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Quantum noises in mesoscopic conductors and fundamental limits of quantum interference devices
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We investigate quantum fluctuations of an electron-interference current in a perfectly fabricated,
single-mode conductor. %'e first point out that the magnitude of the Johnson-Nyquist noise at zero
temperature, when expressed as the fluctuation in the electron number, depends on the transmission
coeScient only. %'e then clarify the physical origin of the "excess noise. " Discussions are also given
for a more general case when an interference current is modulated by an external variable I, which
may be either a classical or quantum-mechanical one. It is found that a possible fluctuation of I and
the excess noise generate a new coupled noise. These results are used to discuss fundamental limits of
quantum interference devices.

An electric current in a mesoscopic conductor IIuctuates
randomly for various reasons. For example, the universal
conductance Auctuation is caused by some imperfections
in the conductor. ' It does not vanish even after a long-
time average, so the long-time average is usually con-
sidered. A chaotic fluctuation was also found in some
conductors, which is due to the multimode nature of the
conductors. However, these Auctuations are absent in a
perfectly fabricated, single mode con-ductor, where other
fluctuations of more fundamental origins would be found:
Measured values would Auctuate from measurement to
measurement if a measurement is performed in a finite
detection time. The purpose of the present work is to
study these fundamental fluctuations. We first point out
that the magnitude of the Johnson-Nyquist noise, ' at
zero temperature, when expressed as the Auctuation in the
electron number, depends on the transmission coefficient
only. We then clarify the physical origins of the "excess
noise, " or "quantum shot noise" (QSN). Discussions
are also given for a more general case when an interfer-
ence current is modulated by an external variable I. The I
may be either a classical variable such as a gate voltage,
or a quantum-mechanical one such as a photon number.
It is found that when I has a finite fluctuation, such as a
quantum Auctuation of the photon number, the fluctua-
tion and the QSN generate a new coupled noise. These
results are finally used to discuss fundamental limits of
quantum interference devices.

a. Model structure. Most discussions on electronic con-
duction in a mesoscopic conductor assumed that large
reservoirs are connected to ends of the conductor. '
We also employ this assumption, and take one of the
reservoirs as a source reservoir S, from which electrons
are emitted into the conductor. In general, a part of the
emitted electrons are reflected by the conductor back to 5,
and only the difference between the emitted and reIIected
currents can be detected in usual experiments. In order to
discuss separately a noise arising from random emissions
of electrons and other noises, we consider a structure in
which the reAected electrons go to another reservoir, a
drain D —.The structure is a Mach-Zehnder interferome-
ter shown in Fig. 1, where the "reflected" (or "backward-
scattered") electrons will be detected as a current J and-

the remaining "forward-scattered" electrons as another
current J+ at a third reservoir, a drain D+. The emission
current J is thus the sum J=J++J—.' We further as-
sume that an external variable I acting on the gate region
can modulate J+. This allows us to discuss not only vari-
ous types of noises, but also fundamental limits of quan-
tum interference devices.

The operation principle of our structure is as follows.
An electron emitted from 5 is split into two portions by
the beam splitter (BS). In the gate region an external
perturbation I causes a phase diflerence h, 01 between the
two portions. When I is a classical variable, we assume

where ( is a coupling constant. The above linear relation-
ship approximately holds in many cases, including the
cases when I is a magnetic field, ' a gate voltage, or a
light intensity. " For a quantum I, we expand the density
operator pl of a quantum state of the input in terms of
eigenfunctions of I:

p =Z p""'II.)&I (2)
n, nI

where III„)=I„II„). It is sufficient for the following dis-

BS

FIG. I. Schematic structures of the model device used in the
analysis. The pair of quantum wires compose an electron inter-
ferometer, which consists of the source (5), beam splitter (BS),
gate (G), mode converter (MC), and drain (D+, D ) regions.
The electron subband function in each region is also schemati-
cally plotted. In the gate region, an external input I causes a
phase difference between the split electron waves. The currents
J+ detected by the ammeters vary with the phase difference.
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cussions to know AOt for the eigenstates, pt = ~I„)(I„(,for
which we assume

where w, (t) is a weight function of width r, the detailed
form of which is irrelevant to the following discussions.
We first estimate the Johnson-Nyquist noise (JNN). Al-
though Refs. 4 and 5 reported a formula that vanishes at
zero temperature, a more rigorous treatment'' based on
the Auctuation-dissipation theorem predicted a nonzero
JNN, from which we here calculate the Auctuation of
N+. When the source-drain voltage VSD=O, and if r is
longer than any of the scattering times and the transit
time of an electron, we find

