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Single-electron tunneling in systems of small junctions coupled to an electromagnetic environment

A. A. Odintsov, * G. Falci, ~ and Gerd Schon~
Department ofApplied Physics, Delft University of Technology, Lorentztveg J, 2628 CJ Delft, The Netherlands

(Received 6 June 1991;revised manuscript received 6 August 1991)

A simple approach is proposed to describe the influence of the electromagnetic environment on the
sequential single-electron tunneling in systems of ultrasmall tunnel junctions. As an application we con-
sider a system of two junctions in series coupled to an Ohmic environment. An increase of the eniviron-
ment resistance (i) widens the Coulomb-blockade region and (ii) suppresses the peaks that the conduc-
tance shows as a function of the gate voltage. The environment is responsible for an unusual tempera-
ture dependence of these peaks, which may explain recent experiments with GaAs lateral microstruc-
tures.

Tunnel junctions with small capacitance C show
single-electron effects. The tunneling of one electron can
appreciably alter the conditions for the tunneling of other
electrons. This gives rise to correlations between single-
electron tunneling (SET) processes, which lead to various
experimentally observable phenomena. ' They show up
most pronounced at low temperatures k~T &&e /2C in
junctions with small tunnel conductance O' '. Single-
electron effects were observed, for instance, in systems
composed of two junctions in series, where they lead to
the so-called Coulomb staircase in the I-V characteris-
tic' and to a periodic dependence of the conductance on
the gate voltage coupled to the central electrode. A
similar dependence, predicted for the electron transport
through a quantum dot, was recently observed in GaAs-
Al„Ga& As microstructures. More complex and, from
a practical point of view, more interesting systems also
have been studied. One example is the turnstile device,
where the transfer of single electrons is controlled by an
external ac signal, and which can serve as a current stan-
dard.

Much of the theory of single-electron effects in com-
posite systems of junctions was based on a perturbative
("orthodox") treatment, ' ' or generalizations of it '

which take into account energy quantization effects. In
this case it is assumed that, after the electron tunneling,
the charge distribution in the leads attached to the junc-
tion and in other elements of the circuit relaxes instantly.
Charging effects then show up only in systems of tunnel
junctions. On the other hand, they also show up in single
junctions, provided that the charge relaxes in the elec-
tromagnetic environment. ' '" This relaxation depends
on the low-frequency impedance Z(co) of the environ-
ment. If Z(co) for co«eV/R is small, ReZ(co) «hie,
the relaxation is fast, CReZ(co) «A'C/e, and single-
electron effects are weak. In the opposite limit the relax-
ation is slow, and the tunneling electron feels the (back)
inhuence of the electromagnetic field which was created
by the tunneling current, and which depends on the re-
laxation processes in the environment. ' The interaction
of the electron with this field leads to the Coulomb
blockade of tunneling at low voltages V & e/2C.

The charge relaxation in the environment also
inIIIuences the characteristics of systems of tunnel junc-
tions. Since they are of a high practical interest, we gen-
eralize here the nonperturbative quantum description of
the environment, which was given for a single junction in
Refs. 10 and 11, to the case of multijunction systems. We
"onsider a circuit composed of normal junctions and arbi-
trary linear elements [impedances Z(co ) and voltage
sources] forming the electromagnetic environment. " In
the absence of tunneling the state of the system is com-
pletely determined by the charges n, e (n, is an integer) on
the internal electrodes (i = I, . . . , N) of the system and
the applied voltages. These charges can change only due
to single-electron tunneling. The tunneling current can
be determined in second-order perturbation theory in the
tunneling Hamiltonian using, for example, the approach
of Devoret et al. " The expression for the tunneling
current I; . between two neighboring electrodes i and j
contains two terms corresponding to the rates of forward
(I, . ) and backward tunneling (I . , ). It can be rewritten
in the form

Xexp i ' t+([P; (t) —P, (0)]P; .(0))

where

(2)

