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A general model for two-dimensional solids and liquids on a substrate is studied by means of Monte
Carlo simulation. The results can be applied to the case of adsorbed atoms or molecules on surfaces as
well as intercalated compounds. We have focused on the study of the melting of a commensurate
&3X &3 structure on a triangular lattice with 1/3 coverage. The evolution of the energy, order parame-
ters, and structure factor has been followed in a wide range of temperatures and substrate-potential
strengths. The phase diagram exhibits a broad transition region between the solid and liquid phase for
all the cases studied. We have in particular investigated the contribution from the two-dimensional

liquid to the Bragg peaks corresponding to the substrate structure. Reiter and Moss and their collabora-
tors have demonstrated that this gives valuable information about the substrate potential. A universal

dependence is found between this and the particle fluctuations around the substrate potential wells. This
dependence may be useful for an experimental determination of the magnitude of the substrate potential
from scattering experiments, in particular for weak potentials and large atomic mean-square displace-
ments.

I. INTRODUCTION

From a theoretical point of view, the problem of two-
dimensional solids, liquids, and especially the melting
transition is very interesting and has been studied inten-
sively the last decades. A comprehensive review has been
published recently. ' It is known that a two-dimensional
(2D) crystal does not have perfect long-range positional
order, but instead exhibits a logarithmic decay of the po-
sitional correlations and only quasi-long-range order ex-
ists. Kosterlitz and Thouless demonstrated that al-
though the true long-range positional order is not possi-
ble for a two-dimensional solid, it can exhibit a long-
range orientational order of the particle bonds. This
orientational order is destroyed by dislocations when the
temperature is increased. Halperin, Nelson, and Young
completed the theory and showed that two consecutive
continuous phase transitions may appear between the
two-dimensional solid phase, with quasi-long-range posi-
tional order and true orientational order, and the liquid
phase with no long-range order. The intermediate phase,
so called hexatic phase, which exhibits quasi-long-range
orientational order but no positional order has been un-
der discussion during the last 20 years. ' Experiments,
simulations, ' and different theories' have been
developed, sometimes with contradicting results.

A main reason for the prolonged discussion and lack of
consensus is that real experiments are always performed
on systems that are not perfectly two dimensional. Most
of the experiments are performed with atoms physisorbed
on substrates or intercalated between layers. We will
focus our discussion on the adsorbed rare-gas atoms"
and alkali metals intercalated in graphite. ' Several fac-
tors are contributing to the difBculty in comparing these
systems with the ideal two-dimensional solids and liquids.
First of all there is the influence of the substrate poten-
tial, also called the corrugation potential. Depending on

the competition between this interaction and the
particle-particle interaction the solid phase at low tem-
perature can be commensurate or incommensurate. '

This fact is also important in the study of the melting of
such systems. In general it is thought that the liquid and
melting corresponding to incommensurate solids are less
effected by the substrate potential. ' Other factors are
the motion of atoms perpendicular to the substrate, ' the
exchanges between the gas and the layer' in the ad-
sorbed systems, and the influence between two consecu-
tive intercalated layers' in the intercalated systems.
Such effects will be neglected here. In this paper we
focus on the substrate influence and limit the discussion
to the case which has a commensurate solid phase at low
temperatures. Our main aim is to perform a systematic
study using Monte Carlo simulation, of the influence of
the periodic substrate on the properties of two-
dimensional solid and liquids, and to emphasize the ob-
servable effects on the structure factor, which can be
measured in scattering experiments.

Two limiting cases have usually been discussed in order
to characterize the substrate influence. The first assumes
that the corrugation potential is large, so that the system
can be considered as a lattice liquid in which the motion
of the particles is restricted to a jumping between neigh-
boring wells, while the motion within the substrate poten-
tial wells is not considered. In this limit several theories
concerning modified Potts Models' have been developed,
discussing mainly the symmetry change between the solid
and liquid phase. Some of them" seem to be in agree-
ment with the phase diagram for Kr adsorbed on graph-
ite. Very few calculations of the structure factors have
been performed for these models, the only exception, to
our knowledge, being the calculation of the structure fac-
tor of the lattice gas model using Monte Carlo simula-
tion. The second limit studied is based on the assump-
tion that the substrate potential is relatively small and

