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The one dimensional t-J Hamiltonian is diagonalized exactly for the supersymmetric case 2t =+J us-

ing the Bethe ansatz. In this limit it is identical with models previously considered by Lai, Sutherland,
and Schlottmann. In the present paper we discuss the ground-state properties and excitation spectrum
in zero magnetic field. The ground state is a liquid of singlet bonds with varying spatial separation. Its
most remarkable feature is the presence of bonds connecting particles at arbitrarily large distances. The
ground-state energy is an analytic function of the band filling. There is no difference in the chemical po-
tential for adding one or two particles and no evidence for the binding of holes. The low-lying part of
the spectrum consists of two types of gapless excitations (charge and spin) with effective Fermi surfaces
at 2kF and kF, respectively. An interpretation of the energy spectrum in terms of spinons and holons is
appropriate at low energies.

I. INTRODUCTION

Strongly correlated systems are of current interest in
view of their relevance to the theory of high-T, supercon-
ductivity. In particular, Anderson has suggested that the
t-J model is an appropriate starting model. ' The model
describes the behavior of hard core electrons on a
discrete lattice: the dynamics is given by a Hamiltonian
which includes nearest neighbor hopping ( t) and antifer-
romagnetic exchange (J).

In one dimension, Lieb and Wu diagonalized the Hub-
bard Hamiltonian, a closely related model. It is known
that the large-U repulsive Hubbard model maps onto the
limit J« t of the t-J model. Nevertheless, the t-J model
can be studied in its own right as an independent model.
In two dimensions many fundamental aspects of the mod-
el remain elusive. Recently, Anderson claimed that 2D
strongly correlated models may share features of the
one-dimensional systems. It is instructive to study an ex-
act solution in one dimension.

In this paper we focus attention on the one-
dimensional t-J model and study the exact solution at
2t =J. We emphasize that the model we discuss cannot
be obtained as the large-U limit of the Hubbard model.
The supersymmetric t-J model has two levels of strong
correlation: an infinite on-site Coulomb repulsion and a
large exchange interaction.

There has been previous work using the Bethe ansatz
on one-dimensional models involving both hard core fer-
mions and bosons. However, these investigations have
been performed in a difterent context and it is only re-
cently that their connection to the t-J model has been es-
tablished. In 1974, Lai introduced a quantum lattice-gas
model, which is identical (up to a term) with the t Jmod--
el. He first applied the Bethe ansatz technique to diago-
nalize the Hamiltonian and discovered a solution at
2t =+7 (b, =+I in Lai's notation). Shortly thereafter,
Sutherland showed Lai's results to be partly incorrect

and derived the Bethe-ansatz equations for a general mul-
ticomponent lattice-gas model, including the case con-
sidered by Lai. In 1987, Schlottmann discovered the
solution at 2t =+J by means of the quantum inverse
scattering method (QISM), presented the Bethe-ansatz
equations for the ground state in a magnetic field and dis-
cussed the thermodynamic properties of the model, ap-
plying his results to heavy-fermion systems. Stimulated
by the recent interest in strongly correlated systems, one
of us examined the question of exact integrability in the
t Jmodel and-rediscovered the solution at 2t =+I (Ref.
9) in the form given by Lai and Schlottmann. ' In Ref.
10 a summary of part of the results on the excitation
spectrum of the model and a brief discussion of the mech-
anism of separation of charge and spin degrees of free-
dom have been presented. Also, Sarkar" reproduced
Sutherland's form of the solution by applying the Bethe
ansatz to the t-J Hamiltonian. '

A series of numerical calculations on finite clusters has
been performed by Imada et al. ,

' by Von Szczepanski
et al. ,

' and, using quantum Monte Carlo techniques, by
Assaad and Wurtz. ' Very recently, the phase diagram of
the one-dimensional t-J model has been studied numeri-
cally. ' These numerical studies show clearly that the t-J
model belongs to the same universality class as that of the
repulsive Hubbard model: The t-J model is a Luttinger
liquid in the sense of Haldane. ' By applying finite-size
analysis in conformal field theory, ' ' Kawakami and
Yang calculated the exponents of the large distance be-
havior of charge, spin, and superconducting correlation
functions, and the zero temperature specific heat and
magnetic susceptibility. Alternatively, the latter thermo-
dynamic properties can be derived by a method due to
Carmelo and Ovchinnikov. ' Their "Landau-
Luttinger-liquid" formulation of the Bethe-ansatz equa-
tions permits a direct determination of the interaction be-
tween the spinons and holons. These interaction func-
tions can be expressed in terms of scattering phase shifts
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and spinon (holon) velocities: ' They are related to
the "dressed charge matrix" of conformal field
theory. ' '

