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The band structure of graphite with the hypothetical simple hexagonal structure has been investigated
near the Fermi energy, using a tight-binding approximation. Some general features of the structure of
the ~ bands in the neighborhood of the zone edge are obtained and are expressed in terms of appropriate
parameters. The Fermi surface is analyzed. The density of states and the resulting behavior near the
Fermi level are compared to the results obtained for the Bernal structure (Slonczewski-Weiss-McClure
model) and for the rhombohedral structure (Haering-McClure model). Possible application to disor-
dered graphite (turbostratic) is also discussed.

I. INTRODUCTION

Graphite has been studied for many years. ' Most of
these studies deal with the Bernal structure, whereas the
layers of hexagonally arranged carbon atoms are alter-
nately stacked ( ABAB stacking). Natural (and syn-
thesized) graphite contains varying amounts of rhom-
bohedral modifications of graphite, where the layers are
stacked in an ARCHAIC fashion.

Since the 1980s, renewed interest in understanding the
physics of graphite has resulted from work on the class of
physically and technologically important materials called
graphite intercalation compounds (GIC's). In these ma-
terials, various superlattices are produced by insertion of
atoms or molecules either between each pair of neighbor-
ing carbon layers n and (n + I) (nth-stage intercalation).
The physical properties of these materials vary drastically
with the stage of intercalation and with the intercalating
species. For instance, intercalation with alkaline metals
increases the conductivity of graphite from semimetallic
behavior up to levels comparable to the noble metals. In
the GIC's, the carbon layers can be stacked in dift'erent
ways, either similar to the Bernal structure or with layers
of carbon atoms located directly on top of each other
( A A A stacking). Such is the case for the different stages
of Li intercalated graphite (LiC„). The hypothetical
configuration where the carbon atoms in consecutive lay-
ers are directly above each other has not been identified
in pure graphite.

Our comparative theoretical study of three
modifications of graphite (hypothetical A A A stacking,
Bernal, and rhombohedral) is a first step for the qualita-
tive understanding of the electronic properties of the tur-
bo stratic graphite, which is another modification of
graphite without any periodicity in the z direction (per-

pendicular to the planes of hexagonally arranged carbon
atoms) but can also stimulate future experimental work
relative to the electronic properties of graphite intercala-
tion compounds.

A comparison of their theoretical band structures will
be presented in this study. We expect the three band
structures to be nearly identical because they are all dom-
inated by the two-dimensional in-plane interactions. A
two-dimensional calculation is indeed sufFicient to explain
the main features of the energy bands of graphite except
for the region close to the Fermi energy (eF). This re-
gion, which determines the electronic properties but also
the material response function to low-energy excitations,
such as cyclotron resonance and infrared absorption, is
exactly where the three structures di6'er significantly
from each other. To find these important di6'erences in
the m bands close to the Fermi energy (region dominating
transport properties), we have to adapt the Slonczewski-
Weiss-McClure model, valid for Bernal graphite, to our
hypothetical configuration: the graphite stacking AHA.
This will be the aim of the next section. The model of the
rhombohedral graphite has already been established by
Haering and by McClure as a modification of the
Slonczewski-Weiss-McClure model.

An ab initio study of the electronic energies of Bernal
graphite, around the Fermi level, has already been done:
the obtained results are very close to experiment. We
plan a similar study of simple hexagonal graphite, for
which the present model is an important component.

II. THEORETICAL BAND STRUCTURE
OF SIMPLE HEXAGONAL GRAPHITE

The band structure of the hypothetical configuration of
the stacking A 33 is now investigated using the nearest-
neighbor tight-binding approximation. This calculation is
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based on the 2p, orbitals, as was done by Wallace for the
Bernal structure. More detailed investigations of the
Bernal structure have shown that the result of %'allace
for two-dimensional graphite are unaffected by a more
general treatment. However, for the three-dimensional
structure, a more general treatment admits the possibility
of "vertical" overlap of the rr bands (along K H),—while
in the Wallace treatment these bands touch, but do not
overlap (i.e., 2D graphite is a zero-band-gap semiconduc-
tor). The mistake originates from the nearest-neighbor
approximation: the effect of interaction between
nearest-neighboring planes must be included. In the Wal-
lace approximation, the vertical edges of the Brillouin
zone are lines of constant energy, a condition not re-
quired by the crystal symmetry. A variation of energy
along these edges results in the vertical overlap men-
tioned above. So, in addition to the two-dimensional-

type behavior, it is necessary to find the dependence of
energy on the component of the wave vector parallel to
the c axis (k, ).

