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Power absorption at metal surfaces
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We calculate the surface power absorption for various models of the electromagnetic fields near jelli-
um metal surfaces, using both the d-parameter formalism and Fermi's golden rule. With Na as a test
case, the absorption from an incident electromagnetic wave is examined over the frequency range be-
tween zero and twice the plasma frequency. The nature of the surface power absorption is clarified by
separating it into contributions in which the excited electrons are either photoexcited into vacuum or
backscattered into the bulk. We find that the total surface power absorption is well represented by the
sum of these two processes, except where the bulk plasmon exists as an undamped excitation. We also
show the relationship between our microscopic theory and earlier phenomenological approaches.

I. INTRODUCTION

The d-parameter theory of nonlocal corrections to
Fresnel optics has undergone considerable development
over the past decade. Following the pioneering calcula-
tions of Feibelman for jellium metals, ' which provided
impressive agreement with the photoemisson data from
Al of Levinson and Plummer, ' there have been contin-
ued refinements and extensions of the computational pro-
cedures, as well as additional confirmations of their ex-
perimental relevance. In this paper we explore several
implications of the theory that further illustrate its physi-
cal content. The emphasis is on the evaluation and inter-
pretation of the imaginary part of the d parameter.

For a jellium model of a metal the algebraically sim-
plest way to express the d parameter is as the center of
mass (measured, say, from the jellium edge) of the screen-
ing charge distribution:

d =fdx x5p f dx 5p .

Here x is the coordinate along the surface normal and the
uniform positive background of the jellium lies in x &0.
The distribution 5p=5p(x, co) represents the linearly in-
duced, nonretarded, screening response of the electrons
to a uniform field applied along the surface normal at fre-
quency co. The real part of d can be thought of as an
effective location of the surface, but the interpretation of
the imaginary part of d, Im(d), is less obvious although
one knows that it is related to dissipation. We aim to de-
velop this connection more fully by both algebraic manip-
ulations and model calculations. To simplify the analysis
we limit ourselves to jellium models, where only surface
effects can provide a mechanism for light absorption.
Then the computations, once one introduces a mean-field
treatment of the many-body interactions, can be done
with no further approximation.

We explicitly show how Im(d) can (usually) be calcu-
lated from the efficiency of photoexcitation of electrons
into various Anal-state channels. The basic idea is to
reexpress Im(d), which describes the total optical absorp-
tion in jellium models, in terms of a sum of golden-rule

transition rates, where the forms of the final electronic
states are chosen to represent the various excitation chan-
nels. Then one can quantify as a function of photon ener-

gy how much of Im(d) is determined by the excitation of
photoemitted electrons and how much by the excitation
of electrons that propagate into the bulk. The relative
size of these contributions is a sensitive function of both
co and the shape of the surface barrier that holds the
bound electrons in the metal. Surface photoabsorption
can also excite bulk plasmons over a limited range of co.
Although this contribution is included in Im(d), we have
not found a way to express it in a golden-rule form.

As we will acknowledge in detail later, there have been
many previous estimates of the spectral strength of pho-
toexcitation efficiencies. In particular the work of En-
driz and that of Persson and collaborators ' have
served as guides to the present approach. However, En-
driz used a hydrodynamic approximation for the excita-
tion fields while Persson and collaborators only examined
low frequencies where the static form of the excitation
fields suffices. Our detailed analysis improves on their
work primarily by incorporating a better description of
the electromagnetic fields near a jellium metal surface,
both below and above the bulk-plasmon energy.

In Sec. II we present the equations that define our
model and the quantities it can determine. Much of the
algebra is relegated to an appendix. Then in Sec. III we
show the results of our model calculations and discuss
their implications, applications, and limitations. Finally
in Sec. IV we brieAy relate our approach to some alter-
nate formulations.