X exp (E, E)t—.—

)
—G(T)

2vre ~ exp( Aco/T ) —1
(3b)

6(T)
y;/(t)= ' f dE; f dE f(E, )[1 f (E )]. —

2+he'
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Here V; J—:V; J.(n„. . . , n~) is the difference of the elec-
tric potentials of the two electrodes before the tunneling.
It depends on the charge state (n„. . . , nz) of the sys-
tem. The tunneling conductance of the junction involved

is G ', and f(E) is the Fermi function. The average
( . . ) over the equilibrium voltage fluctuations of the
environment is determined by the impedance Z; J(co) of
the circuit between the electrodes i and j,

AT/A
sinh( m Tt /fi)

2

This implies that for the calculation of the tunneling rates
only two integrations are needed, rather than three as in
Ref. 11.

We consider the limit, where the tunneling conduc-
tances of the junctions are small in comparison to the ad-
mittances of the environment,

G '«ReZ; . '(co) for fico(eV, (6)

%coX coth cos(an't ) i si—n(cot ) . (4)2T

There is a complete analogy to the problem of a single
junction. The only extension is that the impedance seen
by one junction Z; . is modified by the capacitances of the
other junctions. We remark that the expression (2) of the
tunneling rates as an integral over time' has a technical
advantage over the approach used in Ref. 11, where an
integration over the energy was used, since the analytic
expression for the function y; (t) is known

In addition we ignore, as is done in nearly all cir-
cumstances, higher-order tunneling processes in the junc-
tions. These conditions are usually satisfied in the experi-
ments (see, e.g., Ref. 13). In the limit (6) the time be-
tween subsequent tunneling events is much larger than
the relaxation time of the environment. It implies that
there exist no quantum correlations between subsequent
tunneling events, and that the tunneling is sequential.
The tunneling process thus can be described in terms of
rates I;. of transitions between the charge states of the
system.

Next we introduce the probability distribution function
p(n„. . . , n~) to find the system in the state
(nt, . . . , n&). This function satisfies the balance equa-
tion

8 p(n„. . . , nz)=g [I'; J.(n, . . . , n;+ I,nj —1, . . . , nz)p(n„. . . , n;+ I, nj —1, . . . , nz)
lWJ

I; j(it —i, . . . , rt~ )p(it t, . . . , ii~)] . (7)

The rates I; depend on the state of the system
(n „.. . , n~) via the voltages V; . . The solution of Eq. (7)
enables us to determine the tunneling currents through
the junctions

p(n„. . . , n~)[l; J(n„. . . , n~)

ment consists of resistors in the source-drain (R ) and gate
(Rg) parts of the circuit. They cause fluctuations of the
transport voltage (V) and gate voltage (Vg). Under the
conditions

Cl RTI

I, ;(nt—, . . . , njv)] .
2- R/2

Equations (7) and (8), combined with the transition
rates I;~. [Eq. (2)], describe the dynamics of single-
electron tunneling in an arbitrary system of junctions and
arbitrary linear environment —provided that the tunnel-
ing is weak as given by (6).

We now apply the formalism to the single-electron
transistor' composed of two tunnel junctions in series as
shown in Fig. 1. The state of the system is characterized
by the charge ne of the common electrode of the junc-
tions. In the absence of fluctuations the voltages V,
(= Vo t) and V2 (= Vt 2) across the left and right junc-
tions for the given state n are

C
I (2) 2 (&) ( ) g g2

where Cz —=C& +C2+ C . The electromagnetic environ-

V/2

0-

V/V

FIG. 1. Influence of the transport voltage fluctuations on the
I Vcharacteristics of th-e SET transistor for Q =0. The inset
shows the equivalent circuit of the system. The curves from top
to bottom correspond to the different values of the environment
resistance h/e R = ~,5,0.5,0.05,0.005,0. The other parame-
ters R» =R», CI =C2, V, —:e/(CI+C2), I, = V, /(R»+R»).
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C « min(C„Cz), R /R «[min(C„C2)/C ], (10)

the Auctuations of the transport voltage dominate over
those of the gate voltage in the whole frequency range;
and the impedances Z, ( =Zo, ) and Z2 ( =Z, z ) seen by
the junctions can be presented in the form'