1318 1991 The American Physical Society



SUBSTRATE INFLUENCE ON TWO-DIMENSIONAL SOLIDS. . . 1319

can be considered as perturbing the real continuous
liquid. A general theory, using both a perturbation and a
cummulant expansion, of the substrate inAuence on the
structure factor has been developed by Reiter and Moss '

and has been proved do be successful in describing exper-
iments on Rb (Refs. 22 and 23) as well as on K (Ref. 24)
intercalated in graphite. The theory allow the possibility
of extracting the corrugation potential from x-ray
scattering data. The principal conclusion of the theory is
that the 2D liquid produces an important contribution to
the Bragg peaks of the substrate, and that the diffuse
liquid ring structure factor may be reproduced around all
the substrate peaks. In the absence of scattering from the
substrate, the linear approximation of the theory predicts
that the contribution to the Bragg peak intensity is pro-
portional to (VHzlk~T) where VHz are the Fourier
coefficients of the substrate potential, T is the thermo-
dynamic temperature, and kz is the Boltzmann factor. A
quantitative comparison between these predictions and
experiments is, however, not easy and therefore molecu-
lar dynamics calculations have been used ' for tests. A
main problem with this technique is that only relatively
small systems can be studied within reasonable computer
time, and finite-size effects may inhuence the results, in
particular for a quantity like the structure factor. In this
paper we propose instead a continuous Monte Carlo
method, which allows the possibility of studying systems
of 2700 atoms or more, thereby considerably reducing the
finite-size effects.

A theory unifying the Potts lattice description and the
continuous perturbed liquid description is needed in or-
der to understand the inAuence of the substrate on the
two-dimensional solids and liquids. Most experimental
realizations seem to fall in a class between these limiting
descriptions. We will focus on the calculations of the
structure factor, because that can be directly compared
with detailed scattering experiments. For this purpose it
is particularily important to be able to study large sys-
tems, since the resolution of details in the structure factor
are directly dependent on the spatial extent of the system.
The structure factor offers a possibility for a measure-
ment of the corrugation potential, the magnitude of
which is under considerable discussion. '

The structure of the paper is as follows. In Sec. II we
present our model and the main characteristics of the
Monte Carlo simulation. In Sec. III the pair correlation
functions and a number of order parameters are calculat-
ed. In Sec. IV we present the phase diagram for our
model. In Sec. V the scattering properties are discussed
and finally in Sec. VI we summarize and conclude.

II. THE MODEL

The model is defined on a 2D triangular reference lat-
tice, with L XL sites i (i =1,2, . . . , N =L XL ) and lattice
parameter a. Each site in the lattice corresponds to the
center of a hexagonal cell representing the substrate, see
Fig. 1 with edge length =a/V'3. Each cell can be occu-
pied by only one atom. This particular symmetry has
been chosen because it is the one corresponding to the
(0,0, 1) graphite surface (a =2.456 A) which is the most

I a+

FIG. 1. Left, the direct reference lattice with the &3X+3
structure indicated and the hexagonal cells. Right, the recipro-
cal space with the &3X &3 Bragg peak positions indicated.

where c is the coverage of the system. The Hamiltonian
of the system is written as

N
H= QSS, V(~r, —r, —R,, ~)+ g S;U(Ir;I), (2)

where the first term represents an isotropic interaction
between the particles and the second term the particle
substrate corrugation interaction, assumed to be isotropic
around each cell center. The first summation is a sum
over all pairs of sites in the lattice and the second summa-
tion is a single sum over the lattice sites. R, represents
the vector joining cell centers at sites i and j.

It is known that in real systems, in particular for metal
surfaces, the interactions are more complicated, usually
exhibiting anisotropic particle-particle interactions due to
the electronic exchange with the substrate and a break-
down of the pair interaction assumption, ' etc. Such
effects could be included but are neglected for simplicity.

The Hamiltonian allows the possibility of clearly iden-
tifying the two limits described in the Introduction. On
the one hand, when the corrugation potential U is very
big, the only effect of the second term is to force the par-
ticles to occupy the cell centers and restrict the possible
movement to jumps between the sites. The system is then
described by the S,- variables only. On the other hand, in
the case of no substrate effect, the S, variables are ir-
relevant and the first summation is a sum over particles
interacting through an isotropic potential. The inter-
mediate case, as demonstrated by Fan et al. , does ex-
hibit interesting coupling phenomena between the r,- and

common substrate used for experiments on adsorbed
atoms and intercalated compounds. The assumption of
only one particle per cell is true for most of the adsor-
bates due to the large atomic (hard core) radius of the
adatoms compared with the graphite lattice spacing.