6'N + gag —AT+ (5)

for the JNN at zero temperature, where A is a constant of
order unity, which is determined by a detailed form of ~,.
Interestingly, bN ~i~~ depends only on the transmit
tance. It will be possible to confirm this prediction by a
measurement of the JNN at very low temperatures. In
the following we will discuss other noises, and will find
that they are much larger than the JNN as long as
f(N ~)j )) I [Eq. (8)]. We will therefore ignore the JNN
hereafter.

c. Role of the Pauli principle We consid. er the usual
case, in which (i) the electron system is a normal Fermi
liquid, and (ii) a current is carried by low-energy, single-
particle excitations (SPEs) rather than collective excita-
tions. The mean free path of these SPEs is assumed to be
longer than the distance between BS and MC. According
to the Fermi-liquid theory, we can focus on these SPEs
only, and the other electrons forming the Fermi sea can be
considered as a background. The SPEs are normally in-
duced by a voltage VSD applied between S and D+. At
zero temperature, the energies of the SPEs have a distri-
bution of width =eVSD. Hence, we must keep V~D small
enough to get good coherence. In an ideal case of very

dOr =pl„.
This is a quantum analog of the classical relationship (I),
and approximately holds also in many cases, including the
case when I is a photon number and ~I, ) is a number
state. Having the phase difference h, OI, the two portions
of the electron wave are then superposed at the mode con-
verter (MC), which consists of crossed quantum wires
coupled via a thin barrier layer of 50% transmittance.
Then, the overall transmittance from 5 to D+ and D —are
given by T+ =cos (AO/2) and T =sin (A—O/2), respec-
tively, where the overall phase difference h, O=d Of+BOO.
Here h, OO is an additional phase determined by detailed
structures of MC. Note that T++ T =1, which means,
as mentioned before, no rejections back to the source re
gion occur in our structure, which makes the following
discussion transparent. '

b. The Johnson-Nyquist noise. We formulate a mea-
surement of J+ as a counting process of the number N+
of electrons detected during a detection period r, which is
assumed to be longer than the transit time of an electron
across the conductor. Here,

small VSD, which is actually the case in usual experiments,
the average distance l,~ between the SPEs will exceed the
source-drain distance l sp. "- That is, the SPEs pass
through the conductor one by one. Obviously, the Pauli
principle among the SPEs becomes irrelevant in this low-
density limit. We thus expect a noise formula which takes
the same form for both fermions and bosons in this limit.
On the other hand, the Pauli principle among all electrons
does play a role; it makes the SPEs (quasi)monochro-
matic. Once a monochromatic, low-density particle Aow
is thus obtained, however, the noise depends on neither the
particle statistics nor the detailed features of the host sys-
tem. That is, in contrast to a claim of Ref. 4, the noise in
a mesoscopic conductor is not characteristic of the mesos-
copic system, as explicitly shown below.

d. The case of no fluctuation in I. When a fluctuation
of I is absent, noise formulas for an interferometer were
previously given for both bosons' and fermions. ' How-
ever, the previous derivations used the commutation or an-
ticommutation relations of particle operators, so that the
irrelevance of the particle statistics might not be seen easi-
ly. We here reproduce the formula in a different manner,
which allows us to see the underlying physics more clear-
ly.

