other sphere centered
around any R'AR, and can be expanded around each R'
using the regular solutions ~r —R'~ of the Laplace equa-
tion. If we use a scale a and define rz ——~r

—R, the tail of
the envelope function centered at R can be expressed
around any other site R' by the expansion"

—I —1

where L =(I,m ) is a collective angular momentum index
and Sz.l. +L are the well-known coefFicients of the expan-
sion. " The matrix S, known as the structure constant
matrix, depends on the position of the sites on the given
structure, but not on the type of atoms being considered.
Now that the envelope function is written in a convenient
form, to build the corresponding LMTQ-ASA orbital, we
substitute the solutions of the envelope inside every WS
sphere by a linear combination of y (r) and y (r), chosen
in order to preserve the value of the function and its
derivative at the sphere boundary. When built in this
way the LMTO-ASA basis is orthogonal to the core lev-
els and provides a much better basis for the actual solu-
tions than the original envelope functions. Using the
LMTO-ASA basis set IX+L I we can built the Hamiltoni-
an H and the overlap matrix 0 in the usual way. These
quantities can be expressed in terms of S and of poten-
tial parameters which depend on the values of the func-
tions &p (r) and jt (r) at the WS sphere boundary.

Until now we have described the standard LMTO-ASA
formalism, ' which does not give rise to a TB Hamiltoni-
an. The structure matrix S entering the Hamiltonian
decays as r ' ' with distance and is very long ranged
for s(1=0) and p(l =I) orbitals. Andersen and Jepsen
have shown that one of the characteristics of the LMTQ-
ASA formalism is that the choice of basis set can be
changed to suit one's purpose. A controlled mixing of
the original basis set can yield a new basis, built to have a
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Cl El
Cl —El

(3)

Finally, to first order in E-E we can express the Ham-
iltonian H of the orthogonal representation in terms of
TB parameters ' as

II=C+a'"S S'" . (4)

In the orthogonal representation the overlap matrix is
close to unity and we have to solve a simple eigenvalue
problem of the form

particularly desirable property. For a general basis

Igz I I the amount of mixing is determined by a set of
parameters which depend on l. These parameters define
which linear combination of the standard basis produces
the basis set with the desired property. Because the sets
are related through mixing, they can be obtained from
each other. There are three very important LMTO-ASA
representations. The first is the standard representation
with no mixing which we have described. The second is
the nearly orthogonal representation where the mixing
parameters Q& are chosen to make the overlap matrix
close to unity. Finally we have the TB or most localized
representation, with a mixing chosen to make the interac-
tions between neighboring sites as short ranged as possi-
ble. In the present paper we use a first-order TB Hamil-
tonian where terms of order of (E E) —and higher are
neglected. We note that, to this order, the nearly orthog-
onal and TB representations coincide, and we can take
advantage of both features. Here, following the litera-
ture, we use quantities without bars to denote the poten-
tial parameters QI, C&, b, l in the nearly orthogonal repre-
sentation. The mixing Q& and the other potential param-
eters Cl and 5l in the orthogonal representation are given
in terms of the solutions at the boundary of each WS
sphere, being di6'erent for every nonequivalent atom in
the system. We will use quantities with a bar (Q&, C&, and

Zl) to designate quantities in the most localized (TB) rep-
resentation. The structure constant matrix S for the TB
representation, defined by a mixing Q&, is written in terms
of the original canonical structure matrix S of Eq. (1) as

s=s'(I —Qs')-'

Here I is the unit matrix Q is a diagonal matrix with ele-
ments QI. The QI that give the TB representation were
found einpirically, by adjusting their values in expression
(2), in order to obtain a localized structure constant ma-
trix S. The values of mixing were found to be approxi-
rnately independent of the structure ' and are given by s,
p, and d electrons by Q, =0.3485, Q =0.05303, and

Qd =0.010714.
In the self-consistent real-space approach described in

this paper, we will work on the orthogonal representa-
tion, " but will express the orthogonal Hamiltonian in
terms of localized parameters of the TB representation.
The basis functions of the several representations are not
independent; the orthogonal parameters C&, 6I, Q& are re-
lated to the potential parameters Cl and 6l of the TB rep-
resentation. For a given energy E we have

(H E—)Q =0,
gz = g [y,(rz )+(E E—„)y (rz ) ] Yl (r~ )Q~z (E) .