The crystal structure of simple hexagonal graphite is
shown in Fig. 1(a). In this structure, the carbon atoms
within a single layer of graphite form a plane hexagonal
lattice (assumed to be the xy plane), in which the atoms
are separated by the a distance. The layers are then
placed on top of each other in a sequence which we may
denote A-A-A-A. . . , indicating that all the planes have
the same projection on the xy plane. The interlayer dis-
tance is labeled by the c distance and the unit cell con-
tains two carbon atoms. The unit cell and the chosen
primitive lattice vectors are shown in Fig. 2.

In the tight-binding approximation, the interactions be-
tween wave functions centered on neighboring atoms are
parametrized and generate the Hamiltonian to be diago-
nalized. A 2D model is a first approximation for graph-
ite: in-plane interactions are included.

Each carbon atom possesses four valence electrons.
The 2s electrons have a spherical symmetry wave func-
tion, fz, (r), and the 2p electrons have the following wave
unc ions: 4z& (r) 0zPr), and 42@(r) 0'(r)' 42s 42@

and g~~' form three tight bindings with the three neigh-

boring atoms of the plane (hybridized orbitals o; cf. Fig.
3).

The fourth wave function g~z' will generate m orbitals.
It is an antisymmetrical wave function which is not hy-

FIG. 2. Unit cell of the simple hexagonal graphite (solid
line). a is the distance between two nearest neighbors while c is
the interlayer distance. The dimensions of the unit cell are
2ea seas[30'] and c.

bridized in the 2D model, as shown in Fig. 3.
The 2D model is a reasonable first approximation for

graphite because the m-electronic orbitals overlap weakly
when interplane interactions are taken into account.

In studies of Bernal graphite, ' it was shown that the
separation between the ~ band and the o. band is large
enough to neglect the influence of the cr electrons on the
band structure near the Fermi energy. In the following,
we restrict ourselves to the ~-derived band structure.

Using the atomic m orbitals, it is possible to construct
the Bloch functions:

(2)

The summation is extended to all the atoms of the crys-
tal. A' are the first-neighboring atoms of A. These
atoms are called 8 in the Bernal structure because their
chemical environment in this structure is different from
the one of A atoms. For AAA stacking, A and A'

C

(b)

FIG. 1. Comparison of the usual three crystalline structures
of graphite which differ one from each other by the shift im-

posed to the graphitic planes in the stacking: (a) AAAAAA,
simple hexagonal graphite; (b) ABABAB, hexagonal graphite
(Bernal structure); (c) ABCABC, rhombohedral graphite.

FICx. 3. Representation of the carbon valence orbitals: the
three hybridized o. orbitals and P~z~', the nonhybridized m orbit-
al.
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atoms have the same chemical environment. The posi-
tions of the atoms 3 and A' are designed by the corre-
sponding vectors rz and rz. . The number of cells in the
crystal is ¹

In our tight-binding approximation, we neglect the
overlapping integrals:

fy(r r—„+nc)y(r r—~ +mc)d~=5; 5„. (3)
J

with
and n, m =0, 1,2, 3. . .

and where c is the unit-cell basal vector of range c along
the k, direction.

The wave functions %(r) are linear combinations of the
two Bloch functions:

where the b& vectors connect an atom to its nearest neigh-
bors in the graphitic plane (l = 1,2, 3).

The ao parameter represents the interaction between
first-neighboring atoms in a graphitic monolayer,

a, = fy(r —r„+c)Hqr(r r—„)dv . (9)

The n1 parameter is related to the interaction between
two atoms of the same projection on the xy plane, from
two neighboring graphitic planes,

a2= fy(r —r~+2c)Hy(r —r~ )d~ .

The cx2 parameter represents the interaction between two
atoms of the same projection on the xy plane, from two
next-neighboring graphitic planes,

%(r) =A fz (r )+k'gk (r) .

So, defining

the eigenvalues equation becomes

(4)

(5)

a&= f y(r —r„)Hp(r r~ b—&+c)—dr .

The a3 parameter represents the interaction between two
first-neighboring atoms of difFerent projections on the xy
plane, from two neighboring graphitic planes. These o, ;
parameters are presented in Fig. 4.

