PHYSICAL REVIEW B

VOLUME 44, NUMBER 23

15 DECEMBER 1991-1

Wannier excitons in low-dimensional microstructures: Shape dependence
of the quantum size effect

Yosuke Kayanuma
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan
(Received 26 July 1991)

The shape dependence of the quantum size effect of the Wannier exciton is clarified by a simple varia-
tional calculation for a model of microcrystal with cylindrical shape. According to the change of the ra-
tio of the radius of the section and the length of the cylinder to the effective Bohr radius of the exciton,
the motional state of the exciton changes from three-dimensional to quasi-two-, one-, and zero-
dimensional. It is shown that when there is a large anisotropy in the shape of the microstructure, the
spatial extension of the exciton wave function along the relatively free coordinate shrinks from the bulk
value, reflecting the low dimensionality due to the strong confinement along the axis perpendicular to it.

Recently, the optical properties of low-dimensional
semiconductor microstructures have attracted much in-
terest. The exciton state in these systems can be strongly
modified from that in the bulk materials due to the spa-
tial confinement of the wave function. This is called the
quantum size effect (QSE). The QSE becomes salient
when the characteristic linear dimension of the micro-
structure is reduced to the value comparable to the
effective Bohr radius of the exciton aj. For example, the
changeover from the three-dimensional exciton to a
quasi-two-dimensional one was clearly observed in the
absorption spectra of the GaAs thin films.! It has been
pointed out that the low-dimensional modification of the
exciton is advantageous for application to optical de-
vices®? and recent research activities extend further to
the microfabrication of even lower-dimensional micro-
structures such as quantum wires* and quantum dots.’

There is another recent topic on mesoscopic systems
called microcrystals.® The microcrystal is the analog of
the quantum dots but, at present, one can attain one or
two orders of magnitude smaller size by various growth
techniques of the microcrystals than by the microfabrica-
tion of the quantum dots. In the theoretical analysis of
the QSE in microcrystals, the shape of the microcrystals
is regarded as approximately spherical”® although in
some materials the shape is highly anisotropic.

The QSE of the Wannier exciton is strongly dependent
on the shape or the dimensionality of the microstructure.
In view of the rapid development of the crystal growth
and microfabrication techniques, it will be worthwhile to
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make clear the shape dependence of the QSE from a
unified standpoint. As a step toward this goal, I discuss
here this problem with the variational calculation in a
simplified model system.

Consider an electron and a hole confined in a micro-
crystal of cylindrical shape with the radius of the hor-
izontal section R and the length L as shown in Fig. 1. By
changing the values of R /aj and L /aj, we can sys-
tematically study the change of the motional state of the
exciton between various limiting situations, namely, the
limit of three dimension (the bulk crystal) for R /ag >>1
and L /aj >>1, the quasi-two-dimension (the quantum
well) for R /aj >>1and L /aj <1, the one dimension (the
quantum wire) for R /aj S 1and L /aj >>1, and the zero
dimension (the quantum dot) for R /ag S1and L /ag 5 1.
We adopt the effective-mass approximation with the iso-
tropic effective mass m, and m, for the electron and the
hole, respectively. For simplicity, the penetration of the
wave function outside the microcrystal and the distortion
of the Coulomb interaction due to the difference of the
dielectric constants between the microcrystal and the ma-
trix are neglected here.

The coordinates of the electron and the hole are denot-
ed as (r,,z,) and (rj,z,), respectively, where r; is the
two-dimensional vector in the horizontal section and z; is
the value of the z axis. In order to study the lowest state,
it is expedient to adopt the coordinate system, r, =|r,]|,
ry=lr,l, r,,=|r,—r,|. The Hamiltonian is then given
by

2,2 2
Ty re+reh 82 82

2
9z,

&, 1

arhz y arh

2mh Fp¥eop arhareh

(1

the dielectric constant. As for the trial wave function, we
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WP,y P FonsZesZn ) = NI o(yr, oy, )cos(mz, /L )cos(mz, /L )exp{ —a[r} +(z,—z,)*]'*} , 2)

which satisfies the boundary condition that ¥ should vanish at r,=R, r, =R, z,=*xL /2, and z, ==L /2. In the above
equation, Jy, is the zeroth-order Bessel function with ¥ =2.404 83 /R, N is the normalization constant, and « is the vari-

ational parameter which determines the spatial extension of the internal motion of the exciton.