R,l.

It is interesting to note that the LMTO-ASA basis func-
tions, when written in this form, can be seen as a Taylor-
series expansion of an energy-dependent partial wave.

III. SELF-CQNSISTENT REAL-SPACE SCHEME

Here we present the RS-LMTO-ASA scheme, which
allows us to perform first-principles, density-functional,
electronic-structure calculations in real space. As in k
space, the problem in RS can also be divided into two in-
dependent parts. First we find the structure constant ma-
trix S for the given system. The TB structure constant S
decreases exponentially with distance and, to find the
9X9 matrices connecting each nonequivalent site to its
neighbors, it is sufticient to invert a cluster of about 20
atoms around the site. Because the values of Q& are given
by constants, S does not change during the self-
consistency process. Given S, to build the Hamiltonian
we should find the potential parameters Cl and 6l. They
can be obtained from the orthogonal potential parame-
ters CI, b, &, and Q& using Eq. (3). But to obtain CI, 61,
and QI we have to solve the Schrodinger equation inside
each nonequivalent WS sphere. This part of the problem
is often called "the atomic part" and is treated in the
same manner as in the k-space programs. Actually we
use regular LMTO-ASA codes when solving for the
atomic part in the real-space approach. This part gives
all the nontrivial information about the potential. There-
fore the approximations for the exchange and correlation
terms which we use in real space are exactly the same as
the ones used in the regular k-space LMTO-ASA formal-
ism. The potential inside a WS sphere and the corre-
sponding potential parameters are uniquely determined if
we give the occupation for each local (s, p, and d) band at
the site, the first and second moments of the local density
of states relative to E, and the logarithmic derivative of
y (r) at the sphere boundary. ' Here (see Table I) we will
use these quantities to compare our results with those ob-
tained in k space. A brief description of how the poten-
tial and potential parameters are obtained from the mo-
ments and logarithmic derivatives at the sphere boundary
is given below. The spherical average of the charge den-
sity inside a WS sphere can be expressed in terms of the
radial part of the solutions of the Schrodinger equation
inside the sphere, and the moments of the local density of
states (LDOS). To obtain the self-consistent charge den-
sity from given moments and logarithmic derivatives in
practice, we start from a guessed charge density. The
local-density potential is made and y (r) and jp (r) are
calculated to the given logarithmic derivative. A new
charge density is made by occupying the wave functions
according to the moments. This procedure is iterated un-
til the atomic sphere is self-consistent. We should note
that when we solve for the atomic part, we choose the po-
tential to be zero at the sphere boundary. When building
the Hamiltonian we should correct the relative energy
scale of each WS sphere by the electrostatic potential
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TABLE I. The occupation (Mo), the second moment relative to E (M2) and the parameter PI for the
first guess, and converged results. We show converged results obtained in real space (RS), in k space
with a similar first-order Hamiltonian (FO), and in k space using the standard LMTO-ASA formalism
(SC).