On each site of the triangular lattice we define a vari-
able S; taking the two values 0 or 1 depending on the ab-
sence or presence of a particle at the cell i. Further we
define r; which is a 2D continuous vector that measures
the position of the center of the atom inside the cell. We
neglect the possibility of perpendicular motion of the par-
ticles. The total number of particles on the surface is
kept constant so that

N

S;=cN, (1)
i=1
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S; variables in the same way as in other Hamiltonians
used for the description of coupled phase transitions.

Although the formulation of the model is general, we
have focused on a simple case with U(r) being a parabol-
ic potential and V(r) being a Lennard-Jones like in-
teraction. U(r) is defined in such a way that it takes a
zero value at the corners of the hexagonal cell and—

E U ( U )0) at the center of the cell, where e is an ener-

gy unit:

lattice pairs in (2) can be performed including the fifth
neighbors without loosing the isotropy of the potential.
A further restriction of the summation over the pairs in
(2) without reducing the potential cut rz will lead to an
anisotropy in the system even in the case U=O. With
our choice we maintain the complete isotropy of the
liquid also in the limit U =0. Therefore the inhuence of
the reference lattice vanishes when the corrugation disap-
pears. Let us define the Hamiltonian Ho for the cut po-
tential and that for the tail AH, giving H =Ho+ AH.

In this~aper we study the commensurate case with
2'~ o =&3 and c =

—,', so that the minimum of the
particie-particle interaction is exactly at the second
neighbor distance on the substrate lattice. With these
definitions the ground state of the system is a commensu-
rate structure (usually called a &3Xv'3 structure) with
degeneracy 3 in the case of U )0. For U =0 the system
has continuous translation and rotational symmetry.

The simulation of this system is performed using stan-
dard Monte Carlo techniques. We use a 90X90 tri-
angular lattice with periodic boundary conditions in or-
der to minimize the boundary effects. This represents a
lattice with 8100 sites and 2700 particles when c =

—,'.
The position of the molecules is updated sequentially on
the lattice, and the proposed position is obtained per-
forming uniformly distributed random steps inside of a
circle of radius rd around the old position. When the
proposed position is outside of the original cell, the
change is considered as an attempt to jump to a new cell,
and if the movement is accepted the variables S, are up-
dated. By this method we assure that the particle
diffusion is isotropic for U=O„which has been tested.
The size of rd will determine the speed of the Monte Car-
lo simulation. We have chosen rd=0. 2a which gives an
acceptation ratio of 0.5 in a large range of intermediate
temperatures. Considering that we are not particularly
interested in the dynamics of the system, but in the equi-
librium properties, this value is quite good.

The averages of the interesting quantities are taken
over 3000—6000 MCS (1 MCS = 1 Monte Carlo step = 1

attempt per particle) after discarding the first 4000 —8000
MCS's in order to equilibrate the system. Averages over
different runs, using different random number generator
seeds, are also taken in order to improve the statistics of
the results.

U(r) = —E U [1—3(r /a) ] . (3)

In order to compare with the results of Reiter and Moss '

we have calculated the first few Fourier expansion
coefficients for this potential

x K y K+2H
U(x,y)=eU g VHxexp 2vri — —+-

H, K a 3 a 3

(4)

where H, K are integer numbers indexing the sites in the
reciprocal lattice. The first coefficients are

Vo o
=0.583 292 64,

Vi, o= Vo, i
= V—1, 1

V
&
o= Vo 1= V& 1=—0 09428979

Vi, i
=

V2, —1= Vi, —2

=V
1 1=V 2 i=V i 2=0 02540826 .

Note that the first coefficient of the corrugation potential
is in this case only —9.4% of c.U.

The Lennard-Jones potential has been extensively used
for the study of the rare-gas atomic interaction. It is
defined as

612

VI J(r) =4e

Here c is the energy scale of the Lennard-Jones potential.
All energies will be given in units of c and the tempera-
tures as T=k~ T/c. The depth of the attractive well is E

and oa is proportional to the position of the potential
minimum (r;„=2' era ) for VI J(r).