II. BASIC EQUATIONS

We begin by expressing the average rate of Joule heat-
ing in several ways. First we define it when a mono-
chromatic field is present as

I (co)= Re f d x I E*1

2A

where 3 is the surface area, Re denotes "real part of,"
and J and E are the complex vector amplitudes of the
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I = (1 —e)e~E;„,~ ~t~ sin Olm(d), (3)

current density and total electric field, respective1y. In
the Appendix we show, for a jellium model with no bulk
dissipation subjected to an incident p wave at angle 0,
that'

@=1 —co /co (5)

the bulk dielectric function of an electron gas with plas-
ma frequency co . In Eq. (3) only Im(d) depends on the
microscopic details of the surface.

We also show in the Appendix how one may (usually)
transform I into

where E;„, is the incident field amplitude and t is a
Fresnel transmission amplitude, I =%co 1/r

(6)

with

2 cosO

e cosO+ )/E slil 8
(4)

where 1/w is a golden-rule transition rate. For a jellium
model with a fiat surface, I /r can be considerably
simplified since only the normal component of the field
can cause transitions:

2m d K dk ~dk'f f f nz(1 ni,—) ~M~5(ez+fico —ei, )
(2~)2 o 2m o 2~

2
eR

2@le
—E;„, ~t~ sin 9, (7)

where K is the (conserved) electron wave vector parallel
to the surface while k, k' are wave vectors for motion nor-
mal to the surface, and the nk are occupation factors re-
quiring at zero temperature that the eigenenergy c& be
below the Fermi energy e~. The (one-dimensional) ma-
trix element M is

where the ~q&k) are eigenstates of motion along x, nor-
malized to 2m times a 5 function on k and a (x ) is a scaled
form of F. (x) given by

a (x)=a+( I —e)r)(x), (9)

where the dimensionless, but complex-valued i)(x) starts
from zero far out in the vacuum and ends at one deep in
the bulk.

Finally we can express I in terms of a photoexcitation
yield Y if we introduce the incident Aux of photons

F =
I E;„,I'cos()/&co . (10)

Then

I =AcoFY .

The specification of excitation channels for Y is made
when one chooses the final states contributing to Eq. (7),
since

(12)

We have carried through a series of evaluations of Eq. (7),
based on di6'erent models of the surface barrier. In each
case we use for the spatial variation of E„(x)results from
the codes of Kempa and Schaich; ' ' i.e., i)(x) in Eq.
(9) is calculated using the same surface barrier. This con-
sistency is a necessary (but not sufficient) condition for
the equivalence of the various expressions of I . The lack
of such consistency is a serious limitation in Endriz s cal-
culations.

The first model system we consider uses an infinite bar-
rier to confine the electrons in the metal. All the orbitals
then have the same form

yk(x) =2 sin(kx), 0 (x, (13)

where the origin for x is now at the infinite barrier. We
put the energy zero at the bottom of the bulk band, so the
eigenenergy is simply

(14)

where we distinguish the energy of normal motion, c.k,
from the total energy ez. The form of (13) is sufficiently
simple that a considerable part of the analysis can be
done analytically, ' ' ' but the model aHows no photo-
emission at all.

Our second model system uses a finite, single-step bar-
rier to remove this constraint. Electron states bound in
the metal appear as

2 sin( kx +5) 0 (x,
(15)

'~~+
y e '~x ~ ~ O

(x)= ' (16)

where x =0 is at the step and (A' /2m)(p +k )= Vo is
the step height of the potential-energy barrier and equals
the sum of the Fermi energy and the work function. The
phase shift 5 =tan '( k /p ) and amplitude P=2 sin5 are
easily found from matching the value and derivative of
yk across x =0. All the initial states have the form (15),
and so do the final states whose normal energy is below
Vo.

