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We present a real-space method for performing the operations that involve the nonlocal parts of the
Kohn-Sham Hamiltonian in a first-principles plane-wave total-energy calculation. In contrast to the
conventional reciprocal-space formulation, where the number of operations required to compute the
nonlocal contributions to the energies, forces, and stresses scales as the cube of the system size, the nu-

merical work to compute these quantities with our real-space algorithm scales as the square of the num-

ber of atoms in the unit cell. The scheme, which can be applied to any potential expressible as a sum of
separable terms, uses an approximate method to project the nonlocal potential on the core region of each
atom. Errors introduced in the projection step are extremely well controlled and will not be a cause of
problems in practical calculations. We have implemented the method in a conjugate-gradient total-
energy program and, for illustrative purposes, demonstrate that the method produces excellent results on
a two-atom cell of silicon.

Since its introduction in 1985 by Car and Parrinello'
the first-principles molecular-dynamics method has estab-
lished itself as the method of choice for performing
plane-wave pseudopotential calculations on large sys-
tems. One of the novel features of the approach is that
self-consistent solutions to the Kohn-Sham Hamiltonian
are obtained by direct minimization of the Kohn-Sham
functional. The minimization process can be accom-
plished either by introducing fictitious dynamics to
evolve the wave functions to their ground state, ' or by
use of steepest-descent and conjugate-gradient methods.

An important part of the ef5ciency of the Car-
Parrinello method stems from the use of fast Fourier
transform (FFT) methods. Terms in the Kohn-Sham
Hamiltonian arising from the local potential and kinetic
energy are diagonal in real and reciprocal space, respec-
tively, and FFT techniques allow many parts of the
molecular-dynamics algorithm to be performed in
0 (MN lnN) operations, where M is the number of occu-
pied bands and X is the number of plane waves used to
expand each Kohn-Sham wave function. Indeed in the
case where the pseudopotential is purely local the only
sections of the Car-Parrinello algorithm which scale less
favorably than 0 (MN lnN) are associated with band or-
thogonalization steps which require 0(M N) operations.
In the more general case where the pseudopotential has
nonlocal components, there is a second part of the
molecular-dynamics method which scales as the cube of
the system size, concerned with evaluating nonlocal con-
tributions to the total energy, forces, and stresses. Con-

ventionally these quantities are evaluated in reciprocal
space and require 0(mMN) operations where m is the
number of atoms in the unit cell.

The molecular-dynamics approach is being used to in-
vestigate even larger systems and the stage has already
been reached where nonlocal and orthogonalization
operations have become the dominant parts of the calcu-
lation. In general the prefactor associated with the non-
local operations is larger than that for the orthogonaliza-
tion steps, especially for finite-temperature simulations in
which the forces are computed on every time step. It is
therefore of great interest to devise a method which im-
proves the performance of the nonlocal parts of the pro-
gram. Recently there has been a move to generalize se-
parable potentials to include multiple nonlocal projectors
per / value ' which can both improve the transferability
of the potential and reduce the number of plane waves
per atom required to converge the calculation. This de-
velopment increases the proportion of time spent per-
forming nonlocal projections and provides further
motivation for developing an improved algorithm for
computing the nonlocal contributions to the energy.

In this paper we present a novel real-space approach
for performing the nonlocal operations in a Car-
Parrinello calculation. The method allows the nonlocal
parts of the calculation to be performed in 0(mMP)
operations where P is the number of operations required
to perform a real-space projection of the potential, and is
independent of system size. Our scheme is both accurate
and eKcient and promises to greatly reduce the overhead
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where ~, is the position vector of atom i, cG+i, „are the
plane-wave coefficients, j& is a Bessel function of order I,
and where the sum over G runs over all lG+kl & 6
where 6 „is the plane-wave cutoK For each value of l

and m construction of the quantity ZI requires order N
operations per atom per band. Thus the total nonlocal
energy of the system can be obtained in 0 (mMX) opera-
tions where m is the number of atoms in the cell. The
magnitude of the prefactor is directly proportional to the
number of I and m values for which ZI must be comput-
ed. The Hellmann-Fenyman forces on all the atoms can
also be computed in 0 (mMX) operations but compared
with the energy the prefactor is about three times as
large, refIIecting the fact that there are three components
to the force for each atom.

It has been understood for some time that there are ad-

vantages in performing the nonlocal operations in real
space instead of reciprocal space. ' In a real-space for-
mulation we would write for the quantity Zi in Eq. (2b)

= J, , gi(r —~;)I'i (8. ..$, )

X+k „(r)dr . (3)

The fact that gi(r) is zero for lrl ) r, ensures that Zi can

for performing nonlocal operations in large molecular-
dynamics calculations.