Band Guess

Zr
Converged

RS FO

Atom

Guess

Fe
Converged

FO SC

0.600
0.600
2.800

0.712
0.726
2.594

0.706
0.737
2.588

0.671
0.725
2.646

0.600
0.600
6.800

0.727
0.628
6.581

0.719
0.638
6.581

0.648
0.658
6.611

S

d

0.007
0.006
0.015

0.007
0.006
0.014

0.006
0.006
0.015

0.006
0.005
0.021

0.006
0.005
0.021

0.005
0.005
0.021

PI
0.500
0.500
0.500

0.640
0.345
0.613

0.640
0.344
0.611

0.640
0.339
0.608

0.500
0.500
0.500

0.690
0.440
0.799

0.691
0.440
0.802

0.698
0.445
0.804

(VES). This correction includes the Madelung potential
due to charged WS spheres of other sites at the given
sphere and also takes into account the electrostatic con-
tribution of the sphere itself. Here, as in most of the
literature, the value of E is chosen in order to keep the
first moment of the density of states for the occupied part
of the band always zero. To start the self-consistent pro-
cess, we give reasonable guesses for the occupation,
second moment, and logarithmic derivatives for each
nonequivalent WS sphere. With these initial conditions,
we find the nearly orthogonal potential parameters, use
Eq. (3) to obtain C& and b, &, and build the real-space TB
Hamiltonian of Eq. (6). To solve the eigenvalue problem
and obtain the LDOS for s-p and d electrons at each non-
equivalent site, we use the recursion method' on a large
cluster (of about 1000 atoms) representing the system in
question. We then use the LDOS to find the new energy
E and the new moments for each band, at each non-
equivalent site. As in k space, the new logarithmic
derivatives are given in terms of the new values of E and
the old values of the potential parameters. We use the
new values of the moments and logarithmic derivatives to
obtain new values for the orthogonal parameters and new
TB parameters C and A. We build a new real-space
Hamiltonian using expression (5) and the matrix S. We
finally use the recursion method to obtain the local densi-
ty of states which will be used for the next iteration. The
results will be converged when the moments and logarith-
rnic derivatives obtained by solving the eigenvalue prob-
lem differ by less than a previously established amount
from the ones which have generated the Hamiltonian.

To illustrate the procedure we have obtained the elec-
tronic structure of Zr2Fe. This material forms in a

0
tetragonal structure with a =6.385 and c =5.596 A. ' It
has 12 atoms in the conventional tetragonal cell, but only
six atoms in the primitive cell. The LDOS is the same for

all Zr atoms and for all Fe atoms. We have performed
self-consistent LMTO-ASA calculations in real space
(with the scheme developed here) and in reciprocal space.
In reciprocal space we did two calculations: one using
for the Harniltonian the same first-order approximation
that we have used in real space and the other using the
standard LMTO-ASA approach. In our calculations, the
radii of the WS spheres (s„,=1.40 A and sz, =1.76 A)
were chosen in order to respect the different sizes of the
Zr and Fe atoms.

In our real-space calculations we have used a large
cluster of 1372 atoms. To avoid surface effects, the
LDOS for a Zr and an Fe atom were obtained via the re-
cursion method, for sites close to the center of the clus-
ter. For both sites, we have used a cutoff parameter
I.=20 in the recursion chain. ' A Beer and Pettifor' ter-
rninator has been used to obtain the LDOS and its mo-
ments. The precision of the results can be increased by
using a larger cluster and a larger cutoff parameter I..
But there is always a balance between the precision and
the cost. The above values are suitable for our purposes.

We have mentioned that the potential within the
sphere is governed by the moments of the local density of
states and the logarithmic derivatives. The logarithmic
derivative D& can diverge and to avoid numerical prob-
lems we use a related quantity I'& de6ned by the expres-
sion

P( =0.5 —arctan(DI )/~ . (6)

The quantity PI is always finite and varies between 0 and
1.

In this paper we present a self-consistent approach to
electronic-structure calculations, which is implemented
in real space. To emphasize the first-principles nature of
the method, we should demonstrate that, given some fun-
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damental information regarding the system in considera-
tion, the calculations implemented in real space converge
to the expected results. Therefore, when calculating the
electronic structure of Zr2Fe, we took on purpose a very
crude initial guess (see Table I) for the moments and loga-
rithmic derivatives associated with the Zr and Fe sites.
The fact that the final results are very close to those ob-
tained using the standard k-space techniques shows the
reliability of the self-consistent procedure implemented in
real space.

Given the initial guess, we proceeded to use the self-
consistent real-space scheme as described above. A mix-
ing of 0.9 of the old values and 0.1 of the new values was
used to obtain the potential at each site. Because the step
involving the recursion is the most expensive part of the
procedure, a rigid-band self-consistency was implemented
between the iterations, to minimize charge Auctuations
due to the large LDOS of the Fe band at the Fermi level
and get better parameters for the next iteration. We note
that, when applying our criteria for convergence, we
compare the moments entering the recursion step with
the ones coming out from it.