In the present work we investigate in detail the ground
state and excitation spectrum of the supersymmetric t-J
model. The ground state is a liquid of singlet bonds con-
necting spins at arbitrary large distances. The excitation
spectrum reveals unusual and interesting features. The
holon-antiholon (charge) spectrum shows an apparent
gap in momentum space above the band filling n = 3.
There exist charge excitations at +2k~(kF =em /2)
which however are composite and involve the emission of
pairs of antiparallel FM domain walls (spinons). At very
low energies, the spin excitation spectrum can be inter-
preted as a spinon spectrum over a wide range of filling.
However, in the dilute limit, the spin excitation spectrum
transforms into a particle spectrum where charge and
spin have recombined. Careful investigations of the exci-
tation spectrum of even and odd chains near half-filling
lead us to surprising results. The pure spinon spectrum
in an odd chain extends over a restricted region of the
Brillouin zone. However, there are composite excitations
which have as the lowest branch a spinonlike spectrum in
the complementary region of momentum space. The
propagation of the spinon in this region of the Brillouin
zone is characterized by the emission of spinon pairs in a
singlet state. Also the holon spectrum of the t-J model in
an odd chain is seen to have a 2kF periodicity in contrast
with that of the Hubbard model, which is 4kF periodic.
A physical picture of this unusual situation is proposed.
Upon doping an even chain with one hole, the separation
of the charge and spin degrees of freedom occurs at very
low energies: the one-hole spectrum is two parametric
and is given additively by the spinon (spin) and holon
(charge) contributions. Furthermore, the supersym-
metric properties of the t-J model show up in finite chains
as specific relations between the energy eigenvalues of
systems differing by one or two particles.

The plan of the paper is a follows. Section II is devot-
ed to the diagonalization of the t-J Hamiltonian by means
of the algebraic Bethe ansatz (DEISM). At 2t =+J, the ei-
genvalue problem can be reduced to that of diagonalizing
the transfer matrix of a six-vertex model, the general
solution of which is well known. ' In Ref. 25 we con-
sider the eigenvalue problem in the framework of the
coordinate Bethe ansatz and reduce the problem to a
form which is essentially identical with Yang's solution of
the fermion gas with a 5-function repulsive potential.
The problem of constructing the spectrum is transformed
in a standard way into that of solving a set of coupled
algebraic equations, the so-called "Bethe-ansatz equa-
tions" (BAE). We derive the BAE in the form first given
by Lai and discuss brieAy the solution due to Suther-
land. In Sec. III we present the solution of the BAE for
the ground state in Lai's formulation. In Sec. IV we deal
with the excitation spectrum and find gapless charge and
spin excitations. The charge spectrum is identified as the
holon-antiholon spectrum and, at low energies, the spin
spectrum as the spinon spectrum. In Sec. V we establish
the connection between Lai's form (complex roots for the
ground state) of the BAE and that of Sutherland (real

roots for the ground state). We then reproduce in
Sutherland's formulation the results of the previous sec-
tions. In Sec. VI we consider the problem of a few holes
in a half-filled band, study the separation of charge and
spin degrees of freedom, and discuss the spinon and
holon spectra in odd chains. Section VII contains a brief
discussion of the supersymmetry in the model.

Our purpose is a comprehensive and simple presenta-
tion of the results and so we omit lengthy algebra. The
interested reader may find the details in Ref. 25.

II. THE MODEL AND ITS BASIC
EQUATIONS AT 2t =+J

A one-dimensional lattice of N, sites (unit lattice con-
stant) with N electrons is considered. We assume each
site is capable of accommodating at most one particle,
and the dynamics of the hard core fermions is described
by the Hamiltonian

H,J =P t g —
( c; c1 +H. c. )

(i,j )cr

+Jg S, S— (2.1)

g(. . . ; , x;;o. . . ; , x;o. . . )=0. (2.2b)

The reason for retaining the projector in Eq. (2.1) is a
technical one. Below we introduce amplitudes %' which
coincide with the physical amplitudes g if the space coor-
dinates of the particles are all different, but do not if two
space labels are equal. The point is that a Bethe ansatz
for 4 does not allow us to set 4=0 whenever x; =x .
However, it can be shown that our method of solution
is equivalent to that of solving the eigenvalue problem
directly for the physical amplitudes g. Therefore,
within the framework of the Bethe ansatz, the constraint

where g&,. ) is restricted to nearest-neighbor sites and c,
creates an electron of spin o. in a Wannier state at site i.
S~ and nj=g nj (n~ =c~ cj ) are the usual spin and
number operators, respectively. The projector

AP=ii ', (1 n~&nj—&) has been included to ensure the
constraint of no double occupancy. Notice that the con-
vention for J adopted in the present paper differs by a
factor 2 from that of Ref. 10. The Hamiltonian H,J acts
on a projected Hilbert space &~ of dimension 2 (~'),
containing N-particle states with no doubly occupied
sites. We seek eigenstates in the form

N

e) = g q(x, , o „;x~,cr~) Q ct ~0), (2.2a)
J J

X J

where g means that the sum is carried out over the ap-
propriate space labels. The fermion operators c' ' cannot
be used in treating particles with hard core, since the pro-
jective transformation on the Hilbert space alters the
canonical commutation relations. For our purposes, it is
more convenient to retain the fermion field operators and
to impose the subsidiary condition on the allowable state
vectors (2.2a):
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of no double occupancy is treated in an exact way. In
one dimension the exact solution of the t-J model may be
used to check the validity of the approximation schemes
developed to treat the local constraint of no double occu-
pancy (slave boson or fermion techniques).

In order to enumerate a complete set of eigenstates,
one usually imposes periodic boundary conditions
(PBC):

%'(. . .;x,cr;. . . )=4(. . . ;x, +X„cr,; ) . (2.2c)

Our task is to diagonalize H,& subject to the PBC (2.2c)
using the Bethe ansatz. The method devised by Bethe
has been reformulated and generalized by a number of au-
thors. ' We apply here the algebraic Bethe ansatz or
quantum inverse scattering method (QISM). '3 A
derivation of the same results in terms of the old coordi-
nate Bethe ansatz is given in Ref. 25.