In order to reduce the computer time, we introduce
two cuts in the Lennard-Jones potential:

if r(I'1
V(r) = VLJ(r) for r, & r ( rz

III. THE PAIR CORRELATION FUNCTION
g (r) AND ENERGY E ( T) AT U =0(6)

0 if r)r2 .

Here r, is chosen to prevent particles from occupying the
same cell by assuming that the interaction energy of two
particles is infinite if they are in the same cell. This gives
r& =2a/&3, i.e., the maximum distance between two
points inside of a cell. The distance r2 is chosen so that
the interaction is zero when they are separated more than
the sixth neighbor cell, giving rz =4a /v'3, i.e., the
minimum distance between two sixth neighbors cells, see
Fig. 1. With these definitions the first summation over

In order to reach firm conclusions about the effects of
the corrugation potential U, it is important to test the
liquid structure for U=0. Firstly, that the structure is
not infIuenced by the underlying reference lattice and
secondly that no unphysical features are introduced by
the truncated Lennard-Jones potential. Figure 2 shows
the structure at "full coverage" c =

—,
' obtained after melt-

ing a perfect +3 X +3 structure on the reference lattice
and letting it reach equilibrium in 7000 MCS. It is isotro-
pic with no obvious signs of memory of the orientation of
the initial ordered structure. Both pictures show the
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FIG. 2. Left, snapshot of the simulated liquid phase. Right, same with particles with different number of neighbors n indicated
n )6, n =6, and 0 n (6.

same structure, but to the right an analysis is made show-
ing the number of neighbors each particle has. It is evi-
dent that the liquid has a fluctuating density with open
areas and denser crystallinelike patches of various orien-
tations. The pair correlation, averaged over direction,
g(r) is calculated directly including r up to 13a. As ex-
pected for high coverages, there is no sign in g (r) of the
truncation of the potential VI I at r =4a /&3. Assuming
a priori that g (r) is correct, we can calculate the effect of
the truncation on the internal energy per particle E and
the free energy at high T. Using F = —T lnZ with
Z =Tr[ exp[ —(Ho+ bH)/T] I and expanding to first or-
der in AH /T one obtains

FL~ =Fo —(bH )o+o (1/T),
where the index 0 indicates properties obtained in the
Monte Carlo simulation with the truncated Vl J(r) poten-
tial. The main effect of the cut is a correction to the
internal energy per particle. Equation (7) is valid also at
T~O. The calculated E (T) is shown in Fig. 3, and it is
demonstrated that the energy, corrected for the neglected
contribution from the tail according to (7) using the cal-
culated g(r), agrees excellently with that obtained by
Abraham. Figure 4(a) shows furthermore that our g (r)
for the liquid agrees in all details with that obtained by
Abraham and so does that for the solid, Fig. 4(b).

We conclude that our Monte Carlo scheme gives re-
sults in good agreement with previous calculations and
shows no anisotropy for U =0.

single continuous one. We have not aimed at studying
sufficiently high U to observe this. The phase diagram
was obtained by starting from a single domain +3X +3
structure and also by cooling from the liquid phase. In
the latter case one reaches a (probably) metastable multi-
domain structure shown in Fig. 5 for U=O, T=0. 1 and
c =0.32333. It has clearly no preferred orientation of
the crystallites. To the right is seen an analysis showing
that particles with 5 and 7 neighbors are concentrated
along the grain boundaries. We return to a more detailed
discussion of the possibility that this is a Kosterlitz-
Thouless phase and of a possible hexatic phase elsewhere.

The following several parameters were monitored in
order to display the transition.