In Appendix A, we establish the expression for the
Hamiltonian:

Eo+a, I +a2(I —2) f (k; k» )(ao+ a&I )

f*(k;k )(ao+a~I ) ED+a, l +a2(l —2)

(12)

where

At the Fermi level, the m-band structure of the simple
hexagonal graphite, which is calculated in this study with
a tight-binding approximation, can be described by a
model of five parameters: Eo,ao, a, , a2, cx3. These param-
eters, which define the interaction energies between m or-
bitals from di6'erent carbon atoms inside the plane or
from plane to plane, are defined in the following expres-
sions:

(13)

p2
E+ EP+a, l +2cz2

2
—1 +(ao+a~l )lf (k;k»)l,

(14)

3f ( k„;k» ) = g exp( ik b, ) . .
1=1

The solution of the eigenvalues problem Eq. (12) is

Eo= f y(r —r„)Hy(r —r~)dr, (7)
where I =2 cos(k, .c) as in the SWMcC model:

where Eo is the energy of the nonhybridized m orbitals in
the crystal,

ao= f p(r —r„)Hy(r —r„—b&)dr, (&) and

p2

2
—1=cos(2k .c)Z (15)

lf(k„;k» ) l

= 1+4cos k —+4 cos k —cos k„
a a &3a

~2 ~2

1/2

(16)

In the following section, we study the solution Eq. (14)
near the HEH edge of the Brillouin zone, where the over-
lap appears.

III. BAND STRUCTURE NEAR
AN KDGK OF THE BRILLOUIN ZONE

The perturbations due to the interactions between gra-
phitic planes introduce weak modifications to the 2D

model, which described graphite as a zero-band-gap semi-
conductor. A small overlap is induced and the Fermi
surface remains located near the edge HAH of the Bril-
louin zone' (cf. Fig. 5).

In the neighborhood of this edge, the energy will be
calculated by a -k.p- perturbation expansion.

Let us define ko as the vector which starts at the centre
of the Brillouin zone and reaches the edge HAH:
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&0=&ra (17)

(23)

We will take into account the two follow'
Taylor development:

e wo ollowing terms of the

(k k -=i„;k»)-=a ~x~exp(i8)+
2

i x exp( i28—) .

uppose now that we are sli htls ig t y away from this edge:

k=ko+I .

So t, t e absolute value of th fe unction (k k
the energy expression is

;k ) present in

Expressed in cylindrical coordinates

x=x(x, 8), ~f(k„;k, )~= ' x'+ 4
'x + ixt3cos(38)+ )xi

1/2

where x =
~x~ and 8 is theis the angle between (O, k~, O) and x

In that particular casecase, the evaluation of the function

x» y

3f(k;k )= ~~ exp(iko bi)exp(ix b )

1=1
1 I

3

!=1
p iko b, )[1+ix b ——'(x b )'+,

—
—, x.

(20)

(21)

The first term of the T 1 d
bution because

ay or evelo mep ent gives no contri-

(24)

The eft'ect of the t
' '

eerm In I in the
ment Eq. (23) is to b k y ico rea the cylindricy sy y

a symmetry [cos(38) .
h' '6 h

F0
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then be considered that there is no more dependence on
0: the Fermi surface possesses a cylindrical symmetry
around the edge HAH. This is in contrast with the Ber-
nal structure of graphite: retaining only the first term in
the corresponding Taylor expansion will not lead to a cy-
lindrical symmetry. The trigonal warping of the Fermi
surface of the Bernal graphite is well known and de-
scribed by the y3 parameter of the SWMcC model.

The absolute value of the function f (k;k ) is then re-
duced to its first term:

Ex+ Ep +2a, +2a2+S ( ao+ 2a3 ) (32)

S= afxf&0.
v'3

2

There is a lift of degeneracy of the energy E+ between
the H point and the K point. In the particular case where
xAO, the wave functions correspond to two different ei-
genvalues for the same Schrodinger equation.

In a plane perpendicular to the hexagonal axis, that
contains the K point (cf. Fig. 9), the energies equal

if(k„;k, ) = ' xi=S . (25) In a plane perpendicular to the hexagonal axis, that con-
tains the H point (cf. Fig. 10), the energies equal

The energy around the edge HAH is
EH+ =Eo —2a, +2a2+S (ao —2a3) . (33)

p2
E~ =Eo +ol

&
I +2cx2

2
—1 +S(ao+a3I ) .

E+ =Eo+a, I +a~(I —2) .

At the K point, the energy reduces to

(27)

Along the vertical edge of the Brillouin zone,
S =(+3/2)a~x~ =0.

There is a twofold degeneracy (the spin degeneracy is
not taken into account) of the energy bands along the HK
band edge (cf. Fig. 8):

This dispersion around the HAH edge introduces a weak
overlap in the neighborhood of this Brillouin zone corner
(cf. Fig. 11).

The Fermi energy Ez will be close to Eo, but slightly
different if either o.2 or a3 are nonzero. Holes will be
transferred from the neighborhood of H to the neighbor-
hood of the K point. An electron pocket appears near H
and a hole pocket near K.