Nonlocal pseudopotentials are usually implemented in
molecular-dynamics programs using a separable form
generated, for example, using the procedure suggested by
Kleinman and Bylander. Following the notation of
Gonze, Krackell, and Schemer the real-space form of se-
parable pseudopotential may be written as

+I
U(r, r') =g g Fi Fi* (0„$,)gi(r)g&(r')

l m= —l

XYi (8,, , $, ),
where $ and m are orbital and azimuthal angular momen-
tum quantum numbers, respectively, Y& are spherical
harmonics, g&(r) are radial projection functions which
vanish beyond some critical core radius r„and EI is an
angular momentum-dependent energy. In order to com-
pute the contribution to the nonlocal energy for the ith
atom from band n in the conventional reciprocal-space
formulation we would write

be computed in real space via Eq. (3), in a time which is
independent of the system size. Thus it ought to be possi-
ble to compute the total energy and its derivatives in real
space in O(mMP) operations where P is the number of
operations required to perform the integration in Eq. (3).
However, in practice it is not obvious how Eq. (3) should
be used to compute Z& . The essential difficulty is that
for practical purposes 0'i, „(r) is only known at a discrete
set of points, %i, „(1),where 1 corresponds to the mesh
vectors of the real-space FFT grid.

It is instructive to examine the difference between Z&

and a quantity UI which is the simplest possible esti-
mate for ZI given the constraints of the discrete Fourier
mesh. We write

I) —„hagi( 1 &; l)&i (11i,~A ,
)—

1

X %i, „(1), (4)

where Q „h is the volume associated with each mesh
point and the sum runs over all 1 for which ll r, l

&r,—.
The right-hand side of Eq. (4) can be recast to read

U, =ggX, (I +G+k)cG+„„,
G r

where II I are the set of lattice vectors which are re-
ciprocal to the real-space Fourier transform mesh vectors
I1I and where the sum over G includes all vectors for
which lG+kl &6,„. Let us define the smallest nonzero
value of

l
I

l
to be I, . If wrap around error is to be avoid-

ed when operating with the local potential on the wave
function in the Car-Parrinello method, the Fourier trans-
form grid should strictly be chosen so that I,)46 „.
Comparing Eqs. (2) and (5) we see that the real-space esti-
mate of Zi~ suggested by Eq. (4) has a type of wrap
around error caused by the sum over the nonzero values
of I in the second sum in Eq. (5). This error can in gen-
eral be quite substantial because there is no reason to ex-
pect g&(q) and hence A, i (q) to be small for wave vectors
of order 46,„. A further conclusion of significance
which may be drawn from Eqs. (4) and (5) is that the
value of Ui is independent of the value of gi(q) for wave
vectors in the range 6 „(q (y where y = I

&

—6
Our strategy for estimating ZI is based upon the idea

of replacing gi(r) in Eq. (4) with a new radial projection
operator yi(r) which eliminates the wrap around error
which is evident in Eq. (5) by ensuring yi(q) is zero for
large values of wave vector. The price to pay for this
truncation of y&(q) is that y&(r) is now no longer zero
outside the core region. However, we can amply com-
pensate for this difficulty, by slightly increasing the
volume of the Fourier grid which is summed over, and by
exploiting the complete freedom which is available in
defining y&(q) for q in the range G,„&q &y to maxim-
ize the weight of the real-space projector in the core re-
gion of the atom. We have found that generating yi(r)
following the four-step process outlined below produces
an excellent scheme for computing nonlocal energies and
forces in real space.

(I) Select the plane-wave cutoff G,„which is to be
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used in the solid-state calculation.
(2) Set y/(q) =(&(q) for 0 & q & G,„and y/(q) =0 for

(3) Select a real-space cutoff radius Ro, generally about
1.5-2.0 r, .

(4) Variationally select y& (q) for G,„&q & y by
minimizing

I= f [ry&(r)] dr . (6)

As a consequence of the fact that the new potential is
zero by construction for q )y we now have the identity

Z/ =& .,h&y/(11 r;l)l—'/ (~/ .. , 0/ .)
l

Xe, „(r)dr (7a)

or

is estimated by including only those terms where 1 lies in

the sphere defined by ~1
—r, & Ro. The error in our esti-

mate, 6, is associated with all the FFT mesh points
which lie outside the sphere of radius Ro and can be ap-

proximately written as

b, = f, ,

y, (r v—, )F, (0. ..$, )

X~I/k „(1), (7)
i(6+k).v,.X C CG+k, n (7b)

where the sum over I runs over all space. In practice ZI
~ where

W, (a+k) = f "r'y, (r)~, (
~
~+k

~
r)dr .