(a) The change in slopes of E ( T), see Fig. 3.
(b) We have studied a number of local order parame-

ters. Figure 6(a) shows the temperature dependence of
the average ( ~%'~ ) and ~(IlI)

~

of the local orientational
nearest-neighbor parameter defined on each occupied cell
as

0

LU

O
I—
Ct

IV. PHASE DIAGRAM AS A FUNCTION OF U

In the following we study mainly the case of coverage
c 3

with variabl e corrugation potential and with the LJ
potential favoring the &3X&3 structure with the same
lattice constant, i.e., with o. =3' 2 ' . For all U stud-
ied we find a transition region. Because the pressure is
increasing rapidly in this region, it most probably can be
characterized as a mixed phase region. It is not the pur-
pose of this paper to discuss a possible hexatic phase re-
gion. For very large U the model reduces to a 3-state
Potts model for which it is known that the transition is a

CC
LLj
L -2

lZ
LU

UJ

—3
+ Abraham

I I I

2
TEMPERAT URE T

FIG. 3. The energy per particle as a function of temperature.
The energy (~) corrected for the eff'ects of the cutoff (b,H )o
agrees well with that obtained by Abraham (Ref. 8).
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where the sum over p runs over the number of interacting

respect to a reference axis. These parameters again show
c ear anomalies (upon heating) at T—2 for U=0. In Fig.
6(b) is shown the positional particle fluctuation parameter

around the ordered structure posi-
tion, i.e., the reference lattice site. The paramet ( )

as an anomaly at the low temperature side of the transi-
tion region, again consistent with the anomaly in E ( T) at
T-1.55 for U=U —0. At higher temperatures it goes to the
value 5/36, which is the theoretical value calculated as-
suming a random distribution of the particles inside the
hexagonal cells. We have also considered anoth ter, ex ra-
po a e defimtion of the positional fluctuations (u ), b
fitting the distribution of particles inside the cells to a
Gaussian distribution of the form

Ae
—r2/& u2)

T = 0.45
c = 0.312

We have found that ( u ), diverges at T —1.55 for
U =0. This is physically reasonable, and we preferential-
ly use this definition in the following analyses.

(c) We alc e also followed the long-range decrease of (r)
and that of the orientational order parameter g6(r)
defined as

g6(&)=(+(0)+*(&)) . (10)

0,
0 5 10

DISTANCE r/o

FIG. 4. (a) The paircorrelation function g(r) for the liquid
phase compared with Abrahams (Ref. 16) g (r)+1, thin line. (b)
Same for the solid phase.

The available large-r behavior was not found to be. ex-
ponential, but is better described as an algebraic decay of
t cform

This is demonstrated in Fig. 7(b) together with the tem-
perature dependence of the exponents, Fig. 7(a). Possi-

lar erto
y, we are not able to measure the decay at suffi i 1y a su cient y

arge r to obtain an exponential decay, as expected from
t eory. Here we are primarily using the variation of the
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FIG. 5. Left, the solid form~ . , formed after a quench of a high-T liquid after 2000 MCS, c =0.3233 T =
are formed. Right, same with particles ha

'
5 d 7aving an 7 neighbors indicated by I3 and res

, c =0.3233, T=0.1. Randomly oriented domains

5 —7 and defects are clearly visible.
an, respectively. Grain boundaries with pairs of
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FIG. 6. (a) The local orientationa1 order parameters
I
&'P) I' (square) and

~ & 0') ~' (circle) as a function of T
for U=0. The arrows point toward the relevant axes. Clear
anomalies occur at T-2. Black signatures represent results for
heating from a perfect &3 X &3 structure and open signatures
for cooling from the liquid phase. It shows that crystal growth
and melting is irreversible. (b) The positional fluctuation pa-
rameter ( & r ) —

& r )') la showing an anomaly at T- 1.55 close
to the low-T side of the transition region. The exact high-T lim-
it 5/36 is reproduced, thin line. Notice that upon cooling of the
liquid (open symbols), the formed solid has no correlation with
the reference lattice.

long-range behavior of the correlation functions as an in-
dicator for the melting transition. We have found that
both exponents show a clear anomaly at T=2 for U=O
consistently with the change in E ( T).

The phase diagram obtained in this way is shown in
Fig. 8. Scans performed by varying T or U are indicated
with heavy lines, the dots indicate that the lower phase
boundary is rather more difficult to define accurately. As
expected the transition temperature rises at first linearly
with increasing corrugation potential. This study is the
first of the melting transition at coverage c =

—,'. It is in

FIG. 7 (a) Decay exponents g and g6 for the simple and the
orientational pair correlation functions g(r) —1 and g6(r)/g (r).
Clear anomalies occur at T =2 for U =0. (b) Plot of the loga-
rithm of the correlation functions g6(r)/g(r) and g(r) —1. It
demonstrates that the decay is algebraic and not exponential as
anticipated by Halperin and Nelson (Ref. 4). The symbols o
and ~ indicate the maximum of ln[g6(r)/g (r)] and ln[g (r) —1],
respectively, and the thin lines are guides to the eye.

qualitative agreement with that of Barker et al. for
variable coverage c (—,'.