In Table I, we show the converged real-space values
(RS), obtained after ten recursion iterations for the Zr
and the Fe sites in Zr2Fe. For comparison, we also show
converged k-space results obtained with the same first-
order Hamiltonian which we use in real-space (FO) and
with standard LMTO-ASA calculations (SC). The agree-
ment between real-space and k-space results for the same
first-order Hamiltonian is excellent, with occupations
differing by less than 2%. We should stress that the
real-space results and k-space results were obtained from
two completely independent first-principles, density-
functional calculations. In this context we should note
that the recursion method gives the general features of
the density of states, but the details can depend on the
terminator used. However, the method describes very
well integrated quantities and properties which depend
on them. Therefore the real-space scheme gives only a
qualitative description of the density of states at the Fer-
mi level, but is very reliable for obtaining magnetic-
moment, electric-field gradients at the nuclei, and several
other properties. The occupations and moments used in
the LMTO-ASA self-consistent scheme are also integrat-
ed quantities, and are very well described within the re-
cursion method. Now we should comment on the
inhuence of second-order efFects. The largest discrepan-
cies between first-order results and those obtained using
the full Hamiltonian (SC) are found in the occupations of
the s band of Fe. The fact that the largest errors are
found in the s band is due to the very wide range of ener-
gies spanned by the occupied part of this band. For p
and d bands the occupations of RS (or FO) and SC in
Table I agree within 3%%uo. Therefore, if one is interested
in properties which do not require a detailed description
of the s band, a first-order Hamiltonian should represent
the system well. If a better description of widebands is
needed, two energy windows (more than one E, for the
same band) could be used. This probably should be done
in the case of semiconductors, where one of the energies
E should be chosen close to the gap.

TABLE II. Positions of the 40 nonequivalent atoms in the
0

cubic unit with a =9.76 A, used in our calculations of a-Zr.

Position (A)
Atom

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4.67
7.20
6.80
1.88
5.65
3.73
4.57
3.79
9.31
7.68
8.68
8.46
9.11
7.04
7.92
7.84
1.06
1.81
5.92
0.34
5.23
3.59
6.53
4.95
1.27
3.17
2.08
2.80
4 44
3.05
1.87
3.55
6.45
6.15
0.48
0.53
8.50
9.69
8.92
1.12

3.77
4.67
5.26
3.40
0.81
2.37
5.70
8.02
5.24
2.72
7.65
2.77
7.04
0.32
1.78
6.41
1.86
6.73
0.88
0.73
2.77
5.89
7.17
7.03
7.87
4.24
5.21
0.96
8.77
1.12
8.09
9.19
8.40
3.86
5.32
2.54
9.59
4.38
9.29
9.49

3.95
2.54
6.66
5.89
3.45
1.41
1.45
3.12
4.81
4.81
6.59
7.90
2.33
6.46
1.45
9.35
9.66
0.54
9.13
6.30
6.70
5.91
4.29
8.48
4.69
8.71
3.16
4.36
6.00
7.65
7.66
0.35
1.42
9.49
7.76
3.22
3.84
0.87
9.21
2.02

IV. DISTRIBUTION OF CHARGE TRANSFER
IN a-Zr

To illustrate the application of real space to complex
materials, we have used the first-principles RS-LMTO-
ASA scheme developed here, to obtain the distribution of
charge transfer among the sites in an amorphous Zr (a-
Zr) system. The parametrized LMTO-ASA- TB pro-
cedure, which works very well in the case of transition-
metal alloys, imposes approximated charge neutrality
around each site and cannot be used to obtain charge
transfers. In our calculations, the a-Zr is simulated by a
large cluster of about 700 atoms, made of cubic units
(a =9.76 A) of 40 atoms constructed by random packing
of hard spheres (see Table II), relaxed through a
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Lennard-Jones potential. The Madelung term at each
site was calculated for a periodic arrangement of these
large cells. In the present calculations, as in the case of
Zr2Fe, we have used, in the final steps of convergence, a
cutoff parameter I.=20 for the recursion chain and the
Beer and Pettifor terminator. In the initial steps of the
process a cutoff parameter I = 12 was used.

