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Fractional quantum Hall effect in high-mobility two-dimensional hole gases
in tilted magnetic fields
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The fractional quantum Hall effect (FQHE) has been studied as a function of magnetic field in a
series of high-quality p-type GaAs-Al.Ga,-,As heterojunctions. The magnetic-field dependence of the
v=% FQHE state, investigated by tilting the samples in the applied field, is consistent with a change
in the spin polarization of the ground state. The behavior suggests that the Zeeman splitting of the in-
teracting carriers forming this ground state is larger in this material, at a given magnetic field, than in
comparable n-type samples. At high tilt angles, structure is observed to emerge in the second Landau

level at v=1%.

Recent experimental investigations of the fractional
quantum Hall effect (FQHE) in n-type GaAs-Al,Ga; — .-
As heterojunctions have demonstrated that the interacting
carriers in certain FQHE ground states are not necessarily
fully spin polarized.' "® Although the FQHE has been
observed in p-type GaAs-Al,Ga;-,As heterojunctions
(hole gases),” this material has been neglected recently
because of its relatively low quality in comparison with n-
type heterojunctions. We present an investigation of the
FQHE in a series of high-quality hole gases as a function
of magnetic field, and study the spin polarization of the
FQHE ground states of filling factors 1 < v <2.

Traditionally, hole gases are grown by molecular-beam
epitaxy (MBE) on the (100) GaAs surface and are doped
in the Al,Ga, - ,As with beryllium. However, it is known
that growth on the (311).4 GaAs surface allows silicon to
be used as an acceptor and much higher mobility material
can be achieved.® We have grown modulation-doped p-
type heterojunctions using this technique and have ob-
tained samples with mobilities of up to u=570000
cm?V “!'s 7! at 50 mK with carrier densities of = 1.2
x10" ¢cm 72° The Fermi energy of such p-type hetero-
junctions is expected to lie within the heavy-hole band, the
twofold degeneracy of which is lifted at the nonzero wave
vector by the interface electric field.'® After growth, the
material was wet etched into standard Hall bar
geometries orientated on the MBE wafer so that the
source-drain current flowed along the [233] crystallo-
graphic direction. Ohmic contact was made to the two-
dimensional gas by means of annealed gold zinc. The
samples were studied in a dilution refrigerator in magnetic
fields of up to 13.5 T using conventional four-terminal
low-frequency ac lock-in techniques with sample currents
of 10 nA. The sample temperature was determined by
means of a calibrated four-terminal germanium thermom-
eter situated in a flux-canceled region of the dilution refri-
gerator mixing chamber.

The Hall (py,) and diagonal (p,,) magnetoresistiv-
ity of sample No. 1 (#=1.20x10"" cm ~2, u=540000
ecm?V 7's ) at dilution refrigerator base temperature
(<40 mK) are shown in Fig. 1. Minima are observed in
the diagonal resistivity at filling factors v=1%, %, 3, 3,
%, 7,and %, in conjunction with quantized plateaux in
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the Hall resistance for the more prominent states. The
hierarchy of FQHE states is apparent; the + and % deriv-
ing from the % parent, and the % and % deriving from
the + parent.''" An unusual aspect of this data, however,

is the absence of the v=% FQHE state, which would

have been expected to have occurred at the field indicated

in the figure. The observation of the + daughter state in

the absence of the T parent is not consistent with the fully
spin-polarized hierarchical model.

Theoretical investigations of the FQHE have demon-
strated that at sufficiently low magnetic fields certain
FQHE ground states can contain interacting electrons
with reversed spins.'? Although the orbital parameters,
such as the Landau-level splitting, depend only upon the
normal component of the applied magnetic field in an
ideal two-dimensional system, the electron Zeeman ener-
gy is independent of the magnetic-field orientation.'?
Thus, tilting the samples destabilizes the reversed spins
and causes such FQHE ground states to undergo a transi-
tion into a more polarized form. Figure 2 shows the be-
havior of the FQHE structure 1 < v <2 of p-type sample
No. 2 (n=1.20%10"" cm 72, p=360000 cm2V ~'s ~') at
50 mK as a function of tilt angle 6—the angle between
the sample normal and the magnetic-field direction deter-
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FIG. 1. The Hall (p\,) and diagonal (p..) magnetoresistivity
of p-type sample No. 1.
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FIG. 2. The FQHE structure 1 < v <2 of sample No. 2 as a
function of tilt angle 6 at 50 mK.

mined from the magnetic-field position of prominent diag-
onal resistivity structure. Only eight tilt angles are shown
in this figure, although 29 were investigated in total over
the range 0° < 6 < 81°. All samples were tilted in situ in
the dilution refrigerator around an axis directed along the
[011] crystallographic direction, perpendicular to the di-
rection of current flow.