The energy, as a function of k, and the polar coordi-
nates centered on the edge HAH of the Brillouin zone, is

E~ =Eo+2(x)+2a~

At the H point, the energy reduces to

(28) E = Eo+2a, cos(k, c)+2azcos(2k, c)

V3
ax[ao+2a3cos(k, c)] .

2
(34)

E~ =Eo—2a)+2a2 . (29)

The difference in these energies is simply related to the a&
parameter of the model

E~ —EH =4a), (30)

Esca y2 Eo (31)

In the neighborhood of the vertical edge of the Brillouin
zone,

and the energy, at the middle of the H and K points, gives
a relation between two other parameters: Eo and a2.

The lower sign corresponds to the valence band, and the
upper sign corresponds to the conduction band. The
lines of constant energy in a plane perpendicular to the c
axis are circles. The Fermi surface possesses a cylindrical
symmetry as shown in Fig. 12. As mentioned before, the
trigonal warping due to the term in x in the Taylor de-
velopment of the -k.p- perturbation expansion has not
been taken into account in this representation.

Due to the hexagonal symmetry of the lattice, one Fer-
mi surface is centered on each of the six vertical edges of
the Brillouin zone. Each Fermi surface is composed of a
main pocket of holes, centered at the E point, which is

2A~+ 2CL

~JJOOOOI ~ I

IE
2+~- 2

EH

FIG. 8. Band structure around the Fermi level along the
HEH edge of the Brillouin zone (in arbitrary units). There is a
degeneracy of the two energy bands along this direction.

FIG. 9. Linear dispersion relations at the K point, in the
neighborhood of the edge HEN of the Brillouin zone (in arbi-
trary units).
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H+

H

H-K

FIG. 10. Linear dispersion relations at the H point, in the
neighborhood of the edge HAH of the Brillouin zone (in arbi-
trary units).

H-K

overlap

FIG 11 Weak overlap between conduction (Ez ) and

valence (EII+) bands near the Fermi level away from the edge

HKH of the Brillouin zone (in arbitrary units).

surrounded by two smaller pockets of electrons centered
at the two H points. The simple hexagonal graphite has
no minority carriers as the hexagonal graphite (SWMcC:
minority holes).

In contrast to the case of the Bernal graphite, it is pos-
sible to get an analytical expression for the different
volumes of the various pockets of electrons and holes of
the different Fermi surfaces. On an edge of the Brillouin
zone, the limits of the hole pocket are ( k;;k,*—

) while
those of the electron pockets are ( ~/c; —k,—*) and

I

k,*= +—arccos
C

a)++a—)+4a2(EF —Ep+ Za2)

4a2

(35)

From revolution-volume formulas, the hole volume is

(k,*;m./c), where k; is the solution of EF=E+, where
E+ is given by Eq. (27).

2
Vh, &, (EF ) =2~fmaxI —2;I *I

2 2
EF Ep —a, I —a—2( I —2)

&3a
2

(ap+aql )

dI
cV4 —r' (36)

where

—a, ++a, +4a~(EF Ep+2a2)
2cx2

essentially nonalgebraic way. An analytical expression
for the Fermi energy is then impossible but a numerical
approximation has been established for the plausible set
of parameters (see Sec. IV): (ap=3. 2 eV; a&=0.4 eV;
a2, a3 =0.04 eV).

A similar expression can respectively be found for the
electron volume.

Analytical integration of Eq. (36) is possible and has
been established using the MATHEMATICA™ package.
However, the resulting expressions are cumbersome and
of little help.

Plausible numerical values for np and 0.3 give
a3/ap=0. 01 (see Sec. IV). This latter fact, combined
with —2 & I & 2, allows the following approximation:

(ap+a31 ) '=ap ' 1 — I +O((a3/ap) ),
ap

which induces an error on the order of 2.0X10 . In
this approximation, the analytical expressions for elec-
tron and hole volumes are less cumbersome and can be
found in Appendix B.

The analytical relation, established by equating the
numbers of holes and the numbers of electrons, appears
to involve transcendental functions of the variables in an

EF =Ep+0.013063 635 43 eV . (37)

As mentioned before, the Fermi energy EF will be close
to Ep but slightly different if either a2 or a3 are nonzero.
When both parameters are zero, the Fermi energy is re-
duced to Ep.

The density of states can be calculated using the fol-
lowing formula:

X(E)= V„„„,„(E)— Vh, ),(E) .d
(38)

The analytical expression of the density of states can also
be found in Appendix B. Figure 13 represents the total
density of electronic states [N(E)=X,(E)+1V'h(E) j of
the simple hexagonal graphite. Outside the region—2o.