When %co exceeds the photoemission threshold,
Vo —ez, a new excitation channe1 opens and one must
consider separately transitions into two orthogonal but
degenerate states. We write these two states as

te 'g 0(x
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e+'~ +re '~ 0&x
te '~ x &0,(x)= ' (17)

where

p2 2 g2 2

Vo& = +Vo
2m 2m

(18)

and again the matching coefficients are easily determined.
We have changed in Eqs. (16) and (17) the wave-vector la-
bel from k' to either g or f, which are the wave vectors
for free motion either inside or outside the metal. The y&
are the appropriate final states for photoemission and are
normalized to (g&lp& ) =2ir5(f f'), ' —while the ps
represent electrons that propagate into the bulk and are
normalized to (ys. lys ) =2ir5(g —g'). Transitions into
the y of Eq. (17) or the yk of Eq. (15) are called back-
scattering events.

The two models described so far have simple barrier
shapes that allow analytic solutions to Schrodinger's
equation. However, a more fundamental approach would
specify the form of the positive background charge alone
and then calculate (rather than prescribe) the surface
potential-energy barrier. Our third model follows this
approach by using the potential-energy barrier self-
consistently calculated by Lang and Kohn' in a scheme
that includes a local-density-functional allowance (LDA)
for the inhuence of exchange and correlation on the
single-particle orbitals. The barrier shape is only known
numerically, and likewise the eigenstates. However, the
asymptotic forms of the Pk's are the same as in Eqs.
(15)—(17) so the normalizations and orthogonality, which
are set by the long-range behavior, are the same as they
are there. One must numerically integrate Schrodinger's
equation through the surface region (where the
potential-energy function varies with x) in order to find
the matching coefficients.

Having described the electron states, let us reexpress
the yield into particular channels by substituting Eq. (7)
and Eq. (10) into Eq. (12). For photoemission we obtain

r

ltl sin 0 I dk I z
l~PE cos8 f A'co

remark that we will consider the effect of two different q
functions in Eq. (9) for the Lang-Kohn barrier model.
The first is calculated, as for the infinite barrier and
single-step models, within the random-phase approxima-
tion (RPA), while the second is more consistently deter-
mined by using a time-dependent LDA. The latter pro-
cedure treats the optical response on the same basis as
the ground state. Not only does this produce different
values for il(x), but also there is an additional contribu-
tion to the matrix element (8). Its derivation is given in
the Appendix.

III. RKSUI.TS

i)(x &0)=1—e'~

where

2 2
2

CO CO

2

(20)

(21)

0.2

In all our model calculations we choose parameters for
the jellium so it mimics Na. For the infinite barrier mod-
el the description of the bulk density by r, =3.99 fixes the
only free parameter aside from the frequency, which we
measure by ratio to the bulk plasma frequency co . Fig-
ure 1 plots various estimates of Im(d) for this model cal-
culated from the (presumed) equivalence of Eqs. (3) and
(6). Note from Eqs. (3) and (5) that Im(d) & 0 when e & 0;
i.e., when co(co .

In the simplest calculation we ignore the spatial varia-
tion of the field and set a to one. Then the matrix ele-
ment M in Eq. (8) using the eigenstates of Eq. (13) is sim-
ply M =2iiik'k/men. The resulting Im(d) diverges at cu

and is everywhere much too strong. Next we use a non-
self-consistent but spatially varying estimate of a as pro-
vided by the single-step hydrodynamic model. ' One
writes il(x &0) as

X e(ey —E„)e(e„+A'67 —ep )e(EI, + fico Vo ), —

(19)

where a=e /iiic, and the three e functions ensure that
the initial state is occupied and that the final state is
above eF and possesses sufhcient normal energy to propa-
gate in the vacuum. The backscattering yield YBs has the
same general form except for modifications of the last e-
function argument and the replacement off with g or k',
depending on whether the final normal energy is above or
below the vacuum level, respectively. In all cases the in-
tegral over the parallel energy ez can be done analytical-
ly since K does not enter the matrix element. Note, too,
that the dependence on the photon angle of incidence
comes only from the simple factors in the large
parentheses. '