In the normal orientation, 6=0°, a strong resistivity
minimum and a quantized Hall plateau were observed at
v=1% together with weaker structure at v= 1 [Fig. 2(a)].
The $+ FQHE state which would have been expected to
have occurred at a total field B4/3=3.7 T was absent. As
the sample was progressively tilted, the structure at v= 7
weakened and by §=41°, when v=% occurred at Bys
=4.7 T, it was no longer discernible [Figs. 2(a)-2(d)].
At this tilt angle, however, a shoulder had started to be-
come apparent between v=7% and v=%. By 0=45°
(B4/3=5.3 T), the shoulder had developed into a weak
minimum and as the sample was tilted further, this
minimum strengthened into a ¥ FQHE state, confirmed
by the simultaneous development of a quantized Hall pla-
teau at h/(%e?) [Figs. 2(e)-2(h)). The I resistivity
minimum and quantized Hall plateau seemed to be large-
ly unaffected upon tilting the sample, although the
minimum weakened slightly.

The tilt-angle dependence of the FQHE structure in
other p-type samples, No. 1, No. 3, and No. 4, was found
to be very similar to that shown in Fig. 2 for sample No. 2,
although the precise behavior, such as the field required to
recover the $ state, depended upon the actual sample
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studied. An investigation of sample No. 3 (n=1.23x10"'
cm "2, p=570000 cm?V ~'s ') at 50 mK revealed that
when this sample was orientated perpendicular to the ap-
plied field, both the 3+ and ¥ FQHE states were absent,
although a strong resistivity minimum and Hall plateau
were observed at v=3. The ¥+ FQHE state appeared
very rapidly as the sample was tilted—a shoulder became
apparent in the diagonal resistivity around v=% at a to-
tal field of only B43=3.8 T (6=7°), and a well-defined
minimum was observed at By;3=4.1 T (=21°). This
minimum simply strengthened as the sample was tilted
further, together with the development of a quantized
Hall plateau. Again, the $ structure was not affected ap-
preciably upon tlltmg The tilt-angle dependence of the
FQHE structure in sample No. 3 (n=1.22x10"'" ¢cm ~2,

1 =450000 cm?V ~'s ") at 50 mK revealed the destruc-
t10n of the ¥ state by 6=44° and the emergence of the %
at a total field B43=6.1 T (6=52°). The % state was
not originally observed in sample No. 4 (n=1.20x10"
cm ~2, 4 =530000 cm?V ~'s "), studied at 85 mK, but
emerged upon tilting. By §=52° the I state had been
destroyed and by B4;3=6.7 T (6=56°) the § started to
develop.

To summarize, in all investigations of the FQHE in
these hole gases, the ¥ FQHE state was absent when the
samples were orientated normal to the field but appeared
as the samples were tilted. The + and ¥ FQHE states
were never observed together in any of these in situ tilting
experiments. The 3 states were not observed to be
affected appreciably upon tilting. It is noted that the di-
agonal resistivity zeros and Hall plateau quantization
remained good even at the highest tilt angles.

Similar behavior has been observed in the magnetic-
field dependence of the FQHE structure in n-type hetero-
junctions. The experimental data presented in Ref. 2 for
an n-type heterojunction of carrier density 1.6x10'!
cm ~2 at 120 mK showed that the ¥ and T FQHE states
were present when the sample was orientated normal to
the field. However, the § state was progressively de-
stroyed as the sample was tilted, and no longer was ob-
served at around B4/3=7 T. Upon further tilting, the 1
daughter state was destroyed prior to the reemergence of
the % , which first became noticeable at around B4/3 =9 T.
The § state was observed to be largely unaffected upon
tilting of the sample. An empirical relationship, B,
=5.51/n, has been proposed to relate the critical mag-
netic field required to destroy the + FQHE state (B.) to
the n-type heterojunction carrier density (nx10'
cm ~2).® This formula suggests that a critical magnetic
field of 6 T ought to be required to destroy the § state in
heterojunctions of carrier density 1.2x10'" cm ~?—the
carrier density of the p-type material presented here.
However, in all of these p-type samples, the + FQHE
state was absent at B4/3=3.7 T with the sample in the
normal orientation and had generally returned by B4/3=6
T, although this emergent field was found to be sample
dependent, as detailed above.