The variational principle requires one to minimize
r,tr,
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under the normalization condition, where the weight W(r,,r,,r,,) is given by

WP,y Py ton V=41 by /{[ (P + 12— 12 1[(r, — 1, 2 — 72, 1}12 4)

By introducing the variables r=z,+z,, 0 =z,—z,, the
integration over 7 can be carried out analytically and the
integration over the remaining four variables was carried
out numerically.

In the limit L /aj — o, our model reduces to that of
Brown and Spector.” They showed how the exciton bind-
ing energy increases from the three-dimensional value in
the limit R /aj — o to the one-dimensional value in the
limit R /ag—0. As is well known, the binding energy of
the one-dimensional exciton diverges.!® As R /aj de-
creases, the optimizing value of a once decreases slightly
from the bulk value af  and then increases to infinity in
the limit R /ajf—0. On the other hand, in the limit
R /af — o, the model reduces to that studied by Bastard
et al.'! The binding energy increases from the three-
dimensional value in the limit L /ag— o to the two-
dimensional value in the limit L /af—0. The two-
dimensional exciton has a binding energy four times
larger than the threg—ldimensigrllal value. The parameter
a increases from aj to 2aj as L /aj decreases from
o to 0. Our variational function (2) bridges these two
limiting cases. Note that the term ‘‘binding energy” has
well-defined meaning only when R /ag-— and/or
L/ag— .

Let us see how the energy and the wave function of the
exciton changes as L /ag is decreased from o« to O for
fixed values of R /aj. Roughly speaking, this corre-
sponds to observing the change from the three dimension
to the two dimension in the case R /aj >>1 and from the
one dimension to the zero dimension in the case
R /aj <<1. In Fig. 2, the energy shift AE(R,L)
=E(R,L)—E(R, ) due to the confinement along the

FIG. 1. Illustration of the dimensionality d of the micro-

cylinder model.

axis of the cylinder is plotted against L /aj with the
effective rydberg energy Eg, as the unit of energy. For a
fixed value of L /aj, AE(R,L ) becomes much smaller for
smaller values of R /aj because of the compactness of
the quasi-one-dimensional exciton.

The dimensionality-dependent changeover of the exci-
ton state is clearly seen in Fig. 3 where the optimizing
value of a is plotted against L /aj for fixed values of
R /af. For R /ag=10, a increases roughly from the
three-dimensional value a=~ag "' to the two-dimensional
value azZa}}"_l as L /ag is decreased from o to 0. On
the other hand, in the case R /aj =0.1, a decreases from
the quasi-one-dimensional value (a=1.86a 1}‘*1 in this
case) for L /ag — o to nearly zero as L /aj is decreased.
Every curve takes the minimum value at around L ~2R
and tends to the value for the strictly two-dimensional
flat disk at L /a}=0. The present author!? studied the
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FIG. 2. High-energy shift AE(R,L)=E(R,L)—E(R,») of
the lowest state of the exciton in the microcylinder due to the
confinement along the axis.
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FIG. 3. The optimizing value of a plotted against the nor-
malized length L with the normalized radius R as a fixed param-
eter.

QSE in a spherical microcrystal with the same type of
variational wave function as Eq. (2). In that case, a de-
creases mongltonously from the three-dimensional
value a=aj to the zero-dimensional exact value
a=0.4980. . .ag "as R /ag tends to 0.