Let N —=N++ N, which is the number of emitted
SPEs during r. Since SPEs pass through the conductor
one by one in the limit of low current density, we can safe-
ly assume that there are no correlations among the N
SPEs in each choosing either drain for the destination.
That is, the probability T+ for each SPE to go to drain
D+ is not affected by other SPEs. For a given N, this
leads to the simple binomial form for the probability
Prv(N+) of detecting N+ SPEs in D+ (and, simultane-
ously, N —SPEs in D —):

N w w
Prv (N+) =

N
T~'T

N+

We denote the average over this distribution by the brack-
ets ( . . ). When N has a finite statistical distribution, we
must also take the averages over it, which is denoted by
the curly brackets f j. We then find

f(N ~ )j = [N j T ~ = t(J ~ )j r/e =er T+ Vso/rr A, (7)

where the second and the third equalities, respectively,
come from Eq. (4) and the Landauer formula (which is
valid for the average value). We also find the fluctuation

[(SN+ )j = jaN 'j T+ + bV j 7 + T

Equations (7) and (8) agree with the previous result for
bosons' and for fermions, ' apart from the last equality
of Eq. (7) (which is specific to mesoscopic conductors)
and the first term in the right-hand side (rhs) of Eq. (8)
which was absent in Ref. 14 because it considered the case
of a given N. In the rhs of Eq. (8), the first term is the
scaled emission noise, ' whereas the second is the "granu-
larity noise, "' which comes from the fact that although
the square of the wave function, T+-, can take an arbi-
trary value between 0 and 1 each SPE count is limited to
either 0 or 1. This granularity noise can also be under-
stood as a manifestation of the number-phase uncertainty
principle. ' '
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References 3 and 4 evaluated an excess noise, or quan-
tum shot noise, of a current in mesoscopic conductors.
We can easily see using Eq. (7) that this QSN is
equivalent to the above granularity noise. Hence, the
QSN is not a characteristic noise of mesoscopic conduc-
tors, but is the usual granularity noise. As for the emis-
sion noise, the above references (implicitly) assumed its
absence by assuming that an ideal electron source of no
randomness is connected to the conductor. That is, their
formula corresponds to the special case of Eq. (8) when
{bN j =0. In real systems, however, the statistics of N is
determined by the nature of the whole circuit, and the
neglect of the emission noise is not justified. For exam-
ple, ' when a low-noise battery and a large resistance R
()& trh/e ) of temperature T are connected to the conduc-
tor, the emission noise is super-Poissonian ({RV j & {lV})
when RJ &2kttT/e, and sub-Poissonian ({RV j & {lV})
when RJ & 2ktt T/e. When RJ =2kB T/e, it becomes
Poissonian ({bN j ={Nj), and Eq. (8) coincides with the
dassical shot noise (CSN), {&b'N ~ )j,t = {NjT+. . Al-
though the QSN is always sinaller than the CSN, the to
tal noise can be either smaller (when {8N j & {Nj) or
larger (when jBN j & {lV})than the CSN, depending on
the nature of the whole circuit.

Note that the sub-Poissoni. an emission noise means that
the emitted SPEs are "antibunched, " i.e., SPEs are equal-
ly spaced. ' ' ' If the density of SPEs were high enough
such that l,~ is less than a coherence length (in the sense
of Refs. 13 and 16) l„ this antibunching would be au-
tomatically induced by the Pauli principle among the
SPEs. ' However, since l,p» l&D in usual mesoscopic
conductors under a high-coherence condition (small Vso)
as mentioned before, l,p» l, because l, cannot exceed lgD.
Hence, the antibunching can only be caused by other
means like a large resistance in series or a feedback. Note
also that the antibunching does not conflict with our start-
ing point of uncorrelated T~ because T+ is independent
of the spacing between SPEs when their density is low. If
higher density and good coherence could be simultaneous-
ly obtained, it would become possible to reduce the noise
less than Eq. (8) by introducing some many-body correla-
tion among the SPEs, as pointed out by Yurke. '

e. The case of a ftnt'te fluctuation in I. The above con-
sideration indicates that the emission noise and other
noises which are truly specific to the conductor must be
considered separately. In order to extract the latter noises
only, we introduce a "normalized output variable" R
defined by '

N+ —NR-=
N++N—

which takes a value —
1 ~ R ~ 1. Since both the numera-

tor and denominator are proportional to N, R is insensi-
tive to N, and the emission noise becomes irrelevant as
long as {6N j ( ({Nj) . This can be confirmed using the
relation

{N j = {Nj~f1 +p(p —I ) {bN'j/2{N} 'j = {Nj"

where p is a real number. On the other hand, we now take
a fluctuation of I into account, whose origin may be a
quantum fluctuation, a thermal noise, an input error, and

so on. The statistical distributions of I is given, say, by p&"
in the case of quantal I. Denoting the average over the
distribution of I by the overbar, we find