Ro
(7c)
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For large r the spherical Bessel functions are oscillatory
and decay like 1lr The .object of step (4) is to variation-
ally select y& to minimize 8 I and hence minimize the er-
ror b. Numerical tests indicate that W/(q) can be made
to be totally negligible for very modest choices of Ro over
the entire range of wave vectors 0 & q &6,„. The varia-
tional optimization in step (4) of the generation process is
the key to accurate and efficient calculation of nonlocal
energies in real space. The prefactor for performing the
summation in Eq. (7) is such that the real-space projec-
tion technique will offer a performance advantage over
the conventional approach when there are more than
about 10 atoms in the unit cell.

As it stands Eq. (6) is not a practical form for computa-
tion of gl. However, it is straightforward to recast the
variational step as an integral equation for yl of the form

0

(b)
« i & l—2
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FICx. 1. (a} and (b} depict the reciprocal-space form of the
l = 1 and I =2 components, respectively, of the projector func-
tions for the separable silicon potential. The solid lines show
the original projectors g&iq) while the dashed curves show the
forxn of gl(q} derived following the prescription set out in the
text.

q(A ')

FIG. 2. Reciprocal-space form for error estimate function
8'&(q} defined in Eq. (7c}. The dashed and dotted curves corre-
spond to the I = 1 and I =2 cases, respectively.
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TABLE I. Comparison of nonlocal energies and forces for a
two-atom cell of silicon calculated in real and reciprocal space
using a conjugate-gradient total-energy program.

Energy (eV)
Forces (eV/A) atom no. 1

Reciprocal space Real space

—10.685 519 7 —10.685 513 9

Z

Forces (eV/A) atom no. 2

1.290 944
1.290 942
1.290 944

—1.290 992
—1.290 990
—1.290 991

1.290 895
1.290 892
1.290 894

—1.291 024
—1.291 022
—1.291 024

f A (q, q')yi(q')dq'= qy&(—q)

—f 3 (q, q')y((q')dq', (8)
max

where q is in the range G,„&q & y and where

Ro
A (q, q')=q q' f jI(qr)r j&(q'r)dr .

0
(8a)

The left-hand side of Eq. (8) is a known quantity and
y&(q) is readily obtained for q between G,„and y by
discretizing q and q' and treating Eq. (8) as a matrix
equation.

Figures 1(a) and 1(b) depict the form of gl(q) and g~(q)
for a silicon pseudopotential with nonlocal p and d com-
ponents generated using a variation of Kleinman and
Bylander's scheme. The potential had a cuto8' radius
r, =0.95 A and yI(q) was generated using Ra=1.8 A,
G,„=7.24 A, and y=17.85 A '. The correspond-
ing error estimate functions W&(q) are shown m Flg. 2.
The high quality of the real-space projection technique is

assured by the fact that the maximum value of W&(q) is
five or six orders of magnitude smaller than maximum
value of gi(q).

We have implemented the real-space nonlocal potential
scheme in a conjugate-gradient total-energy code. As a
further illustration of the method we have performed two
calculations of energies and forces for a two-atom cell of
silicon using the Kleinman-Bylander potential discussed
above. In the first calculation nonlocal operations were
performed in reciprocal space while in the second nonlo-
cal projections were evaluated entirely in real space. The
cell we considered had an optic phonon displacement and
used atomic positions ~&

= (0. 1,0. 1,0. 1)ao and
~2=( —0. 1, —0. 1, —0. 1)ao, where ao=5. 427 A is the
equilibrium lattice constant of silicon. Table I summa-
rizes the results. It is evident that results from the real
and reciprocal-space calculation are in excellent agree-
ment. Nonlocal contributions to the total energies com-
puted by the two methods agree to 6 peV per cell, while
nonlocal contributions to the forces agree to about 50
peV/A. It should be emphasized that there is nothing
special about the two-atom cell considered here and that
the real-space method is equally applicable to cells of ar-
bitrary shape and size.

In conclusion, we have presented a practical scheme
for performing the nonlocal projections in a total-energy
calculation in real space. The method will substantially
reduce the computational cost of Car-Parrinello calcula-
tions on large systems.
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