In the first place let us review some basic facts. The
fundamental region of the phase plane is sketched in
Fig. 1. On the line AB the t-J model is equivalent to a
free spinless-fermion system, whereas on the line BC the
model reduces to the Heisenberg chain. The line AC
denotes the singlet sector. The complementary region
can be obtained by symmetry. D is a point of high sym-
metry and so a good candidate for a singular point.

The t JHamilto-nian is U(1)-gauge and SU(2)-spin in-
variant. In addition, the model becomes supersymmetric
at 2t=+J (see Sec. VI). ' The spectrum of H,J is in-
variant under a unitary transformation which changes
the sign of t and the spectrum of H,J( —J) is that of

FIG. 1. Phase plane for the one-dimensional t-J model:
denotes the fundamental region for which the Bethe ansatz is a
solution. The physical properties of the model are analytic in 0'.
The point A marks the dilute limit which behaves free electron-
like, B denotes the ferromagnetic state, and C is the antiferro-
magnetic ground state at half-611ing. D is a point of high sym-
metry where the number of down spins, up spins, and holes are
equal.

H,J(J) inverted. ~" For definiteness, we assume t)0 in
(2.1) and study in this work the antiferromagnetic case
(AFM).

In the first quantized representation, the eigenvalue
problem reads

N

J, s

1 —g 5, +, „5 qr(. . .;x +s,o;. . . )
i=1

+—g 5, +, 5 (PJ 1)%(. . . ;x;,o;;.—. . ;x,crj;. . . )=EV(x„o„.. . ;x~,o~), (2.3)
J

i &j,s

where P'= —,'(1+o, o, ).
To construct eigenstates it is convenient to divide configuration space into X. regions, R&, labeled by the permutation

Q according to the ordering of the particles on the lattice: x& &x& « . x& . Consider the case when all the parti-
1 2 N

cles are well separated. In the interior of region R&, the wave function is of the Bethe-ansatz form

ql(x, cr, ; . ;x~cr~)= g ( —1) A
PEHg 1

(PQ )exp i g kp x
~N J

J
(2.4)

P, Q denote permutations of the numbers 1, . . . , X; ( —1) is the sign of the permutation P and guarantees the antisym-
metry of the amplitude under permutation of identical particles. The energy and the momentum of the eigenfunction
(2.4) are given, respectively, by

NE= —2t g cosk
j=1

NP=gk

(2.5a)

(2.5b)

Let us now turn to the actual problem of interacting particles and rewrite Eq. (2.3) as

t g qr(. . .;x +s,o;—. )+ . g 5 +, , 5 It[qr(. . . ;x, +s, cr, ; . .;x,cr~;.. . . )

J)$ =+1 i&j,s

+4(. . . ; ;, rx;;. c. . ; j —xs, o J.;. . . ) j+—(P' —1I%'(. . . ;x;,cr, ;. . . ;x, , o., ;. . . ) I
J
2

(2.6)
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Notice that the symbol 5 in front of the second term
I J

on the left-hand side (LHS) of Eq. (2.6) is not necessary,
due to the antisymmetry of %.

In order for 4 to be an eigenfunction, the term in curly
brackets on the LHS of (2.6) must vanish. For this pur-
pose we extend the form (2.4) of the amplitudes in

configuration space so as to include the boundaries of the
sectors R&. At the boundaries of R&, amplitudes with
equal space labels arise: these amplitudes are dummy
since they have no physical meaning. This leads us to the
core of the strategy: by a judicious choice of the dummy
amph'tudes one is able to cancel the terms generated by
the interaction in (2.6). This condition establishes a set of
linear equations between the coefficients A . . . (PQ )

Q1 QX
de6ned in diQ'erent regions of configuration space. The
linear relations between the coefficients A . . . (PQ )

Q1 QX
define a multiparticle S matrix

(2.7a)

where summation over repeated indices is meant and
Q'=Q(ii+1), with (ij ) denoting the transposition of i
and j. In (2.7a) the multiparticle S matrix is given by

I I I

(S,, ).'. . .."=(S(k, l '))", ~ 5
J J i%i j

(2.7b)

g ( e ik ik'
)

~kk' =,, („+,.)—2ge' —(1+e )
(2.7d)

The consistency of the Bethe ansatz requires the mul-
tiparticle S matrix to factorize into two-particle scatter-
ing matrices. The factorization conditions [Yang-Baxter
equations, see, for example, (30)] read

I II II

S(k„k, ) '!S(k,, k, ) '!S(k„k, ) ', ,',

=S(k~, k3) '
', S(k„k3),',',S(k„k2),',', .

(2.8)

Equation (2.8) is fulfilled provided ~g~ =1 [the shortest
way to see this is to rewrite y&& as a function
f(h(k) —h(k')) where h(k) depends only on the pseu-
domomentum of one of the colliding particles]. At this
particular value of ~g ~, the two-particle S matrix takes
the simple form

S(k, k') ' ', = 5 5
U(k) —U(k')+ig+, . 5,5, , (2.9)v(k) —U(k')+ig

where U(k)= —,'cot(k/2) for g =1 and U(k) =
—,'tan(k/2)

for g = —1. Clearly, the latter case can be obtained from

with the two-particle scattering matrix defined by
I

(S(k,k') )
' ', =y„—,,'5,5,+ (1—y,

—„,' )5,5
I J J J

(2.7c)

the former by a shift of ~ in the Brillouin zone.
At this stage it is important to recognize the two-

particle scattering matrix as the vertex-weight matrix of
an inhomogeneous six-vertex model. The periodic
boundary conditions (2.2) can be expressed in terms of
the transfer matrix T of the corresponding classical
two-dimensional lattice model:

T, A(I)=e ' 'A(I), (2.10a)

where I denotes the identity in the permutation group
and T is defined as

Tj Sj + 1j S&j S1j Sj (2.10b)

with S;J =S(k;,k, ). The eigenvalue-problem (2.10a) is a
matrix eigenvalue problem in a space of dimension 2 for
the SU(2) tensor A . . . (I). From (2.8) it follows that

1 X
[T,T, ] =0 for all j and i, so that the eigenvectors of T
can be chosen independently of j. The diagonalization of
T is achieved by a purely algebraic procedure, based on
the algebra of monodromy matrices. For details the
reader is referred to the literature.

The eigenvalue problem reduces to the task of solving a
set of (N+M)-coupled algebraic equations for N electron
rapidities U and M spin rapidities A (M is the number of
down spins):

Uj Ap+l /2

Uj Ap E /2
(2.11a)

v —A +i/2
, U

—A —i/2
M A —A+i=-n

P=1AP —A.—E
' (2.11b)

where U =
—,'cot(k /2) for 2t =J and U =

—,'tan(k~/2) for
2t = —J. The first set of Eqs. (2.11) represent the periodic
boundary conditions: the right-hand side (RHS) of Eq.
(2.11a) is the eigenvalue of the transfer matrix of the cor-
responding six-vertex model. Equation (2.11b) represents
the necessary conditions for the "unwanted terms" in the
generalized Bethe ansatz to vanish. The Bethe eigenvec-
tors are the leading vectors with respect to the action of
SU(2), i.e. , S=S'=N/2 —M (S is the total spin). The set
of Eqs. (2.11) is typical of the six-vertex model (rational
case) and so is identical to that occurring in the solution
of Lieb and %'u of the Hubbard model, except for the
parametrization U(k).

By applying the same strategy, it is possible to general-
ize to higher spins. The Bethe-ansatz equations consist of
a hierarchy of (2s+1)-coupled set of algebraic equa-
tions.

Equations (2.11) were obtained by Lai, and later by
Schlottmann, ' ' In 1975, Sutherland discovered an al-
ternative way of solving the problem and applied his stra-
tegy to a multicomponent lattice gas model, which in-
corporates a generalization of the t-J model to an arbi-
trary number of fermion species. Sutherland's idea is to
place N, particles of arbitrary statistics on a lattice of X
sites and to generate the dynamics by permuting neigh-
boring objects. We restrict our discussion to the case
I' B (two fermions and one boson) of Ref. 7 which corre-
sponds to the (spin —,') t Jmodel, more precis-ely (t = 1):
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s P ~j j+Ij=l

u +=u +i/2+O(e '),
with

(3.1a)

(3.lb)

for a= 1, . . . , M=N/2 (assuming N even). For a finite
system the ansatz (3.1) does not cover all cases and singu-
lar roots of (2.11) must be treated separately. Taking the
thermodynamic limit of the system of Eqs. (2.11) is then a
subtle problem. In Appendix B, we discuss this point
and notice that the results obtained from (3.1) are correct
as long as we measure the crystal momentum of the exci-
tations with respect to the ground state.

The "bound states" parametrized by (3.1) correspond
to the poles of the S matrix. The physical content of (3.1)
can be expressed by saying that the ground state is a
liquid of singlet bonds connecting pairs with arbitrary
spatial separation (essentially Hulthen's picture of the
ground state of the AFM Heisenberg chain).

We define the bond length by g(k)=[1m(k)] '. In
terms of the electron rapidities, g is given by

U~ Wj+l /2 & U~ Ufj

U wj l /2 p ) U~ Up+lrr
' rr

ik
e (2.13a)

H
w —

U
—i/2

wj. —u p + l /2
(2.13b)

where u =
—,'tan(k /2), a= 1, . . . , MI =Nh+Nt, and

j=1, . . . , M2 =NI, . The w 's are the hole rapidities and
thus parametrize charge degrees of freedom, whereas the
U involve both spin and charge degrees of freedom. The
energy and momentum are given by

g(v)=2[in(1+v )] '+O(e ') . (3.2)

Notice that, as u ~~, the bond length g(u) diverges, i.e.,
bonds connecting pairs at arbitrarily large distances.

On substitution of (3.1) into (2.11), the set of Eqs.
(2.11b) is fulfilled within exponential accuracy whereas
(2.11a) reduces to (N even)

Mi

Ez =N, —2M, —2 g cosk (2.14)

where H&J=~~ (N— N—
I, ) and N, Nh are the number

operators for particles and holes, respectively (in the t J-
model). P .+ I denotes a graded ' permutation operator.
Sutherland's approach is to treat the holes and the down
spins as dynamical objects in a background of up spins,
i.e., to write amplitudes tt (X„.. . , XM ) for the

1

M
&

=N& +N ~ objects. Clearly, a particle-hole transfor-
mation connects Sutherland's representation to that of
Lai. He finds the solution in the form

P=gk
a=1

(2.15)

A subtlety arises at this point in the definition (2.15) of
the momentum as the generator of lattice translations. In
particular, a constant must be added to the expression
(2.15) depending on the number of sites, of particles and
spin downs as confirmed by exact diagonalization of
small clusters (see discussion in Sec. V). In the case of
an odd number of lattice sites, the RHS of (2.13) should
be corrected by a factor (

—1) (see Sec. VI).