&R) =sinAOt, {&R)j=&R) =sinhOt,

{&bR')j =(I —&R&')/{Nj+(&R) —&R&)', (12)

where pep= —tt/2 has been assumed for a later conveni-
ence. These are quite genera/ formulas in the sense that
they are valid (i) for any origin of the Auctuation of I, (ii)
for both classical and quantal I, and (iii) for any statistics
of lV las long as {bN j ( ({Nj) j. The second term in the
rhs of Eq. (12) arises from the fluctuation of I only. On
the other hand, the QSN and the Auctuation of I are cou
pled in the first term. This can be seen in the later discus-
sion on a digital logic element, where this coupled noise
will play a striking role.

f. Fundamental limits of quantum interference devices
We now use the above results to discuss the fundamental
I~mits of our model device. Let us first consider the case
when the device is used as a detector of I. ' One may
define the "readout variable" I„by

sin(I, —=R . (i3)
We then find that {&sin(r„)j=sin(I, which reduces for
small I to {&l,)}=I. That is, the average value of I,
indeed gives the average value of I, as is desired. On the
other hand, Eq. (12) yields

{&br'&j =1/g'{Nj+ br' (is)
In the rhs, the second term just reflects the fluctuation of
I, which is a "desired term" because an accurate detector
must reflect any fluctuations of an input faithfully. On
the other hand, the first term represents the fundamental
lower limit of the measurement error. Although this was
previously discussed for a specific example, we have
found the general formula here.

We next consider an analogous case when the device is
used as a linear transformer of I into R or J~. For R to
be linear in I, we must restrict the range of I to

which yields {&R)j=(I. Let us evaluate the upper limit
SNRO of the signal-to-noise ratio at I=I „. „. When the
Auctuation of I is absent, Eqs. (10) and (12) yield

SNR, =~I,„J{N}/2I,, (17)

which increases as J{N}. For example, if we require
SNRp~ 10 when I~„„=lp/10, then {Nj. must be larger
than 4000. In order to get such a large {Nj, it is effective
to connect many devices in parallel and use them as a sin-
gle device. Let Nd,.„be the number of the connected de-
vices, then {Nj =er Nd, „Vso/trh If we assum. e, say,
Vso =0. 1 mV, the requirement {Nj ~ 4000 for the above
example reduces to zNd„-„~ 80 ns. This implies, for ex-

{&(sin(1„—{&sin(I„)j) )j = cos (I/{lV}

+ (sin(1 —sin(I), (14)

which reduces for small I to
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ample, Nd, „~8000 for r =10 ps, or, r ~ 80 ns for
Nd, „=1.

Let us finally consider the case when the device is used
as a digital logic element. One may switch I between
—lp and lp, for which (R) = —I and +I, respectively.
We are interested in the lour limit ERR0 of the error
rate, which may be defined as the rate at which a negative
R is obtained when I =lp+' bl/2, where bl(« lp) is an in-

put error. If the QSN were absent, R =cos(trbl/41p) & 0
for I =lp~ bl/2, so that negative R would never be ob-
tained, i.e., ERR0=0. On the other hand, when BI=0,
the QSN, (1 —(R) )/jNJ, vanishes at I = ~ lp, and
ERRp =0 again. The error rate becomes finite only when
both the QSN and the input error are present, i.e., non-
vanishing ERR0 is a result of a coupling of both noise
sources. We find

To see the jNI dependence, it is convenient to approxi-
mate the rhs by

(i9)

where use has been made of Eqs. (VI 3.4) and (II 9.1) of
Ref. 18. For example, if we require ERR0=10 when

61 =Ip/10, IN' should be larger than S. When Vso =0.1

mV, it reduces rNd, „~160 ps. This implies, for example,
Ndev ~ 16 for r = 10 ps, or, r ~ 160 ps for Ndcv = 1.

Although the above fundamental limits have been de-
rived for the specific model device of Fig. 1, we consider
that most quantum devices based on an electron interfer-
ence are subject to these limits, because the limits have
very fundamental origins such as the granularity noise.

NI2

ERRp = ' g IPtv (N+ )it =to+st/2 ' .
IV+ =0
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