As a final technical point before turning to results, we

0.0

FICi. 1. Absolute value of the golden-rule estimate of Im(d)
for the infinite barrier model vs photon frequency co. For the
solid curve, the scaled field a = 1 and the results have been re-
duced by a factor of 10 to fit in the graph. For the dashed curve
the single-step hydrodynamic field is used for a. The points
come from an evaluation based on the RPA a. For all cases
only backscattering events contribute.
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with P =—,'Uz and vz the Fermi velocity. The q function
is slowly varying when co is near u, which dramatically
suppresses the absorption. However, the inconsistency of
this calculation becomes apparent above m ~here its
predictions diverge when the plasmon dispersion implicit
in Eq. (21) enters the particle-hole continuum for
m/m =1.2. This deficiency occurs in Endriz's calcula-
tions, too, and is only removed by allowing the absorp-
tion to self-consistently damp out the plasmons.

The results for such a calculation, using the RPA q,
are also shown in Fig. 1. There are three regions of dis-
tinct behavior. Below co, Im(d) is very small and has no
sharp structure. For m &~ & ~LD where m&0=1.48m& ts
the onset of Landau damping for the RPA plasmon, '

Im(d) is larger and growing as co~cotD. Finally for
~) coLD, Im(d) smoothly decays. Calculations cannot be
reliably done in the near vicinity of the boundary fre-
quencies co and coLD, so we have not plotted cases where
the numerical uncertainty probably exceeds the size of
the symbol. It can consequently be dificult to tell if
Im(d) diverges at a boundary. Such difhculties become
worse for the more sophisticated models to which we
now turn.

Figure 2 shows results for the single-step model. We
keep I; =3.99 and impose a work function of 2.7
eV=Acoo, which sets a threshold. Photoemission can
only occur above coo. The separate contributions of back-
scattering and photoemission channels are quite diIterent
close to co but become nearly equal above coLD. Note,
too, the large increase in absorption strength compared
to Fig. I, at least above threshold.

Finally, in Fig. 3 we present the analogous results for
the Lang-Kohn barrier model, using the q from a RPA
response calculation. For this case r, =4 and the photo-
emission threshold is at coo/co =0.51. The absorption
strength is somewhat stronger than in Fig. 2 and the two
channels contribute with roughly equal strength for most
frequencies above threshold.

The striking new feature is the appearance of a reso-

I0.6— I I I I I l f I I I I

0 0

0.4—

0.2—
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0.0 ~+ ++t&

I I I I I l l I I I

0
0@8 (t)

1.0 1.5 2.0
~/u

FICx. 2. Absolute value of the golden-rule contributions to
Im(d) for the single-step barrier model vs photon frequency ~.
The + "s and 0's are the separate contributions of the back-
scattering and photoemission excitation channels, respectively.
The latter vanish below the threshold at mo/m~ =0.46.
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nance in each contribution to Im(d) for 0.8 (co/co~ (0.9.
Similar structure occurs in this relative frequency range
for a11 metallic r, values. The corresponding peak in
the photoemission yield for Al was the first major success
of the theory' and the same behavior has been reported
for several additiona1 systems. ' lt also seems to be ap-
parent in earlier data by Monin and Boutry for the alkali
metals, but the particular case of Na is puzzling since
the experimental peak occurs at cu/co =0.66 and the
data do not go beyond co!co =0.8. We urge that one
remeasure Na over a wider frequency range to see if there
is a peak above 0.8' or if the reported one is due to
surface-plasmon coupling. The maximum yield per in-
cident electron that we calculate (for both RPA and
LDA) is less than a factor of 2 larger than that in the
data of Ref. 25.