III. THE GROUND STATE IN THE
ANTIFERROMAGNETIC SECTOR (J& 0)

In Sec. II the original eigenvalue problem has been re-
duced to that of solving the coupled set of algebraic equa-
tions (2.11). In the infinite volume hmit (fixed
n =NIN, ), the roots of (2.11) proliferate rapidly and it
becomes difficult to determine the roots which
parametrize the ground state. In Appendix A, it is
shown that real roots of (2.11) lead to a high excited
state, which is continuously connected to the ferromag-
netic state at half-filling (its most peculiar feature is the
nonanalyticity at the symmetric point n =—', ). On physi-

cal grounds we expect the system to lower its energy by
forming bound states. The analysis of an explicit set of
roots at small N and cY, suggests the structure of the
solution in the ground state as confirmed by numerical
studies: we make a "two-string" ansatz according to
which the roots of (2.11) cluster into complex conjugate
pairs in the u plane [see Fig. 2(a)] '

)( )( )( )()()()a( )a()()()( )( )(

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I I I I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ P ~ ~ ~ P ~ ~

)c )c )c)c)c)ac )ac)c)c)c )c )c )c )c

)( )( )( )()()()(
b

I ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~
~ ~ ~ ~ ~ ~ P ~ ~ ~ ~

)a()()()( )( )( )( )(

I I I I ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I I I I I I

Ab
)C )C )C )C)C)C)( )C )C)C)C)C)C )C )( )( )(

(c)
)( )( )( )()()()a(

R I E ~ E ~ ~ S I I I I I
I I I I

vs,
)( )( )( )()c)c)ac

)a()()()( )(

I ~ ~ ~ ~ I s ~ \ ~ s
I

~ 1 I P

)ac)c)c)c )( )c

FIG. 2. Electron rapidities in the complex plane: Crosses

( X ) denote the roots u describing kinetic degrees of freedom,
filled squared (~ ) denote the roots A associated with spin de-

grees of freedom. (a) Ground state: electron rapidities occur in

complex pairs, u+—=u +i/2, describing singlet pairs of range
2/1n(1+v ). The parameter Q determines the filling factor
X/X, . (b) Holon-antiholon (h-h *) excitation: A string at uh is

transferred to a higher energy state at u~. (c) Triplet (s-s) excita-
tion: A string is broken up into two real rapidities u&h and u2&,

each of which is describing a spinon. The two spinons combine
into a triplet excitation as one of the spin rapidities A has been
removed.
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IX Pb(U )
N/2 i+(U —

Up)a b a e
p(we)

(3.3a)
Qp

po(v) =2R (2v )+f dv'2R (2[v —v'] )pv(v'),
0

where R (x) denotes Shiba's function "
(3.5c)

where P„(v ) is the pseudomomentum of a bound pair
(a= 1, . . . , N/2):

E COX /2
R(x) = den

4~ ~ 1+e l~l
(3.5d)

Pb(v)=@(v) (3.3b)

with N(v) =~—8(v) and 9(v) =2 tan '(x).
The expression 4( v —v&) in (3.3a) represents the

scattering phase shift for a bound pair (with center of
string) v off another bound pair v&. The physical inter-
pretation of Eq. (3.3a) is as follows: the phase shift
(which consists of a free part and a scattering phase) ac-
quired by carrying a bound state around the ring has to
be equal to one.

It is more appropriate to rewrite (3.3a) as
(a= 1, . . . , N/2) Eo= 2tN, —f + f dv po(v) 2—

~o . 1+U
(3.5e)

In (3.5c) we have extended the distribution po(v) to the
whole real axis, i.e., po(v)=p„, (v)+pI, (v) where p„,(v)
is defined on the interval ( —oc, Qo]U [Q~, cc ) whereas

pl, (v) denotes the distribution of unoccupied states on the
interval [—QO, QO]. In Sec. V we show that the same
function pi, (v) describes the distribution of hole rapidities
in Sutherland's formulation.

The ground-state energy is given by

W/2

N, O(v )=2~I + g 8(v —v&),
p= 1

(3.3c) or on account of (3.5a) and (3.5b)

Eo =2tN, [5—mpo(0) I (3.5f)
where the quantum numbers I (integers or half-odd in-
tegers) arise by taking the logarithm of Eq. (3.3a). The
bare quantum numbers I are integers if 1V, —M —1 is
even and half odd integers (h.o.i.) otherwise. They are re-
stricted to the interval

with 5=1 n the—hole density. Equations (3.5a) or (3.5c)
can be solved numerically by iteration for arbitrary filling
n. The results are plotted in Fig. 3. The state
parametrized by real rapidities as well as the ferromag-
netic state have been included in Fig. 3. It is interesting
to note, that above n =—', the reality of the rapidities en-
forces the state to acquire a finite magnetization (see Ap-
pendix A).

For a half-filled band (QO=O) the integral equation
(3.5c) reduces to the simple expression

(3.4)

po(v)=2R(2v) . (3.6)

From (3.5f), the ground-state energy is Eo= —JN, ln2, in

0.4

0.0—
(0

M —0.2—
Q
C4

—0.4
Q

—0.6—

where I,„=(N,—M —1)/2. At half-filling, the number
of available positions is N, /2 (possible values of I in the
interval [ I,„,I,„]—), so that there is no freedom in dis-
tributing the numbers I .