We have used the exact value for the structure con-
stant matrix S, obtained from Eq. (2) by direct matrix in-
version of clusters of about 20 atoms, around each non-
equivalent site. These quantities are fixed during the
self-consistent process. Using Eq. (6) and an initial guess
for the potential parameters CI and 6I, we constructed
the Hamiltonian and used the recursion method to obtain
the local density of states at each site in the central cube.
From the calculated LDOS, we have obtained the charge
transfer, the Madelung term, and the moments of the
LDOS relative to the energy E, taken at the center of
gravity of the occupied bands. From this information,
taking an appropriate mixing of new and old moments of
the LDOS, we can obtain new potential parameters at
each nonequivalent Zr site. Usually here one would build
the Hamiltonian for the next iteration, use the recursion
method to solve the eigenvalue problem, and proceed un-
til self-consistency at all sites is achieved. But the recur-
sion step is the heavy part of the calculation and it would
be good to accelerate convergence by avoiding charge
fluctuations between iterations. With this objective in
mind, before entering the recursion step, we make the pa-
rameters self-consistent within the rigid-band approxima-
tion. This is done by fixing the shape of each s, p, and d
band, but allowing the centers to be shifted relatively to
each other, depending on the values of CI, obtained at all
sites, from the values of the electrostatic potential VES
and the moments of the occupied part of the LDOS.
When the potential parameters are converged within the
rigid-band approach, we proceed to the next recursion
step. In all the process we have used a mixing of 0.02 of
the new potential into the potential for the previous itera-
tion. Final self-consistency was achieved when the occu-
pations and moments used to obtain the parameters
entering the Hamiltonian in a recursion step differed
from those calculated from the resulting LDOS in the
third decimal place. In the case of occupations, for ex-
ample, we have tolerated differences of a few thousandths
of an electron.

As an initial guess in our calculations we have used, for
all the 40 nonequivalent sites, potential parameters ob-
tained from regular k-space LMTO-ASA for pure hcp
Zr. Therefore the center of the bands in the case of the
fist guess coincides with that of pure Zr. When the amor-
phous system is treated self-consistently we find that the
Zr band is shifted to higher energies. Here we compare
results obtained with parameters of pure Zr and zero
electrostatic potential at all sites (initial guess) with the
final self-consistent results for the amorphous cluster. To
make the comparisons more meaningful, the energy
scales in Figs. I, 3(a), and 4 are taken relative to the Fer-
mi level. We note that the results obtained with our ini-
tial guess are not the same as we would have obtained us-
ing the parametrized LMTO-ASA-TB scheme of Fer-

reira, Duarte, and Frota-Pessoa because here, the ap-
proximate charge neutrality around each site has not
been imposed.

In Fig. 1, we show the total density of states for the
cluster obtained from the first guess (dashed line) and
from the self-consistent results. Because the total density
of states (DOS) is an average among 40 sites, the shape of
the band is maintained. If we are not interested in local
properties, but only in the general shape of the total
DOS, our simple initial guess seems to describe the sys-
tem well. In this case a self-consistent calculation would
not be required.

In Fig. 2(a), we show the distribution of charge transfer
among the 40 sites, resulting from our first guess (empty
blocks) and from the converged calculation (dashed
blocks). The initial guess gives rather large charge
transfers for the system, but in the final results the charge
transfer decreases by almost an order of magnitude. We
also show [Fig. 2(b)] the calculated VES at each non-
equivalent site. This term is due to the redistribution of
charge among the WS spheres and is zero when all
spheres are neutral.