&
+2a2 & E & 2a

&
+2+2, the density of states is the

same as the two-dimensional density of states. The total
density of states for a "hypothetical" pure material is
more or less 19X 10 eV ' atom ' compared with
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kz

x H

structures, near the Fermi level, of the different
modifications of graphite will be the aim of the next sec-
tion.

IV. COMPARISON OF THE ENERGIES
AROUND THE FERMI I.EVKI.

AND THE DENSITIES OF STATES
OF THK DIFFERENT STRUCTURES

Vz
lk

1~

Electrons

Holes

Electrons
I

As the three band structures of the different stackings
are nearly identical except near the Fermi level, "Fig. 14
compares in details the region close to the Fermi energy
for the different modifications. The AHA stacking ex-
posed in this study is compared to the Slonczewski-
Weiss-McClure model for the Bernal structure and also
to the Haering-McClure model for the rhombohedral
graphite.

To be comparable, in each case, the unfolded bands are
presented between IC and H (corresponding to the small-
est possible unit cell for each of the structures) and H'
(common zone).

For the ABAB stacking [Fig. 14(a)], we reproduce the
well-known three bands (E„E2, and E3 at the K point) of
the SWMcC model, where the ~ orbitals are totally lo-
calized on atoms which have a neighbor in the first-
neighboring graphitic plane (A atoms). These eigenval-
ues of the SWMcC Hamiltonian are given by the roots of
the following equation:

FIG. 12. Fermi surface of the simple hexagonal graphite

which is composed of a pocket of electrons centered at the K
point and two half pockets of holes centered at the H point. (a)

Intersection between the Fermi surface and the I HK plane (in

arbitrary units). {b) 3D Fermi surface {in arbitrary units).
~I

I ~lll:.,
i

'I i 'i

(a) AsAsAs

about 5.5 X 10 eV ' atom ' for hexagonal graphite for
our set of plausible values for the cx,- parameters. The
simple hexagonal graphite is a "semimetal" whose over-
lap of the order of 1.6 eV ( =4a, ) is much greater than
the overlaps of the two other graphitic semimetals. The
comparison between the densities of states and the band

r K

ABCABC

DOS (10 states/atom eV)
3

H+ H

(C) AAAAAA

E (ev)

~ l ~ l
II ,I l rli li II

~I l'

~I,il' ,ill,ll ll
ll I)

~I~ I ll ~l

~I li
I ll

~I ~ I
llllll

I ~ l

-2G)+Q G~

FIG. 13. The density of electronic states in simple hexagonal
graphite, calculated under the assumption that ao=3.2 eV;
a&=0.04 eV; a2, a3=0.04 eV {in number of states per atom eV).
The heavy line is the total density of states, and the partial den-
sities of states for holes and electrons are indicated. The dashed
line gives the density of states for the two-dimensional model.

FIG. 14. Details of the band structure in the vicinity of the
Fermi level for the three modifications of graphite presented in
Fig. 1. The bands that arise due to multiple foldings along the
k, direction are shown by dashed lines. The H* point corre-
sponds to the common zone while the H point is associated with
the smallest possible unit cell for each of the structures.
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(e, —e)(e2 —e)(e3 —e)

Akp2 2 2 2

[(e,—e)(e3 —e)(1+v) +(e2 —e)(e3 —e)(1—v) +4 2cos (k c/2)(e, —e)(s, —e)]
m 3 0

Ak p 'V3—2
m Po3

4

cos(k, .c/2)cos(38) [(e,—e)(1+v) —(e2 —e)(1—v) ]+ (1+v) (1—v) =0, (39)

where v=2(y4/yo)cos(k, .c/2) and p = —,'3/3(m /fi)yoa.
Along each vertical axis of the Brillouin zone (HKH),

the eigenvalues are

~i=~+XiI + ~~5I
2 (40)

g~=5 —yiI +—,'y5I (41)

c3=
—,
' yqI (42)

Cg .=Eo+A cos(3k, c),
E3

where A =(2y, /yo)(by', +y2 ) and b =y2/y)+y)/yo-
I ~ I II
1 Y3 or y4, y2 Y2 Y2).
Along the HAH edge, there is still an energy gap be-

tween these two bands. However, there are some points
in the Brillouin zone where the gap is zero; such points
are very close to the edge of the hexagonal zone.