We restrict our discussion to the case of a nondegen-
erate ground state. Away from half-filling, the number of
available states (2I,„+1)exceeds the number of actual
pairs, so that freedom is left in the choice of the I 's.
The state of lowest energy is obtained by choosing ~I

~
as

close as possible to I „.The corresponding distribution
of roots in the v plane is sketched in Fig. 2 (except for the
roots at infinity). The pairs with v ~ ac have an arbitrary
weak "binding" energy and are present in the ground
state for arbitrary filling n. We therefore expect the
bond-breaking modes to be gapless (see Sec. IV).

In the limit of a large system (N, ~ cc,N/N, finite),
(3.3d) can be replaced by an integral equation of the
Fredholm-type for the distribution of roots U on the real
axis

1 1
po(v) =-

1+V

, 1 1+ dv'—,po(v'),
&o . ~ 1+(v —v')

(3.5a)

where Qo is determined from

f '+ f" dv p,(v) = —" . (3.5b)

For analytic purposes, it is more convenient to transform
Eq. (3.5a) into the following form:

—O. B

0.0 O. P, 0.4 0.6 0.8 1.0
particles per site N/N,

FIG. 3. Energy per site E/2tN, vs filling factor N/N, . The
ground state is a liquid of singlet pairs of varying range de-
scribed by complex pairs of rapidities, see Fig. 2(a). The highest
accessible state is the ferromagnetic state with real rapidities v

and no spin rapidities A . The dashed line denotes the lowest
singlet state with real rapidities v ~ This state is forced into a
state with finite magnetization for a filling N/N, & —,

' (dotted
line). The filled squares denote the ground-state energy of a
finite lattice of 16 sites obtained by exact diagonalization.
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~Po Bnp(Qo)= — 1+~ (0;Qo) (Qo)
0 0

(3.7a)

where

agreement with Hulthen's result for the antiferromagnet-
ic Heisenberg chain.

Near half-filling, the ground-state energy can be es-
timated from (3.5c). It increases linearly with the hole
density (5 «1): Eo(5)/X, =Eo/X, + A5, where
A =2t(1 —ln2) is a positive constant. By standard argu-
ments, it can be shown that E o(n) is an analytic and
monotonically decreasing function of the band filling.
Physically, it means that the energy gain due to the mi-
gration of the electrons through vacant sites is complete-
ly balanced by the loss in magnetic energy due to the in-
sertion of holes. Notice that this is in contrast with the
corresponding behavior in the large-U Hubbard model,
where the insertion of holes into a half-filled band allows
the system to lower its energy.

In the low density limit we find that the energy behaves
as Eo(n)/X, = 2tn —In thi. s regime, the supersymmetry
of the model allows to construct an exact eigenstate
(two-particle ground-state) by applying the up- and
down-spin supercharges to the vacuum (see Sec. VI). The
physics of the I;-J model in the low density limit is that of
noninteracting fermions. The transition between the
strongly and weakly correlated regimes is achieved by
simply varying the density n.

The dimensionless chemical potential p(Qo ) (in units of
2t) can be written as

1.0

~O

On
0.5

0

ln 2 —1

—0.5

—1.0

suits obtained from exact diagonalization of a small clus-
ter. The results for K obtained from (3.8) agree with the
exact diagonalization calculations. Alternatively, by ap-
plying methods of conformal invariance, one can relate
the compressibility to the '"charge dressed matrix" ele-
ment (in zero magnetic field) g(Qo)' '

g(Q o) =catv, n a, (3.9)

0 0.5 1.0
particles per site n = N/N,

FIG. 4. Chemical point p and its derivative Bp/Bn ( ~ in-
verse compressibility) vs particle density n =N/N, .

apo
(u;Qo)

0

= [2R (2[u+Qo])+2R (2[u —Qo])]po(Qo, Qo)

where g(v) is solution of the integral equation

Qp
g(u)=1+ f dv'2R(2[v —u'])g(u) .—

Qp
(3.10)

Qp Bpo+f du'2R(2[v —u']) (u', Qo)—
Qp 0

and

Bn
(Qo) = —4)oo(Qo Qo)

(3.7b)
The asymptotic behavior of K for a nearly half-filled
band (5 « 1) is readily estimated from either (3.8) or (3.9)
and (3.10): E = —,'(1+5).

To conclude this section we notice the following.
From the point of view of the Bethe ansatz, the ground
state is similar to that of the attractive Hubbard model as

+2 f '+f" du '(u Q ).
Qp . cj o

(3.7c)
1.0

1 ~ Eo m vc

gn2 2 E (3.8)

where v, = v h, &,„, we evaluate the charge critical ex-
ponent K which determines the algebraic decay of all
correlation functions. The charge exponent E is shown
in Fig. 5, where we have included for comparison the re-

From (3.7), the chemical potential can be readily estimat-
ed at zero (Qo = cc ) and half-filling (Qo =0), respectively,
p( cc ) = —1 and p(0) =ln2 —1. Both, the chemical poten-
tial and its derivative with respect to the density (the in-
verse of the compressibility) are shown in Fig. 4.