Up to this point we have determined contributions to
Im(d) by combining Eqs. (3) and (6). Now consider
whether these results are consistent with the predictions
of Eq. (1), which is the standard route to d. In Figs. 4—6
we plot both the sum of the golden-rule results and the
alternate predictions from Eq. (1). The comparison is
clearest in Fig. 4: the two theoretical approaches agree
we11 except when co~ & ~ & ~„D; i.e., except when the bulk
plasmon can freely propagate. Before describing the
reasons for this situation, we discuss the validity of the
same inference from Figs. 5 and 6.

The problem with these more involved calculations is
their larger intrinsic errors. Our codes for finding g be-
come less accurate not only for co close to co or cozD, but
also for ~ &&m or m &&co since in both limits d is small.
We have purposely chosen the size of the symbols plotted
in Figs. 5 and 6 to represent roughly the numerical uncer-
tainty of our results. Hence, at any frequency where the
symbols partially overlap, one may infer equivalence.
Within these limitations, it is again only the region
cop & co & coLD where the two estimates significantly
dN'er.

Although there are no alternate evaluations to com-
pare with at the highest frequencies, we remark that
many have examined the low-frequency limit, where it is

0.5 1.0 1.5 2.0
~/~

FIG. 3. Absolute value of the golden-rule contributions to
Im(d) for the Lang-Kohn barrier model vs photon frequency.
The plotted symbols have the same meaning as in Fig. 2.
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I I I I I I I I

00 ~&gqn~g

FIG. 4. Absolute value of Im(d) for the infinite barrier model
vs photon frequency co. The bursts are found from a golden-rule
calculation, and the squares are obtained from the dipole mo-
ment of the induced screening charge. Both calculations are
done with the same g function.

well known that Im(d) vanishes linearly with co. Indeed
it is just in this limit that Persson and collaborators intro-
duced the presumed validity of the golden-rule approach
to Im(d). ' A motivation for their work was to esti-
mate the nonradiative rate of decay of an oscillating di-
pole near the metal surface. For comparison with
experiment, Im(d) is not the sole relevant quantity since
it only describes the long-range eItect of the surface. ' A
complete theory of the decay must also include a Fresnel
term that arises from dissipation in the bulk and accounts
for short-range couplings. There are also arguments
that when the oscillating dipole is replaced by a realistic
absorbate, one must include charge-transfer processes
with the substrate, as well as electrodynamic cou-
pling. But to return to our question of the
equivalence oi difFerent approaches to Im(d), we note
that in the low-frequency limit it has been explicitly
checked and confirmed only by Liebsch. This paper
gives both the LDA and RPA cases and references the
earlier, unsuccessful, checks. For the confirmation to

I I I I I I I I I

(a)

0,5

g I I I I I I

succeed one must include "surface, bulk, and interfer-
ence" terms in the golden-rule estimate' ' ' ' (i.e., evalu-
ate M with no approximations), as well as allow for
exchange-correlation couplings in the LDA, ' ' as de-
scribed in the Appendix.

Let us now come back to consider the regime of
plasmon propagation where the golden-rule calculations
significantly underestimate Im(d). A mathematical
reason for this failure is evident in the 'proof' of (6) out-
lined in the Appendix, specifically at the point where one
integrates by parts in Eq. (Al 1) and assumes that the in-
duced longitudinal fields have decayed to zero far from
the surface. A propagating plasmon by definition does
not decay, so the formal proof fails as confirmed by the
numerical results in Figs. 4—6.

We tried to patch up the relation (6) to include a
plasmon contribution. Consider a hydrodynamical mod-
el, which retains only the plasmon degree of freedom.
With a single density step, one has, using (20) and (21)

d = J dx[1 —rl(x)]=i/p, (22)
0

so above co&, Im(d)=P/+co —co . This estimate quali-
tatively agrees with the deficiency of the golden-rule re-

I I I I I ~l I I I I I I I
(b)

0.5—
isC

g 0

6
0.0~m a~0

Jl'I DQ
i&i& &Qg+

Q

I I I I I I

0.5 1.0 1.5
~/~

0.5 1,5 2.0

FIG. 5. Same as Fig. 4 except that the model is the single-

step barrier.