In the unfolded case, each of these bands is triply de-
generate. The main difFerence between these two first
structures is that no atoms in the rhombohedral structure
form a continuous chain perpendicular to the graphitic
planes throughout the entire crystal as in the Bernal
structure. These nearly dispersionless bands are then the
counterparts of the c3 band in the ARAB structure. It is
also clear that the Fermi level does not cross the bands
between K and H (unlike the ABAB case), but inside the
Brillouin zone, very close to the HAH zone edge. The

where 1, in this case, is defined as 2 cos(k, c/2).
These three states are totally difFerent; c, is an anti-

bonding state whereas cz is a bonding one. The c3 state is
degenerate and localized on atoms which do not have any
neighbors in the first-neighboring graphite plane (B
atoms). The degeneracy of the two e3 levels is lifted as we
move away from the zone edge, and this is indicated on
the left-hand side of Fig. 14(a).

The splitting of the antibonding and bonding states (e,
and e2) of p, orbitals gradually decreases approaching the
H point. At the H point, due to the phase reversal, bond-
ing and antibonding states are degenerate. This degen-
eracy is maintained throughout the plane KAL, .

For the ABCABC stacking [Fig. 14(b)], we reproduce
the two nearly dispersionless bands (e3 and e3' at the IC

point) coming from the Haering-McClure model. Along
each vertical edge of the Brillouin zone, these two eigen-
values are

rhombohedral graphite is also a "semimetal, " but with a
very weak overlap.

For the A A A stacking [Fig. 14(c)], we can immediate-
ly see that bands similar to e, and e2 in Fig. 14(a) are
present in Fig. 14(c), while no fiat bands like e3 are
present. This is understandable since all the atoms in the
AHA structure have a neighbor in the first-neighboring
graphitic plane. Consequently, each band in the folded
structure is doubly degenerate. The energies along the
vertical edge of the Brillouin zone are expressed by Eq.
(27).

The comparison between our parameters 0,0, o'. &, az, o.3
and the well-known seven SWMcC parameters y, is very
relevant. It will allow us to have first-approximation
values for the 3 A 3-model parameters.

The ao parameter which represents the interaction be-
tween first-neighboring atoms in a graphitic monolayer is
equivalent to the yo parameter of the SWMcC model. In
both cases, the parameter can be calculated in a 2D
monolayer ( yo =3.2 eV).

The a& parameter which is related to the interaction
between two atoms of same projection on the xy plane
from two neighboring graphitic planes is related to the y &

parameter of the SWMcC model. In both mode1s, this
parameter established the width of the m bands at the K
point (folded region) of the Brillouin zone, which is equal,
respectively, to 4a, or 2y& (y&--0.4 eV).

The az parameter, which represents the interaction be-
tween two atoms of the same projection on the xy plane
from two next-neighboring graphitic planes, must also be
of the same order of magnitude as the y5 parameter of
the SWMcC model (y~=0.04 eV).

The u3 parameter, which represents the interaction be-
tween two first-neighboring atoms of diferent projections
on the xy plane from two neighboring graphitic planes, is
related to the y4 parameter of the SWMcC model
(y4=0. 04 eV).

We wiH use the value quoted for the y,. parameters as a
first approximation for the a, parameters.

The total densities of electronic states
[N(E)=N, (E)+Nh(E)] of the different modifications of
graphite are calculated and compared in Fig. 15.

Outside the region —2y, & E & 2y „ the density of
states of the hexagonal graphite [Fig. 15(a)] is similar to
the two-dimensional graphite density of states. This
semimetal possesses an overlap of the order of 40 rneV
(=2y2). The total density of states for pure material is
more or less 5.5 X 10 eV ' atom

Outside the region —A & E & A, the density of states
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FIG. 15. Details of the densities of states for the three
modifications of graphite presented in Fig. 1 [(a) ABABAB; (h)
ABC ABC; (c) A A A A A A ]. These densities of states are calcu-
lated under the assumption that uo, y0=3.2 eV; cz„y& =0.4 eV;
y2= —0.02 eV; y3=0.3 eV; a&, u3, y4, y&=0.04 eV (in number of
states per atom eV). The heavy line is the total density of states,
and the partial densities of states for holes and electrons are in-

dicated. The dashed line gives the density of states for the two-
dimensional model. The density of states of the rhombohedral
graphite is detailed in an interval 50 times weaker than the two
others.

of the rhombohedral graphite [Fig. 15(b)] is similar to the
two-dimensional graphite density of states. This sem-
imetal possesses an overlap of the order of 20 meV
(=2A). The total density of states for pure material is
more or less 0.25X10 eV ' atom '. Around the Fer-
mi level, the nearly dispersionless bands of the Haering-
McClure model (E3 and e3' at the E point) possess an
artificial 2D character producing discontinuities in the
DOS.