The compressibility ~ is calculated from Bp/Bn and us-
ing the relation

K

0.5

0
0 0.5

particles per site N/N,
1.0

FIG. 5. Correlation exponent K as a function of particle
density n =N/N, . The value K~ =1 in the dilute limit indicates
free electronlike behavior. Whereas the strongly correlated
Hubbard model is characterized by E~ =

2 ( U~ ~ ) for all den-
sities n the t-J model approaches this value only near half-
filling.
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both involve complex roots. However, this is no longer
true for the ground state in Sutherland's formulation (see
Sec. V). Below, we demonstrate that the physics of the t
J model is more like that of the repulsive Hubbard mod-
el."

p(v)+ 5(u —
uh )

1

1 1

1+v
1 1 1

1+(u —u )

IV. THE EXCITATIVE SPECTRUM

This section is devoted to a study of the low-lying part
of the spectrum. For the sake of simplicity we consider a
nondegenerate ground state, i.e., N, even, N even, and
N/2 odd. We find two types of elementary excitations.

(i) Charge excitations (occurring only away from half-
filling): They are the analog of particle-hole excitations
in a Fermi liquid with the difference that they carry no
spin (transfer of bound singlet pairs). They are gapless.

(ii) Spin excitations (bond-breaking excitations with or
without spin fiip): they are gapless down to zero filling
and pure spin only at half-filling. As the band filling de-
creases from n =1 to n =0, charge admixes so that they
transform gradually into particle excitations.

In the present section we deal with Lai's form of the
solution. In spite of the fact that this approach leads to
involved manipulations of the spin excitations, it permits
a simple physical picture. Sutherland's form of the solu-
tion allows a straightforward mathematical treatment of
the excitation spectrum, but the physics is more difficult
to extract from the latter.

A. The charge excitations

As emphasized in the previous section (see Appendix
B), care is required when dealing with the singular roots
of Eq. (2.11). In this section we start with Eq. (3.3d) and
measure the crystal momentum with respect to the
ground state. In Sec. III we showed that the ground state
is uniquely defined by the choice I;„~lI„~I .,„,whereI,„=(N,—M —1)/2 and I;„=(N, N 1)/2. Th—e-
number of available states is N, —M and therefore the
number of unoccupied states is the number of (physical)
holes Nh =N, N(M=N/2). —An elementary excitation
consists in transferring a particular I =I& from the oc-

cupied region to a previously unoccupied state at the
locus I: we denote by [I ] the new distribution of bare
quantum numbers. In the u plane, this process involves
the transfer of a pair of complex conjugate roots from a
state below the pseudo-Fermi surface to a state above the
pseudo-Fermi surface [see Fig. 2(b)]. The pseudo-Fermi
surface is defined as the set of points separating the occu-
pied from the unoccupied regions in parameter space. To
avoid confusion let us remind the reader that the effective
Fermi surface is the locus of zero energy states in
momentum space and therefore the two sets of points
need not coincide.

Retaining terms up to O(N, '), Eq. (3.3d) can be writ-
ten as

f + f dv'p(u')—,(4.1a)—oo Q ~ 1+(v —v')

where u and uh denote, respectively, the positions of the
transferred pair of the hole in the sea of two-strings asso-
ciated with the bare quantum numbers I and I&. The
distribution p(u) is normalized as follows (M=N/2, N
even):

M —1
du p(u)=

N,
(4.1b)

To rewrite (4.1a) in a more appropriate form we split p(v)
into a singular part and a smooth contribution

p(u) =po(u) — p, (v) — 5(u —
ui, ),1 1

a a
(4.2)

where po(u) denotes the ground-state distribution at fixed

Q and p&(u) a correction due to backflow.
On substitution of Eq. (4.2) into (4.1a) and using the

Fourier-transform technique we find

p, (u)=2R(2[u —v ])—2R(2[v —vh])
Qp+ f du'2R(2[u —v'])p, (u') .—

Qp
(4.3)

In (4.3) the function pi(u ) has been extended to the whole
real axis. The distribution of actual roots is however re-
stricted to the region (

—~; —Q] U [Q; ~ ) except for u

which lies within the interval [
—Q, Q]. By straightfor-

ward manipulations, the energy of the excited state
measured from the ground state is readily obtained:

E(u, uh )l2t

=vrp, (0)+2[@(Qo)+1] f + f du p, (u),

(4.4)

where p(Qo) is the chemical potential. The momentum
of the excited state measured from the ground state reads

P= — Q I = (Ih I ). —2m- ~ 2~
N, i N,

(4.5)

P(v, ui, )=2m dv po(v),
U

(4.6)

where lu l &Q & luhl. Equations (4.4) and (4.6b) deter-
mine the dependence of the excitation energy on the
momentum in a parametric form. Equation (4.3) has
been solved numerically and the resulting dispersion rela-

In Eq. (4.5) the ranges of Ii, and I are such that
2k~ ~ 2~/N, I Ih —

I

~ ~ k~ and 2m/N—, I I~ I

~ vr
.2kF—

(kz =~n l2). The relative crystal momentum of the exci-
tation varies within the interval 0 ~ lP l

~ 2m —3k~. To
order N, ', Eq. (4.5) can be written as
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tion is presented in Fig. 6 for various band fillings. The
spectrum is gapless as expected. Above the density n =

3

which marks a point of high symmetry, a gap of width
6k+ —2m opens in momentum, excluding excitations of
this type with momenta between 2m —3k+ and 3k+. We
wish to point out however that this apparent gap in crys-
tal momentum is not real. ' There exist low-energy
charge excitations extending over the full Brillouin zone.
A detailed analysis of the BAE shows that excitations in-
volving the transfer of a bond pair in the presence of a
broken bond (singlet) generate additional branches at
+2k+ (modulo 2vr) which become degenerate in the limit
of a large system with the pure holon-antiholon spectrum
described above. A discussion of this unusual situation is
given in Sec. VI and for a thorough exposition of the
mathematics the reader is referred to Ref. 25.