1 1
Zi (q)(to}—. +.iarCy+E itoC', i~)+1/R i (~)

GRT

I I ~ I I I I I I1

0.8-

0.6-

0.4

0.2

(b) (c)

where C', =CzC, /Cz, C2=CzC2/C„R', =R(C2/
Cz), R2=R(C, /Cz), and e~+0. The first term in

the expressions (11) leads to the orthodox Coulomb
effects due to the discreteness of the charge on the central
electrode. The second term describes the charge-
relaxation process due to the dissipative electromagnetic
environment. In the limit considered, where we ignore
fluctuations of the gate voltage, it has the same functional
form as for a single junction. This, of course, is just a
manifestation of the fact that the relaxation of charge
after the tunneling is determined by the effective circuit
formed by the resistance of the environment and the ca-
pacitances of the junctions.

We can now evaluate the I-V characteristics of the
single-electron transistor. For simplicity we consider the
symmetric case ( C, =Cz =C ) at zero temperature. At
low voltages

i Vi & V,
"'—= '

2C
Qg

Qg—:min
~ C~ Vs ne ~—

n
(12)

the tunneling current vanishes, independent of the
source-drain resistance R. The complete blockade of tun-
neling arises since the Coulomb energy of the state after
the electron tunneling to or from the central electrode
and after the charge relaxation is higher than the energy
of the initial state. At higher voltages

V(0) & V & V( ]. ) V( & )—
t (13)

such a state has energy lower than the initial one. How-
ever, the state arising just after the tunneling but before
the relaxation is higher in energy than the initial state.
Therefore the I Vcharacteristi-cs in the region (13)
strongly depends on the rate of charge relaxation and
hence on R. With increasing R the Coulomb blockade
region gradually expands from

~
V~ & V,

' ' for small
R « h /e, to

~ V~ & V,'" for large R &&h /e, as shown in

Fig. 1. In the second limit the Coulomb blockade occurs
for any value of V . The buildup of the blockade is ac-
companied by the total shift of the I-V curve towards
higher voltages. If the temperature is increased to values
of order T—e /2C, the Coulomb blockade and the
Coulomb staircase in the I-V curve are washed out.

Another interesting property of the system is the
dependence of the conductance G ( Vg ) (for low transport
voltage V~O) on the gate voltage. It is periodic in the
gate voltage. ' ' In Fig. 2 we show results for various
values of the resistance of the environment and different
temperatures. For a symmetric system (C, =C2=C) at

low temperatures the conductance near the maximum is

G( Vg, T)= g(T) E( Vg )/T
2(RTi+RT2) sinh[E(V )/T]

2

foi E(V )&T«
2C

(14)

Here RT, and RT2 are the tunneling resistances of the
junctions, and E(V )=(0.5 —Qs/e)e /2C, where Q is
defined in Eq. (12). The function g ( T) is the normalized
conductance of a (hypothetical) single junction with ca-
pacitance C'=2C in the presence of an Ohmic environ-
ment with the resistance R '=R /4 [see (11)]:

g(T)=
m' P(1+R 'e /h) (~R'C'T)

I (1.5+R'e /h)

g(T)= 8C'T
me

1/2

for T « . . . (15a)R'C'

2

8C'T

2for, , «T«R'C' 2C' (15b)

From (15) we easily find the height G,„(T) of the con-
ductance peaks. In the limit R'~0 the results (14) and
(15a) reduce to that of Ref. 5. If the resistance is low
enough, R ' «h /e, the conductance G,„(T) has a weak
power-law dependence on the temperature (15a). In the
opposite limit R ' ))h /e the conductance drastically di-
minishes with the decrease of temperature (15b) for
T &e /2C'. In this limit the Coulomb blockade occurs
irrespective of the value of the gate voltage.