V. SCATTERING PROPERTIES

The main purpose of this paper is to discuss the behav-
ior of the static structure factor S(q), which can be mea-
sured in an x-ray or neutron-scattering experiment. The
structure factor is calculated as discussed in Appendix A
and defined as

where X =N/3 is the number of particles. It is normal-
ized to 1 for q =0 and approaches 1/N for q —+ao. In
the liquid phase the structure factor can be well fitted by
a sum of Lorentzians and a slightly sloping, Hat back-
ground as can be seen in Fig. 9. However, some small
discrepancies are systematically present. Figure 10(a)
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FIG. 8. The phase diagram for coverage c =
—,
' as a function

of temperature and corrugation potential U. The shaded area
indicates the transition region obtained from the indicated
scans.

shows the evolution of S(q) as a function of temperature
for U=0. We follow three q vectors, see Fig. 1(b). The
column indexed by q (11) shows the results for the q vec-
tor which contains the Bragg peaks at q=(1, 1)qo/3 and

(1,1)2qo/3 of the (chosen) ordered &3 Xv'3 structure of
the reference lattice, q0=4~/(v'3a) is the wave-vector
unit, see Fig. 1. The q(21) column shows a low symme-
try direction and the q(10) column the direction which
contains the Bragg peak at q=(1,0)qo of a possible sub-
strate together with a &3 X &3 Brag peak from the sur-
face layer with the reference lattice structure. The q(11)
sequence shows clearly the transformation of the large

150

100

50

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 9. A typical structure factor S(q) for q=(1,2)qo. The
thin line represents a fit to two Lorentzians and a slightly slop-
ing background. From this the peak position is extracted. As
discussed in Appendix A the density q point is higher in the oth-
er q directions.

low temperature Bragg peaks. They have no width at
T=0, but have developed "feet" at T=0.5. At the
upper transition temperature T =2 these "feet" become
the liquid diffuse scattering S'(q). The structure in the
q(21)S(q) at low T is due to the infiuence of the "feet"
from the neighboring Bragg points. This is evident from
Fig. 1. It is not a signature of liquid ring structure in the
solid phase. At high temperature T =4 the diffuse
scattering forms an isotropic ring as demonstrated by the
three cuts q(11), q(21), and q(10). Close to the melting
point there is indication of some modulation of the ring
(different from that expected for the initial lattice orienta-
tion). This feature needs further study. It probably
disappears if an average is taken over many different
runs.

Figure 10(b} shows that a very similar behavior, at first
sight, is obtained by varying the corrugation potential.
An important difference is the modulation of the ring in
the liquid phase, which for U & 4. 5, shows a clear
memory of the orientation of the underlaying lattice.
This is as expected. Another very important feature is
the persistence of the Bragg peak at q=(1,0)qo. This is
the strongest sign of a lattice modulated liquid. In our
simulation we, of course, do not see the substrate Bragg
peak, but only the contribution from the surface layer.
At the studied potential values no clear sign of peaks
from possible secondary liquid rings around the (10)
Bragg peaks are visible. A third important feature evi-
dent from the series of S(q) in Fig. 10 is that there is no
shift in the peak position of the first peak near the melt-
ing point. An accurate peak position was determined by
Lorentzian fits as shown in Fig. 9. It must be remem-
bered that we are studying the case of constant coverage
and therefore a variable pressure. At constant pressure
the position of the first peak may well move to smaller q
values in the liquid phase. It is therefore quite difficult to
interpret a possible experimentally observed shift of the
peak position, in particular as a sign of a hexatic phase.
The induced contribution to the substrate Bragg peak
S(q&0) has a number of intersting features. The peak in-

tensity of S(q&0} is shown in Fig. 11(a) as a function of
temperature for U = 1 and in Fig. 11(b) as a function of
decreasing corrugation potential. It shows a clear anom-
aly in the transition region (close to the low T side) and in
the liquid phase. The logarithm of the intensity decreases
linearly toward the diffuse scattering of the liquid
S(q&0)~l/N =0.00037 for high T. The behavior as a
function of decreasing corrugation potential Fig. 11(b) is
qualitatively similar. In the Reiter and Moss linear
theory ' the intensity of the induced Bragg peak is solely
dependent on the ratio (U/T), squared. The thin lines,
Figs. 11(a) and 11(b), are calculated using the first Fourier
component Eq. (4). Since the expansion parameter for
the theory is then approximately only —