FIG. 6. Same as Fig. 4 except that the model is the Lang-
Kohn barrier. In (a) a RPA calculation of q and Im(d) is done
and Landau damping begins (as in Figs. 1 —5) above
OLD=1.48co~. In (b) a LDA calculation of q and Im(d) is done
and Landau damping begins above coLD= 1.32co~.
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IV. ALTERNATE THEORIES

In this last section we compare several different ap-
proaches with ours. We begin with phenomenological
theories of photoemission yield which aim to express Ypz
in terms of fields and currents alone, avoiding electron
eigenstates and matrix elements. The physical idea is to
associate Fpz with a fraction of the total power absorp-
tion that occurs near the surface. For instance Kliewer's
result ' is in our notation

~ac
~PE (23)

where

suits, especially if one scales it with the probability of ex-
citing a bulk plasmon in the more realistic models. '

However we never could match quantitatively to the
Im(d) from (1); i.e., we cannot meaningfully express
Im(d) for co~ & co &?'OLD as the sum of single-particle and
collective mode absorption.

metals. Without repeating the rationale and derivation
behind his work, let us jump to the implications of his re-
sults, which can be compared to those found here. Both
his model and ours assume the basic system is jellium
with neither band structure nor dissipation in the bulk.
Hence the predicted optical properties should be the
same, which means that the reflection amplitudes of light
should agree, which means that d parameters should be
the same. We' ll see, however, that the predicted d's are
quite difFerent.

This demonstration requires some preliminary algebra
because Sievers did not present his results as d parame-
ters. Instead he described them by saying that the system
behaved optically as if it has no surface corrections but,
instead, a bulk dielectric function of

co& m /???
z(cu)=1-

N +?CO/1

to replace the e(co) of (5). Treating his correction param-
eters, A.(co) =m*(co)/m —1 and [cor(co)] ' as small com-
pared to unity one can easily expand the difference Ae,

(24) be=Z —e=(1—e)(A, +/?cor) . (27)

Note the appearance of an exponential cutoff in the in-
tegrand with the sampling depth A, . Given A., the evalua-
tion of (23) and (24) only requires J and E, for which
Kliewer invokes the semiclassical infinite behavior ap-
proximation which uses bulk properties alone to deter-
mine the surface behavior. We do not directly compare
his numerical results with ours except to note that the
three surface barrier models treated here have quite
different answers, while Kliewer's theory would predict a
single spectrum once the bulk r, is set.

Forstmann and collaborators ' have argued that
J.E* is not an appropriate measure of local absorption
density and suggest that the I?~ in (24) should be re-
placed by

«J2A x&0 Q)P

where the new damping parameter y is assumed to be
constant. To evaluate their theory they use hydrodynam-
ic models of the surface response, which introduces fur-
ther parameters like P of (21) and co„(x). For a two-step
equilibrium density model they can reproduce the reso-
nance peak near co/co =0.8. However, the success is
more that of fitting known results than predicting riew
ones. There is no way to calcu1ate a priori the several re-
quired parameters. The theory also shares with Kliewer's
the Qaw of predicting nonzero photoemission yield below
threshold. Within these limitations, the theory does have
the virtue of simplicity and gives one insights into some
of the physics. We have examined how the predictions of
these theories change when the numerically exact fields
for a particular barrier model are used. There is some
improvement but the basic limitations remain.