Outside the region —2a, +2a2 & E & 2e, +2a2, the
density of states of the simple hexagonal graphite [Fig.
15(c)] is similar to the two-dimensional graphite density
of states. This semimetal possesses an overlap of the or-
der of 1.6 eV ( =4a, ). The total density of states for pure
material is more or less 19X10 eV 'atom ' for our
set of plausible values for the e; parameters. The simple
hexagonal graphite is a semimetal whose overlap and
density of states are greater than the ones of the two oth-
er semimetals presented before.

By the same technique used for the ab initio study of
the electronic energies of graphite around the Fermi lev-
el, we plan to study the numerical values of the o.; pa-
rameters of the simple-hexagonal-graphite model, present
their variations with the interlayer distance ~c~ (deforma-
tion potentials) and compare them with the other models
for the different modifications of graphite. The optimal
value of the c distance, calculated self-consistently, will
also be provided.

V. DISCUSSION

The commonly used model established for dilute GIC's
(Ref. 3) shows that the Fermi energy cuts the weakly
dispersive band e3 similarly to the Slonczewski-Weiss
model for pure graphite. In the particular case of a di-
lute donor GIC, the increase of EF leads to the produc-
tion of a larger electron pocket and vanishing hole pock-
ets. This model is very relevant for particular GIC's with
ABAB stacking, like KC„. However, for other GIC's
with AAA stacking, like LiC„, we can immediately see
[cf. Fig. 14(c)] that the E,3 band giving rise to the extremal
orbits is absent for the A A A stacking. Consequently, the
commonly used model for discussing the extremal orbits
is irrelevant for dilute GIC's with carbon layer in A A A

stacking. "
The turbostratic graphite is a particular stacking of

parallel graphitic monolayers with no periodicity along
the c axis and also with possible rotations of the difFerent
planes around the c axis. The irregularities of such a
crystalline structure must lead to a "fuzzyness" of the
lower and upper positions of the band structure: a distri-
bution of the energy levels is more accurate than a
definite relation between the energy and the wave vector.
So, it seems reasonable to establish the electronic proper-
ties of the turbostratic graphite by superposition of some
models corresponding to difFerent crystalline structures.
Some models are present in the literature: the Mro-
zowski model, ' alteration of the Slonczewski-Weiss mod-
el, ' the Deficiar turbostratic graphite model, ' the tur-
bostratic carbon model, ' the simple two bands model, '

and the bidimensional GaS model. ' All these models try
to explain the electronic properties of pregraphitic car-
bon with a preexisting model (like the SWMcC model).
It would be interesting to study the turbostratic graphite
by a combination of the three models compared in this
study.

In conclusion, we have shown that various graphite
modifications possess difFerent electronic structure near
EF due to the difFerent interlayer stacking order. Thus,
in spite of the fact that graphite is predominantly a two-
dimensional material, the weak interlayer interaction
plays an important role in determining the ~-electron
structure near the EF, the region dominating transport
and low-energy excitation properties.
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APPENDIX A

Development of the different matrix elements of the
Hamiltonian:

A'
b

. G

(i) (gq H gk &= f Pq *(r)Hgq(r)dr,

1=—g g exp[ik(r„—rA )]
A,.

(A1) b = - 8
2+3 2

a . a26'
X f y(r —rA )Hy(r r„)d—r .

(A2)

If the study is limited to the two first-neighboring planes
interactions, the precedent matrix element becomes

FIG. 16. Representation of the in-plane first neighbors ( A')
of an 3 atom. The coordinates of the bI vectors which connect
an atom to its nearest neighbors are also presented in the xy
plane.

(gA~H~g" & =—g f y(r —rA )Hy(r r„)dr+—I f p(r —rA+c)H+(r rA )«—
k k

+(12—2)f y(r —rA+2c)Hy(r —r„)dr (A3)

where I =2 cos[k, c].
(ii) (@,'~H~y,"'& =(q„"~H~y,"&,

(iii) (qA~H~yA'& —f qA*( )HqA'( )d

1=—g g exp[ik(r„, —r„)]
l

(A4)

(A5)

—-r~ =ra +bl
J

(A7)

In this study, the summation expressed in Eq. (13) is re-
duced to a summation on the three in-plane first-nearest
neighbors and on the six first-nearest neighbors of the
two first-neighboring graphitic planes of the A; con-
sidered atom.

rz is the vector which starts on A and finishes on one
1

of its in-plane first neighbor.