The introduction of a parallel field component into a
heterojunction can enhance the carrier scattering by push-
ing the confining wave function into the interface and can
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increase the FQHE energy gaps by squeezing the two-
dimensional sheet, in addition to increasing the Zeeman
splitting of the carriers.'* It has been shown in n-type ma-
terial that the magnetic-field dependence of the FQHE
structure is insensitive to whether the samples are tilted or
the sample carrier density is changed, demonstrating that
the observed behavior is primarily a result of the enhanced
Zeeman splitting.>> However, it is known that an in-
plane magnetic field can change the Landau-level separa-
tion in p-type material'® and so there remains the possibil-
ity that the extent of Landau-level mixing'® could be al-
tered upon tilting. The persistent strength of the 3 state
and the destruction of the I state demonstrate that nei-
ther this nor the effects of wave function squeezing can be
the cause of the 3 emergence reported here.

The magnetic-field dependence of the FQHE structure
in the hole gases is therefore consistent with the findings
in n-type heterojunctions and with the theoretical investi-
gations. However, the fact that smaller magnetic fields
are required to destroy and return the % state in compar-
ison with n-type heterojunctions suggests that the Zeeman
splitting of the interacting carriers in the FQHE ground
states is larger, at a given magnetic field, in the hole gases.
In contrast to the behavior of the other FQHE structure
that has been observed to undergo a spin transition upon
tilting (at v=*% and % in n-type material>>-), it is noted
that in both n- and p-type material, the v=7% state
remains absent over a finite range of magnetic field.
Furthermore, the + daughter state which is destroyed pri-
or to the reemergence of the %+ parent is not observed to
be recovered at high tilt angles, again in common with
studies of n-type samples. Clark et al.? attributed this to
the formation of a partially polarized rather than a fully
polarized emergent % ground state.

At very high tilt angles, structure was observed to de-
velop in the second Landau level. Figure 3 shows the be-
havior of the FQHE structure 2 < v < 3 for sample No. 3
as a function of tilt angle 6 at 50 mK. At a tilt angle
0=72°, the Hall and diagonal resistivities in this region
were featureless, but by 6=76°, a strong minimum had
appeared in the diagonal resistivity at filling factor v=%
together with weak structure in the Hall resistance [Figs.
3(a) and 3(b)]. Without a quantized Hall plateau, how-
ever, it is not possible to assign this structure conclusively
to the ¥ FQHE state. Upon further tilting, additional
structure was observed to develop on the high-field side of
this minimum [Figs. 3(c) and 3(d)]. A similar effect was
observed in the lower-mobility sample No. 2 (not shown).
In this sample, though, a broader minimum was seen to
appear as the sample was tilted between 6 =78° and 80°,
centered at a slightly higher field than v=3%. The split-
ting that was subsequently seen in sample No. 3 was not
observed in this particular device.

The emergence of this structure is not understood, al-
though several explanations could be considered. As out-
lined above, it is possible that the increased confinement
caused by the in-plane magnetic field enhances the
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FIG. 3. The FQHE structure 2 < v <3 of sample No. 3 as a
function of tilt angle 6 at 50 mK.

electron-electron interactions which drive the FQHE. Al-
ternatively, the parallel field component might change the
Landau-level mixing, thus, increasing the FQHE gaps as
the samples are tilted. It might also be possible for this
emergence to be Zeeman driven; the v=1% FQHE state is
equivalent to the v=3% state in the lowest Landau fevel,
which is thought to be spin unpolarized at low magnetic
fields. > It is puzzling, however, that the + state which is
equivalent to the fundamental + FQHE state in the
lowest Landau level is not observed. The FQHE structure
2<v<3 in n-type GaAs-Al,Ga,;-,As heterojunctions
also appears to be anomalous in comparison with that ob-
served in the lowest Landau level.'” Recent theoretical in-
vestigations have indicated that the g =3 denominator
states are not as pronounced in the second Landau level as
in the lowest Landau level. '8

In conclusion, we have studied the FQHE in a series of
high-quality p-type heterojunctions. The magnetic-field
dependence of the FQHE structure 1< v <2 suggests
that a spin transition occurs in the ground state of the
v= % FQHE state and is consistent with the behavior ob-
served in n-type heterojunctions. The smaller magnetic
fields required to destroy and return the % state in the p-
type material in comparison with n-type heterojunctions
suggest that the Zeeman splitting of the interacting car-
riers in the FQHE ground states is larger, at a given mag-
netic field, in the hole gases. At very large tilt angles,
structure has been observed to emerge in the second Lan-
dau level in the vicinity of v=1%. A quantitative investi-
gation of the tilt-angle dependence of the FQHE energy
gaps determined from temperature activation studies will
be presented elsewhere.
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