—,
' of ( U/T), the

linear theory could be expected to apply to all our studied
values of U and T in the liquid region. The fit is excellent
for relatively large U and T, Fig. 11(b). However, for
small U the Bragg peak intensity obtained in the MC
simulation starts larger, but falls off faster, Fig. 11(a). In
this case the corrugation potential is smaller than the en-
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FICx. 10. (a) Sequence of structure factors for U =0 as a function of temperature T (heating), for three q directions: here with vec-
tor q(hk) corresponding to q=(h, k)qo. Notice the disappearence of the &3X&3 Bragg peaks at T=2, and the isotropic liquid
structure factor at high T =4. Examples from the solid, the transition region, and several from the liquid phase are shown. (b) Same
for constant T =4 and as a function of the corrugation potential U (decreasing). Notice the disappearence of the Bragg peaks along
the (11) direction for U &4.5, but the persistence of the (substrate) potential-induced (10) Bragg peak. Compare with the phase dia-

gram, Fig. 8.

ergy corresponding to the melting temperature T~. No-
tice the theory is independent of TM, directly. It is physi-
cally reasonable that the Bragg peak is absorbed into the
diffuse liquid structure factor for temperatures large rela-
tive to U and TM. For small U the mean-square position-
al fluctuation around the lattice sites for the corrugation
potential (r )/a is much larger close to TM. We use
the definition given in Eq. (9), (r ) =(u ),+(r) . In
Fig. 12 is shown the temperature variation of ( r ) /a
for our potential for various U.

An interesting feature is that the Debye-Wailer factor
plot Fig. 13 shows that the peak intensity S(q,o) is a
universal function of the mean-square fluctuation
( r ) /a . Figure 13 shows the same behavior irrespective

of the relative values of U and T. This fact is very valu-
able and can be used to estimate the corrugation poten-
tial, when it is possible to calculate (r ) /a . An experi-
mental determination of S(q&o) as a function of T in com-
bination with a plot like Fig. 12 allows a determination of
U. The arrow at L indicates the Lindemann criterion'
for melting in our case. The transition region in Fig. 8
falls in the range L & (r ) /a ~0.3.

VI. CONCLUSION

The problem of two-dimensional solids, liquids, and
melting has previously been investigated in the limits of
either strong or weak interaction with a supporting sub-
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FICs. 11. (a) Peak intensity S(q&0), on a logarithmic scale as a
function T. Notice the linear behavior in the liquid phase, for
small corrugation potential U = 1. The line indicates the results
of the linear approximation of the theory by Reiter and Moss
(Ref. 21). (b) Same as a function of decreasing corrugation po-
tential U for T =6.

strate and for various coverage. In this paper we have in-
stead studied a plane in phase space spanned by tempera-
ture T and a large interval of corrugation potentials U,
mainly restricting the coverage to being fixed at —,', corre-
sponding to a perfect &3X&3 structure. The melting
transition is found to occur in a monotonicaHy increas-
ing, relatively broad strip in the plane. The phase inside
the strip, the transition region, has not been analyzed in
the detail in this paper. Under the constant coverage
condition used, the pressure is rapidly increasing in the
transition region. This would lead to a mixed phase re-
gion at a discontinuous transition. Further studies are
needed to establish the possible presence of a hexatic
phase, but the different behavior of positional and orien-
tational order parameters is not inconsistent with such a
phase. The main emphasis has been laid on a investiga-
tion of the behavior of the experimentally observable