The longitudinal and the transverse extension of the
wave function are calculated as

EehE[<w|(ze_zh)2|\y)]l/2 (5)
and
P =((W]r31W))2, 6

respectively. In Fig. 4, 7,, /ag is plotted against L /ag.
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FIG. 4. Normalized transverse extension of the internal
motion of the exciton in the microcylinder.
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The curve for R /ag =10 almost coincides with that cal-
culated by Bastard et al.!! for R /aj = . Namely, it in-
terpolates the limiting values of the three dimension
F,=V2aj for L/aj—>o, and the two dimension
¥, =V'3/8a} for L/a}—0. In the limit of thin wire
R /ag <<1, 7,;, tends to the asymptotic value 0.69R in-
dependently of L /aj, which is the value for the uncorre-
lated motion of the electron and the hole in the plane per-
pendicular to the axis of the wire.

In Fig. 5, Z,, /aj is plotted against L /aj. The curve
for R /ag=10 extrapolates to the three-dimensional
value Z,,=aj for L /aj — . In the limit of thin slab
L /ag<<1, Z, tends to the asymptotic value
(1/6—7~2)12L ~0.255. . .L independently of R /aj,
which is the value for the uncorrelated motion of the
electron and the hole in the direction perpendicular to
the surface of the slab. Note that for R /aj <<1, Z,;, be-
comes small and rather unaffected by the confinement in
the z direction even for relatively small values of L /aj.

From Figs. 4 and 5, we find a general correlation be-
tween the internal motion of the Wannier exciton and the
anisotropy in the shape of the confining microstructure.
Namely, when there is a large anisotropy, the spatial ex-
tension along the relatively free coordinate shrinks from
the bulk value due to the strong confinement along the
coordinate perpendicular to it. The spatial correlation
between the electron and the hole along the latter coordi-
nate becomes weaker while that along the former even
stronger.

The oscillator strength of the optical transition per
unit volume f; for the lowest state normalized by that of
the bulk exciton f,, is given by the formula!?

_m |y avl’
fl/fex_ % .f (r,r,O,z,z) s (7)

where the factor proportional to the photon energy is
neglected. In Fig. 6, the calculated f,/f., is shown.
See how the low-dimensionality enchances the oscillator
strength per unit volume.

A little care must be taken in evaluating the asymptot-
ic value of f, in the limit L /ag—> . In the case
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FIG. 5. Normalized longitudinal extension of the internal
motion of the exciton.
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L /aj >>1, the confinement condition along the z axis
can be approximately considered to work on the transla-
tional degree of freedom to the exciton in this direction.
The low-lying eigenstates are then specified by the sub-
band index n(=1,2,3,...) for the center-of-mass motion
together with the quantum numbers specifying the inter-
nal motion. The oscillator strength f, for the nth sub-
band with the lowest internal eigenstate is then given by

8 1

I 2n+1)? 72
where f is the oscillator strength of the corresponding
eigenstate for the cylinder with the infinite length. It
should be noted that f; does not tend to f but tends to
0.81f even in the limit L/aj}— o: The oscillator
strength for the lowest eigenstate in the infinite cylinder
is distributed to the closely lying excited states of the
center-of-mass motion. (Note that ¥2_,f,=f.) This
leads to a somewhat paradoxical situation in the emission
spectrum since the transition probability does not tend to
that of the infinite cylinder in the limit L /ag— . The
same argument also works in the confinement along the
direction perpendicular to the axis. An analogous
phenomenon has also been noted in the QSE of micro-
spheres.”?

The spatial extension of the internal motion of the exci-
ton has an importance in determining the physical quan-
tities such as the exchange splitting or the diamagnetic
shift. Recently, optical investigations of the microcrys-
tals of anisotropic materials such as Pbl, (Ref. 14) and
Bil; (Ref. 15) have been carried out. Their shapes are re-
garded as slabs or thin disks rather than spheres. In ad-
dition, the effective masses m, and m, are also strongly
anisotropic in these materials. The analysis of the experi-
mental data of these anisotropic microcrystals with the

f, n=1,2,3,... (8)
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FIG. 6. The oscillator strength per unit volume normalized
by that of the bulk exciton.

extension of the present model will be presented else-
where.
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