Finally we consider the theory of surface-plasmon-
assisted optical absorption proposed by Sievers ' to ac-
count for anomalies in the optical properties of the alkali

This (presumed) slight difference of bulk dielectric func-
tions in (27) produces a small difference in reAection and
transmission amplitudes, which can be described by so-
called pseudo-d-parameters defined via

d = (e—sin 8)'
260 6'

(28)

Combining (27) and (28) we obtain for co & co,

c CO& /CO
2 2

f Im(d ) f

=
l el ~a(co~ /co —cos ~)'

2CO& Q)'7
(29)
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and integrate by parts in (2)

I= Re fd xJ( —VN)"1

2A

Re f d x N*(V J)1

2A
(A 1 1)

APPENDIX

I =
—,'Re fdx J E* (Al)

Replacing J with the difference between the microscopic
E and 0 fields,

J=i (E—D),CO

4m.

yields

We derive several formal relations between difFerent
approaches to Im(d). Begin with the path between Eqs.
(2) and (3). For a long-wavelength photon field incident
on jellium, the key integral in (2) is along the surface nor-
mal.

neglecting any contributions from ihe limits of the in-
tegrals. As discussed in the text, the transformation in
(Al 1) is not always justified. Let us proceed anyway, re-
placing V J via the equation of continuity with icue6p,
where e5p is the induced charge density. Then

2A
Im f d x @*(x)5p(x) (A12)

In our mean-field treatment of many-body effects, 5p is
determined by the independent-particle susceptibility as

5p(x) = f d x'yo(x, x', co)eN(x'), (A13)

where

na np
go( x, x;Q7 )

~ p 6~+Aco Fp+E0

I"= Im fdxD E*
4m.

(A3) Xe.'(x)e~(x)%&$(x')%.(x') . (A14)

The response at the Aat jellium surface to an optical
field' allows one to write

(A4)

where the field components D~ and Ei~ are nearly con-
stant over the surface region. If we view the other field
components as determined by a nonlocal, microscopic,
diagonal (in the long-wavelength limit) dielectric tensor,
then"

The sums run over the labels of single-particle eigenstates
and the n are occupation factors. Combining
(A12) —(A14) we obtain

I = y (n —ny)I (pie%la) I 5(e +f260 eg} . —
2a .p

(A15)

The energy-conserving 5 function allows us at zero tem-
perature to replace the factor n n& with n~(1 n&—) so—

ID I'f d (e ')*, + I&„I'f «e„,„

(1 E')Im(d~~ )=Im f d
e~~

~~

(1—1/e)lm(di ) =Im fdx(e ')

(A6)

(A7)

where e is given by Eq. (5). Substituting these in (A5)
yields

I = (1—e) — Im(di)+ IE~~ I Im(d~~ )

Finally we recall the formal definition of the d parame-
ters'

X5(e +A'co —e&) (A16)

which is (6). The factor of —,
' in the matrix element ap-

pears because N is a complex amplitude. The real valued
scalar potential is —,'(C&e ' '+C&*e' ') and only the first

term leads to energy absorption for co )0.
We do not calculate matrix elements of N but instead

change to matrix elements of a vector potential by using a
standard commutator trick:

Actually, for jelliurn, d~~ is a real valued constant, so in
the text we have simply used d for di. Finally, to get (3)
we note that by Fresnel optics

D~ =etE;„,sin|9 . (A9)

Next we outline the route from Eqs. (2) to (6). It is
sufficient to calculate (2) using electrostatic fields so we
may write

(pie@la) = (pI [H, ee]la)/fico
"

(pl(p VC+Ve p)la)
2m co

le
&Pl(p E+E p)la)

'
&Pl(p A+A p)la),

2mc
(A17)

(A 10) where VC&=E=—(ice/c) A and p=(i'/i)V. Equation
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5p,„,(x ) = V„,(x )5p(x ),
where

(A18)

(A17) easily scales into the M of (8).
The derivation in the above paragraph is unambiguous

for a RPA calculation of the response. For that case N is
simply the Hartree potential. But for a LDA calculation
one must augment e+ with' '

d [ne„,(n)]
V„,=

dn 2 (A19)

with e„, the exchange-correlation energy per electron in a
uniform electron gas of density n and no(x) the equilibri-
um density of electrons at x. We use the V„of Hedin
and Lundqvist ' and employ (A17) to transform (A18)
into an additional contribution to A.
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