X fy(r —rA )Hy(r r, )dr . —
y J

(A6)

where l =1,2, 3.
Figure 16 represents the in-plane first neighbors of the

3 atom. In addition, the exponential inside the summa-
tion can be reduced to a function of k and k .

r

3 a a a a a
3g exp(ikob&)= exp ik„—+exp ik — exp i—k +exp— ik„——exp ik ——

2 3 ~2 "2 3 ~2

a a a= exp ik„+2cos k —exp ik-" v'3 2 3

=f(k. ;ky), (A8)

3

g exp(ikob&)exp(+ikoc)=f (k„;k )[2cos(k, c)] .
1=1

The matrix element becomes

(A9)



TIGHT-BINDING MODEL FOR THE ELECTRONIC. . . 13 247

(gi", ~H~gi", ) =—g f (k„;k~)f y(r —r~ )Hp(r —r~ —bi)di+f (k;k~)I Jp(r —rz )Hy(r —rz b—&+c)dwX

(A10)

(Al 1)

APPENDIX B

Defining Ep as the energetical reference, the analytical expressions for the electron and hole volumes are expressed in
the difFerent intervals of energy.

If E (—2Q, +2a2, then there is no more electron pocket:

V„„„,„(E)=0,

Vh, i, (E)= 2 q
2m' ai+a2+8m 2

E'
3ca a 2

If —2Q, +2Q, &E (2al+2Q2 then
r

4ala3 Q3
2

(az —E)+ (3a, +2az —ZazE+E )
ap Qo

(B1)

(B2)

4ala3 2

electron
Qp

++4—I * 2a, (E+2az)+
8a,a32 2Q2E+

15ap

2Q3
( —"a2—4a, —Sa~E E)+—

15

a2

+r* Q2 2ala32
Q3 3al2 2 2

a2E —— (E+a2)+ +az+a2E+
2 ap

2 32Q2Q3++42
15ao Qo

2
Q2—a +I *

2

2 2
a&Q2Q3 Q3 al+

ap 2Q() 2

2
Q2 +Q2E

2Q2Q3 Q lQ3+r*'
5ao ao

2 2
Q2Q3—a +r*'

2 26ap

+(4—I *
) ——', a,a&+ (a, —4az+2a2E)+

2Q lQ3 2Q2
2

—E
Qo

Sala3 2Q3
2

—arc sin(I */2) 2a, +2a2+E — (E+a2)+ (3a, +2a2+2azE +E )
ap Qg

(83)

(B4)

If E)2al+2Q2, then there is no more hole pocket:

E2
3ca Qo 2

4Q&Q3 Q3
2

(E+a2)+
2 (3ai+2a2+2azE+E )

ao ao
(B&)

4Q l Q3 a'32

+ (2a2 —E)8mX(E)= 2m E——
3ca ao

If —2al+2Q2 & E & 2Q&+2Q2, then

Resolving Eq. (38), we obtain the analytical expression for the density of states in the different intervals of energy:
If E & —2Q&+2Q2, then

(B7)
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N(E) =
2

32
3ca ap (V 4—I '~

2CX )CX3E

CXp

a, +(E /2) 4a, a3 4a&a3E a3(3a3+E ) 2a3(E+a2)+CX2+ +
2

+
CX2 CXp CXpCX2 CXoCX2 CXo

2

2a2 ao cxp cxocx2 2

2
CXi+ I * +2E —cx—
CX

2

4a&a3 Za3(E +a2)+
CXp CXo

4a &E — (E +3a,
CX3 2

CXo

2
CX2 CX )+
3 2CX2

CX3

r

2
3

64CX 3 CX
&

CX 3 CX2 2CX
&

CX 3 CX 3+I* —
CX2 +1 * + E—

15CXp CXp 2 CXp

4CX3 CX ) CX3+I g5

5CXo CXo

CX2
—2E++4—I"* ' 4a +1

2
CX2CX3—

CX +I*
2 2

CXO

CX& 4CX3 CX
&

2

+ —2E —4cx)
ao

2CX3+ 8CX—
1

CXp

a2+E CX3

apart

4CX iE —3CX i CX3

CXp

CX3E

CXp

4CX )+r* 2a, — + 4CX3

CXo

28CX2 2CX3
CX +

15$

8CX
&

4CX &CX3 CX3

E+2a2 — + a, +E
15 asap ap

CX2++42 +
2g

6CX &CX3 CX3
2

+ -
CX2

—3E—
aok

3CX

2CX2

CX2CX3+I*
CXp

16a3+
CX3 16CX ) 5CXp

2

+ r*
5 3

2
SCX2CX3 4CX &CX3+(4—r")'" +are sin(I '/2)

3cxp 3exp

1«&a3 8a3(E +a2) —4E
CXo CXp

2

where

—a)+ Qa) —4a2(EF —Ep —2a2)

2CX2

—a,
CX2 2

If E )2cx&+2cx2, then

8~ 4CX
&

CX3 CX3
2

X(E)= 2n E — + (2a +E)
3ca cxo

2
(89)
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