We consider now the fluctuations of the gate voltage.
They dominate over the fluctuations of the transport
voltage in the whole frequency range if

Cg &) max(C, /C~, C~/C, ),

(16)

R~/R ))[ max(Ci, C2)/C ]2 .

0 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4 -0.4-0.2 0 0.2 0.4

Cgag/e

FIG. 2. Temperature dependence of the conductance G as a
function of the gate voltage Vg for di6'erent values of the envi-
ronment resistance (a) h/e R = ~, (b) 5, and (c) 1. The parame-
ters are RT=R»+R», C& =C2. For the curves from top to
bottom we have T/(e /2C) =2.5,0.25,0. 1,0.05,0.025,0.01.



13 092 BRIEF REPORTS

In this case the impedances seen by both the junctions are
the same. Moreover, they are still described by the ex-
pression (11),with the parameters

C'=C~(C, +C2)/C, R'=R(C /C~) (17)

Thus the results obtained so far can be easily generalized
to the present case. When neither (10) nor (16) are
satisfied both the transport and gate voltages fluctuations
have to be taken into account, and (11) is replaced by the
true impedances, as seen by the junctions.

So far we have not considered the higher-order pro-
cesses of electron tunneling through both the junctions
(cotunneling), ' ' which give rise to the electron trans-
port in the Coulomb-blockade region and yield a finite
conductance of the double junction at zero temperature. '

As far as cotunneling is concerned, our system is qualita-
tively equivalent to a single junction with a resistor in
series. Using the result of Ref. 15 for this system we con-
jecture that the rate of cotunneling decreases rapidly with
increase of the resistance R. A further study of the
inAuence of environment on electron cotunneling is still
needed.

To conclude we discuss the possibilities of observing
the described e6'ects in an experiment. If conventional
(metallic) tunnel junctions are used, the main problem is
to place a high Ohmic resistor with low stray capacitance
in the vicinity of the junction (see Chap. 4.1 of Ref. 1).
The best result, to our knowledge, has been achieved by
Kuzmin and Haviland, ' who fabricated thin-film resis-
tive leads with the resistance of 95 kQ and a stray capaci-
tance of 6 X 10 ' F/pm. For these parameters the
eIfects of the electromagnetic environment can be detect-
ed reliably.

Single-electron tunneling effects also arise in semicon-
ductor nanostructures containing quantum dots. ' ' If
the energy-level spacing Ac. in a quantum dot and the
traversal time r„are small enough [EE« max(eV, T)
and rt, ')&max(eV, T)], then one can neglect the effects
of discreteness of levels '9 and of finite traversal time.
Under these conditions our approach describes the elec-
tron tunneling also in semiconductor systems. Our esti-
mates show that the e6'ective impedance of a narrow
one-dimensional electron gas channel can be large
enough [ReZ(co)-h /e ] to give rise a pronounced effect
of the environment. Such an eItect could be observed in
the temperature dependence of the conductance peaks in
experiments similar to those of Refs. 6 and 18. In the ex-
periment' the spacing between the energy levels is large
and our approach is not sufhcient. However, a combina-
tion of the mechanism proposed here with that con-
sidered in Ref. 19 can explain the observed increase of
the heights of some conductance peaks with temperature.
A further analysis of electron tunneling in semiconductor
nanostructures taking into account the discreteness of en-
ergy levels, ' finite traversal time, and coupling to an
electromagnetic environment is needed.

After completion of the present article we learned that
Grabert et al. ' have derived a similar extension to the
case of networks of tunnel junctions. However, they have
not pursued the analysis as far as we did, for instance, to
the result shown in Fig. 2.
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