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In high-mobility samples, we show that a magnetization instability occurs at filling factor v=2 in the
quantum-Hall-effect regime under the application of a parallel magnetic field. The instability is caused

by feedback from the screened exchange energy of the electrons.

We perform calculations on

Ga,In,_, As-InP heterostructures and show that a surprising jump in the magnetization occurs at exper-
imentally accessible magnetic fields and sample mobilities. This phenomenon is experimentally observ-

able and possible experiments are proposed.

We demonstrate that a two-dimensional electron gas
(2DEG) in the quantum-Hall-effect (QHE) regime at
v=2, where v is the ratio of density to half the total de-
generacy of a Landau level (LL), undergoes a magnetiza-
tion instability when a parallel magnetic field is applied.
For high-mobility samples, when a constant perpendicu-
lar component of the field holds the system at v =2 and
the parallel component of the field is varied, the system
jumps from one polarized state to another at a critical
value of the parallel field.

A system at v=2, in the absence of broadening, jumps
from an unpolarized state to a completely polarized state
at a critical parallel magnetic field when the energies of
spin up lower LL and spin down upper LL coincide.!
However, when the effects of LL broadening and screen-
ing are included, it is not obvious whether the system
changes its polarization gradually from an unpolarized
state to a totally polarized state or there is a jump in
magnetization at some partially polarized state. In this
paper, for a system with small LL broadening, we show
that there is a dramatic jump in the magnetization as the
system changes its polarization due to a varying parallel
magnetic field. To bring out the basic physics, we begin
by considering the simple Hartree-Fock (HF) case of con-
stant broadening and no screening. The spin magnetiza-
tion is defined as

M= ziiz(né-f-nll—n&) , (1)
where pip is the Bohr magneton and / is the ground-state
cyclotron radius and is equal to (#c /eH,)!/?, H, being
the perpendicular component of the applied magnetic
field. Furthermore, in the above equation ny is the filling
fraction of the spin o Nth LL and is given by
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where DF[(E —e%,)/T"] is the density of states (DOS), €%
is the energy of an electron at the maximum of the DOS,
E is the Fermi energy, and T is the broadening of the
LL. For a symmetric DOS, the energy of the electron at
the maximum of the DOS has no contribution from the
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self-energy due to impurity scattering and is expressed in
the HF approximation as follows:?

s;:(}v+%)ﬁwc+%g%f1— SV, lamg, 3)
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where fiwo-(=%eH  /mc) is the noninteracting cyclotron
energy, gupH is the bare Zeeman energy, V, is the
Fourier transform of the bare Coulomb potential, and
Jnum(q) is proportional to the probability amplitude of
scattering an electron between LL’s N and M. Assuming
that the spin down lowest LL is completely occupied, we
obtain from Egs. (1)-(3) and the condition that v=2 (i.e.,
H | is constant), the following expression for the change
in spin magnetization as the parallel magnetic field H| is
varied:
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where D (=D}) is the DOS at Ey. In the above equa-
tion, the second term in the denominator is due to a feed-
back effect caused by the exchange enhancement of the
energy separation g} —¢e{ [see Eq. (3)].

We will consider the situation where the system is un-
polarized when H=0. In Eq. (4) the denominator =1
for the two extreme cases when H =0 and H,— « (i.e,
the completely polarized situation) because in both these
cases the DOS D} ~0. However, for the case when spin
up lower LL and spin down upper LL overlap perfectly,
ie., e(§=81l, the Fermi energy lies at the center of these
LL’s and D} is at its maximum value. Then,
D/} 271?~1/T, and for sufficiently high-mobility samples
the denominator in Eq. (4) will have zeros leading to a
spin magnetization instability. For a strictly 2DEG, in
the HF approximation, the instability condition for a
Gaussian DOS (Ref. 3)is e?/elT">16/7. It is of interest
to note that when the spin magnetization undergoes an
instability, so do the orbital and total magnetization.