In Fig. 3, we show, as a dashed line, the initial guess
used for the parameters Cd [Fig. 3(a)] and b, d [Fig. 3(b)].
For comparison we show in the same figures the final
converged distribution of potential parameters Cd and 5d
for the 40 nonequivalent sites. We note that in Fig. 3(a)
the positions of the band centers Cd are taken relative to
the corresponding Fermi level. It is clear that the values
of 6d in all sites are very similar and close to that of hcp
Zr. The parameters Cd, relative to the Fermi level,
change significantly from site to site around the value ob-
tained for pure hcp Zr. We also note that the effect of
the variations of Cd at each site is to screen the excess
charge by shifting the center of the band in to appropri-
ate higher or lower-energy regions. This variation is
mainly due to changes in the electrostatic potential due

TOTAL DENSIT Y OF STATES IN a —Zr
25—

FIR

0 CO
a
CA

(A
LLj

(f) 1P—

C)
5—

(f)
0
-p.g -0.3 -0.2 -0.1 0.1

ENERGY (Ry)

FIG. 1. Total density of states in a-Zr. In the dashed line we
show results which were obtained using potential parameters of
pure hcp Zr for all sites. In the solid lines we show the con-
verged results. The energy scale is relative to the Fermi level.
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to charge transfer [see Fig. 2(b)]. This term is the same
for all (s, p, and d) orbitals at the given site. Therefore we
6nd a similar behavior for both C, and C . Comparing
Figs. 2(a) and 3(a) [or 2(b)], we see that atoms which had
initially too many electrons (site 14, for example) have
their bands shifted to higher energies while atoms missing
electrons (see site 6) have their bands shifted to lower en-
ergies relative to the average site. This can be seen in
Fig. 4 where the initial (dashed lines) and converged
(solid line) LDOS for site 6 [Fig. 5(a)] and site 14 are
shown. Here again the energy scale was taken with rela-

tion to the Fermi level. We see clearly that electrons
were expelled from atom 14 and allowed into atom 6 dur-
ing the self-consistent process in order to reduce the ex-
cess charge initially present around these sites. The re-
sults of Fig. 4 shows that the LDOS and therefore local
properties are not well described by the Hamiltonian ob-
tained from the potential parameters of pure Zr.

The results show clearly that the main effect of the
self-consistent process is to rearrange the potential
around each site, in order to screen large charge varia-
tions. The potential parameter 5I is very close to that of
the pure metal and the potential parameter C& is rear-
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FIG. 2. (a) Distribution of charge transfer among 40 sites of

a-Zr. The empty blocks were obtained with potential parame-
ters of pure hcp Zr. The dashed blocks show the converged re-
sults. (b) Converged electrostatic potential at each nonequiva-
lent site. The electrostatic potential was taken as zero for the
initial guess.

FIG. 3. Distribution of potential parameters (a) Cd and (b)
for 40 nonequivalent sites in a-Zr after convergence is

achieved. The horizontal dashed line corresponds to the values
in pure hcp Zr. In (a), the energy scale for Cd was taken relative
to the Fermi level.
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FIG. 4. Results for the LDOS at (a) atom 6 and (b) atom 14
obtained with parameters of hcp Zr (dashed lines). In the solid
lines we show the final converged results for the same atoms. In
both cases the energy is taken relative to the Fermi level.

approximate charge neutrality. In the light of our results
it is easy to understand the success of the parametrized
approach, when applied to close-packed transition-metal
alloys.

V. CONCLUSIONS

We have developed a first-principles self-consistent
real-space method that can be used to study the electron-
ic structure of complex systems. The method was tested
with success in crystalline Zr2Fe, for which k-space re-
sults can be obtained. It was then applied to a nontrivial
problem, the investigation of the distribution of charge
transfer among 40 sites of a random packed structure,
simulating amorphous Zr. We find that if the potential
parameters of the pure metal are used for all Zr sites in
a-Zr, as was done in our initial guess, the charge transfers
among the sites are rather large. We show that the effect
of self-consistency is mainly to rearrange the potential in
order to screen large charge variations. These results
support the idea of using approximate charge neutrality
to fix the relative position of the bands, used in
parametrized calculations in transition-metal alloys. ' It
also explains why the simple parametrized LMTO-ASA
scheme has been used with success to evaluate subtle
quantities such as the behavior of the electric-field gra-
dient at the nucleus, for these alloys.

In conclusion, we have presented an approach to the
study of the electronic structure in complex systems. It
does not require periodicity and its cost grows linearly
with the number of atoms which have different LDOS.
The method is competitive and its potential should be
further investigated.
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