0.01

0.2 0.4
POSITIONAL FLUC. (r2p/o~

0.6

FIG. 13. A Debye-Wailer plot showing that the S(q&o) peak
intensity is approximately a universal function of the positional
fluctuation parameter (r2)/a' for finite corrugation potential
UWO and for various T. It is defined in Eq. (9). The arrow at L
indicates the Lindemann criterion for melting (Ref. 1). The
transition region in Fig. 8 falls in the range L ~ ( r') /a' ~ 0.3.
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FICy. 12. The calculated positional fluctuation (r~) /a for
different values of U. Notice the close to linear increase with
temperature for constant U and the expected dramatic increase
for U=0. Notice also that for small U(r')/a~ is generally
much larger near the melting point than for larger U.

structure factor. It is found that the position of the first
peak does not change from that of the Bragg peak posi-
tion neither in the transition region nor in the liquid. If
such a shift is observed it is therefore a consequence of a
pressure-density variation, which of course may be in-
directly coupled to the melting and the transition region.
The line shape of the structure factor does not change no-
ticeably from the transition region to well into the liquid
phase. The effect of a Anite corrugation potential is most
clearly seen in the persistence of a Brag g peak at
q= (1,0)qo even in the liquid phase. This is due to the in-
creased probability for (randomly) occupying the imagi-
nary substrate lattice sites. As already emphasized by
Reiter and Moss ' this induced Bragg peak offers impor-
tant possibilities for Ineasuring the substrate potential U
from the scattering data. We have here studied a large
region of U and T. The theory ' is a cummulant expan-
sion and a perturbation expansion in the ratio ( U/T).
The linear approximation predicts a Bragg peak intensity
proportional to (U/T) . This theory fits the data excel-
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lently at relatively large U, close to the melting tempera-
ture TM. For small U the fit is less satisfactory. This
seems at first sight surprising. The reason is that for
small U the positional fluctuations (r ) around the lat-
tice sites increase rapidly above TM. This strongly
influences the determination of a Bragg peak and its peak
intensity. We have found that the logarithm of the inten-
sity decreases linearly with increasing temperature
beyond the transition region. We have further found that
this intensity is a universal function, for various U and T,
of the mean-square displacement (r ) from the lattice
sites. In the solid the exact Debye-Wailer factor is found.
In the modulated liquid another characteristic smaller
factor is found. We have determined the temperature
dependence of ( r ) for some values of U and found a
near linear increasing behavior in the liquid phase. Since
(r ) is strongly dependent on U and T and is easily cal-
culable also for other models, a valuable tool to deter-
mine U has been found.
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APPENDIX: A:
CALCULATION OF THE STRUCUTRE FACTOR

We can consider a system with periodic boundary con-
ditions as a set of X'(X'~~ ) replicas of our original
L XL lattice ordered on a superlattice with lattice spac-
ing La. This "supercell" method was used by Fan et al.
for a calculation of the anisotropic structure factor. Sub-
sequently an interpolation between the available points
were made. Let us discuss a few details of the method.

The structure factor for such a system can be calculated
as

S(q)= iq (xK+x,. )

re=i
&2 2

where the first sum is a sum over the different replicas of
the system, the second sum is a sum over the N particles
on the L XL lattice, Xz is a vector pointing to the origin
of the different replicas, and x; is the position of the N
particles inside the small lattice L XL (the unit cell). Be-
cause the superlattice structure is independent of the
thermal fluctuations we can split the sum into two fac-
tors:

The first term gives a set of Bragg peaks corresponding to
the superlattice structure, while the second one is the
structure factor of a finite L XL system. As a conse-
quence the S(q) of our system will be only different from
zero on a reciprocal lattice corresponding to a triangular
lattice with spacing La, and hence the resolution in the
reciprocal space will depend on the direction of q. In
Fig. 1 we indicate the three directions that have been
studied.

Because we have been working with L =90, we can
only measure 90 points along the three different segments
(0,0)—(1,0), (0,0)—(2, 1), and (0,0) —(l, l). This means that
the resolution is higher along the (1,0) direction than
along the (1,1) direction and the (2, 1) direction in particu-
lar. Statistical fluctuations can be reduced by averaging
over several systems of size L XL. However, in order to
increase the resolution it is necessary to increase the sys-
tem size L. In fact one of the main reasons for using the
Monte Carlo simulation, rather than molecular dynamics
as in Ref. 26, is that much lager L can be studied within
reasonable computer time. We have not used interpola-
tion between points in the structure factor.
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