Next, we will study other filling factors for possible
magnetization instabilities. For the case where the Fermi
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energy lies in the spin up Nth LL, the spin magnetization
is given by

M= Z”IZ(nN+nN+1—n1$). 5)
Again assuming ny =1, we obtain
dM _ Duig dH /dH, ‘ ©
dH, l_qu(Jl%’N+J1%I+1N+1)ﬁ7TIZ
q
In Eq. (6), the maximum value of the term

D=2D\Dy ., /(Dy+D} ) is obtained for v=2N when
energy separation s,Tv—e}VHZO. Furthermore, for even
integer filling factors, the magnitude of the second term
in the denominator decreases as v increases. This is be-
cause the exchange energy of an electron in the Nth LL is
inversely proportional to the cyclotron radius in that lev-
el. Hence, for n ,\l, =1, the instability condition is best met
at v=2,

We will now proceed to give a more realistic considera-
tion of the magnetization instabilities at v=2 by taking
screening effects into account. For the sake of simplicity
we assume that the screening is static. Then, the energy
separation e} —g{ is given as follows:

ef—ao =fwc—gupH + 3 Ex(q (7)
q
where
Ex(q): e(q,O) (J()Ono J“nl—JmnO) . (8)

We consider systems where only short-range scatterers
are important (e.g., Ga,In,_, As-InP heterostructures)
and perform our calculations assuming a Gaussian DOS.
We find that the DOS obtained using the self-consistent
Born approximation (SCBA) is not appropriate owing to
the sharp cutoffs of the semielliptic DOS predicted by
this approximation.? The dielectric function is treated
within the random-phase approximation (RPA) by ignor-
ing in the polarizability the vertex corrections due to im-
purities. The inter-LL screening is treated exactly within
this approximation. However, the intra-LL screening is
taken to be proportional to the DOS so as to satisfy a
Ward identity. The resulting intra-LL screening is of the
Thomas-Fermi type and is thus an overestimation of the
actual screening. Then, we obtain

E(q,0)=1+ Vq EﬂgPA(q’O) > (9)
ag
where
- ny—Hngy
ea(0.0)= DT o 3 TR G+ (10

where the prime denotes omission of the case N=M.
The last term in the above equation corresponds to inter-
LL screening.

To understand our results, we present the following an-
alytic expression for dM /dH j when inter-LL screening is
ignored:
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" The value of dM/dH| in the above equation could

diverge, i.e., an instability can occur because the second
term in the denominator resulting from the exchange

contribution is negative. Furthermore, the last term in
the denominator, obtamed from de(q,0)/dH , is also
negative for values of n that are small or >0.5. For
SCBA, the derivative of the dielectric function with
respect to H| diverges when the Fermi energy is at the
edge of the DOS. A Gaussian DOS does not show this
unphysical effect and is thus a better choice.

The change in spin magnetization as the parallel mag-
netic field is varied, i.e., dM /dH |» is similar to the static
long-wavelength limit of the spin susceptibility Y5 of a
2DEG.* If one were to ignore screening then only ex-
change energy contributes to the enhancement of y, over
its value for noninteracting electrons. However, upon in-
cluding static screening effects, dM /dH is enchanced
not only due to screened exchange as in the treatment of
Xs» but also due to change in screening, an effect not
present in X;.

To illustrate the magnetization instability effect we
choose Ga,In;_,As-InP heterostructure for which the
ratio of the Zeeman energy (=~4.06u;H) (Ref. 5) to the
bare cyclotron energy (=#eH /0.047m,c) (Ref. 6) is
~0.1. For this system we expect the instability to set in
at experimentally accessible values of the magnetic fields.
However, for GaAs heterostructures this ratio is much
smaller and thus they are not experimentally suitable sys-
tems to observe the effect in question. In Ga,In; ,As-
InP heterostructures the dominant scattering mechanism
is alloy scattering and this leads to low mobilities. We
performed our calculations for two different densities
(0.7X10" and 1.4X 10" cm ~2) and at two different ex-
perimentally achievable values of the mobility u (70000
and 100000 cm?/V s). The broadening I is taken to be
(efi?w, /2m0.047m,1u)"/? which is half the broadening ob-
tained within SCBA.? For the sake of simplicity, the ex-
tension of the wave function in the direction perpendicu-
lar to the 2DEG is assumed to be of the Fang-Howard’
type, even though the electron can penetrate the InP lay-
er. The average extent of the wave function was taken to
be 100 A and the dielectric constants of both
Ga,In;_,As and InP layers were taken to be 13.8. The
magnetization results of our HF calculations are
displayed in Fig. 1(a) and those for the screening given by
Egs. (9) and (10) are shown in Figs. 2(a) and 3(a). Al-
though for the higher-density sample the instability
occurs at a higher field, the features are qualitatively
similar to the lower-density case. These calculations were
performed by using the fact that the magnetic field is a
single-valued function of the magnetization and also by
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using the symmetry that E.=(g}+e})/2. We will now
explain these figures qualitatively. Owing to the non-
linear nature of Eq. (7) with respect to the energy separa-
tion £ —e{, more than one solution is possible for the en-
ergy separation or the magnetization. Qualitatively, one
can argue that small (large) energy separation implies
small (large) values of n{ —n} and large (small) screening
when screening is considered. From Eq. (7), we see that
both small and large energy separations (or spin magneti-
zations) are consistent with it. In all the figures multiple
solutions exist. Among the possible magnetization solu-
tions at a given magnetic field, only the one that corre-
sponds to the lowest energy is realized physically. We
compute the total energy E of the system using the fol-
lowing expression:

—_— 0
E—¢€}y

T , (12)

EF
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where X%, is the electronic self-energy due to
screened exchange. We plot the total energy curves in
Fig. 1(b) for the HF case and in Figs. 2(b) and 3(b) for the
screened HF case. In all the figures a jump in the magne-
tization is indicated by dotted lines. The figures, in
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FIG. 1. (a) Hartree-Fock result of the dimensionless spin
magnetization Mml?/up vs parallel magnetic field H for
Ga,In,_,As-InP heterostructure for the following parameter
values: density, 1.4X 10'! cm™2; mobility, 100 000 cm?/V s; bare
g factor, 4.06; band mass, 0.047m,; average extent of wave func-
tion, 100 A; and dielectric constants of both layers, 13.8. (b) HF
value of the dimensionless total energy E /%o, [see Eq. (12)] vs
parallel magnetic field H| for the same parameter values. The
dotted lines indicate jump in magnetization.
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FIG. 2. (a) Plot of the dimensionless spin magnetization

M7il%/ug vs parallel magnetic field H for Ga,In, ,As-InP
heterostructure for the screening given in Eqgs. (9) and (10). The
values of the density and mobility are, respectively, 0.7 X 10'!
cm™~ 2 and 70000 cm?/V's. The values of the other parameters
are the same as in Fig. 1. (b) Plot of the dimensionless total en-
ergy E /fiw. [see Eq. (12)] vs parallel magnetic field H| for the
screening given in Eqgs. (9) and (10). The dotted lines indicate
jump in magnetization.
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FIG. 3. (a) and (b): same as in Figs. 2(a) and 2(b) but for mo-
bility of 100000 cm?/V s.
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agreement with previous arguments, show an increase in
the size of the jump in magnetization as the mobility in-
creases.

This magnetization instability can be observed by per-
forming transport measurements. If one were to measure
the diagonal resistivity p,, as a function of parallel mag-
netic field, in the absence of a magnetization instability,
one would expect the value of p,, to vary smoothly from
zero value at H; =0 (unpolarized situation) to a max-
imum value for the symmetric situation (e} =¢}) and
then back to zero value at large values of H, correspond-
ing to the completely polarized situation. However, if an
instability sets in there would be a sudden change in p,,
for cases similar to the ones shown in Figs. 2 and 3. For
situations corresponding to a jump from an unpolarized
state to a totally polarized state, there would not be any
change at all in p,,. In this context, we would like to
point out that the measurements of p,, under tilted fields,
carried out by Nicholas et al.,® were done on low-
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mobility samples at v>2. We think that due to these
reasons no instability was observed by the authors. One
could also measure the nuclear spin relaxation rate as a
function of parallel magnetic field.® Since the relaxation
rate is approximately proportional to the product, at the
Fermi energy, of the DOS of opposite spin LL’s, a sudden
jump in the relaxation rate would be a signal for magneti-
zation instability. Alternately, one could also measure de
Haas—van Alphen effect and thus obtain the magnetiza-
tion directly.!® Lastly, one could perform cyclotron reso-
nance experiments'! to detect this magnetization jump.
However, there could be complications due to coupling
between different subbands.!?
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