The e6'ective Fermi surface for the charge excitations is
at ~v =Q (see Fig. 6) and coincides with the pseudo-
Fermi surface. Keeping U fixed at the pseudo-Fermi sur-
face (at Q) and moving uh from one side of the pseudo-
Fermi surface to the other one, we obtain the branch
6 —5 (Fig. 6) with an effective Fermi surface spanning
4k~. In the same way, moving a bound pair u from Q to
—Q at fixed vh =Q involves a crystal momentum
transfer:

This process corresponds to the branch a in Fig. 6.
The holon velocity can be calculated from

1 BE,
v„,],„(P(vh ))=

g
(vh ),

7po vh uh

where

(4.8a)

BE, BP1
(u„)=~ (0;vh )

BUg U/

+2[1+@(Qc)] I + J du
'

(u;v„) .
~p . BUg

(4.8b)

E(P)/2t = 1(1—cos(P)), (4.9)

The function Bp, /Bvh(0;vh) obeys an integral equation
which is readily inferred from (4.3). The holon velocity
vs filling is shown in Fig. 7. From (4.5) and (4.8), it fol-
lows by expansion that the holon velocity at the pseudo-
Fermi surface (vh =Qc) near half-filling is vh, ~,„o-5. We
defer the detailed discussion of the spectrum for a nearly
half-filled band to Sec. VI.

In the low density limit (Qc~ ac ), only the anti-holon
part of the spectrum survives and one obtains

&p
P=2vr j + f du po(v)=2~ 4kF . —

oo Qp .

1.0

(4.7)
where P=a —2 tan '(v ) denotes the momentum of the
excitation. Again, the antiholon velocity at the pseudo-
Fermi surface v =Qc can be estimated as n ~0. We find
that Uantiho]on

B. The spin excitations
0.5

0.0

0.5

0.0 I I

2kF 4kF

N/N, = 0.32

0.75

The construction of the spin excitation spectrum re-
quires a careful study of the BAE. In this section we
present a detailed analysis of the triplet channel. A simi-
lar procedure applies to the singlet channel.

As discussed in Appendix B, the singular roots of Eq.

.~ 0.5

'Q 0.0 I

2kF
I

4kF f-0

1.5 1.5

0.5
0.0

kF 2kF

1.0 1.0

momentum p 0.5 0.5

FIG. 6. Holon-antiholon (h-h *) excitation spectrum for
several values of the filling factor N/N, . Starting with
vh =u~ =Q [see Fig. 2(b)], branch u is obtained by moving v~ to
—Q, branch p is due to moving vh out to ~, y corresponds to
moving u~ back to Q, and 5 completes the loop as uh is moved
back to Q. The additional holon-antiholon branches at +2kF
(mod 2m) have been included in the figure. They correspond to
the subfamily of lowest charge excitations involving broken
bonds but are not elementary in a strict sense. However, they
become degenerate with the pure holon-antiholon excitations in
the thermodynamic limit.

0.5 1.0
particles per site N/N,

FIG. 7. Holon vh, ~,„and spinon v,„;„,„velocity vs particle
density n =N/N, . The squares denote the results obtained
from exact diagonalization for a system of 16 sites.
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N, 8(u )=2+I + g 8(u —A&),
P=1

M'

N, 8(2u ) =2rrI" + g 8(2[u —Ap]),
P=1

2 M'

8(2[A —u ])+ g 8(A —
v&)

j=1 P=1

(4.10a)

(4.10b)

=2vrJ + g 8(A —Ap),
P=1

(4.10c)

where M'=M —1 and the bare quantum numbers I are
integers if N, —M is even [half odd integers (h.o.i) other-
wise] and the I" are integers if N, —M+ 1 is even (h.o.i.,
otherwise). The numbers J are always integers. The al-
lowed ranges for I, I",and J are, respectively,

(2.11) must be considered separately in a rigorous treat-
ment. For simplicity we assume again that the ansatz
(3.1) covers all cases and measure the crystal momentum
relatively to the ground state. Here, the manipulations
are more involved than in the previous sections.

Let us consider the X-particle system in the ground
state and break a particular bond by removing the corre-
sponding A (which corresponds to the spin down of the
pair) and simultaneously transferring the associated rapi-
dities denoted by u

&
and uz onto the real axis [see Fig.

2(c)]. As a consequence, the real parts of the remaining
two-strings shift with respect to the A' s. The Bethe-
ansatz equations (2.11) take the form (M =N/2, N even):

M'

P= g [vr 8(u—)]+ g [~—8(2u, )] . (4.12)

By exploiting Eqs. (4.10) the momentum can be written as

2 M 2

P=~ —g (I —J )
—g 8(2u, )

M' 2

+ g +8(2[u —A ]).
a a=1 j=1

(4.13)

In (4.13) the momentum of the ground state has been sub-
tracted.

We wish to calculate the spectrum induced by a partic-
ular choice of the numbers I

I",I ] at arbitrary filling.
Consider first the half-filled band. From (4.11), the

numbers I are restricted to the interval ~I
~
~N, /4.

The number of available states (N, /2+ 1) exceeds by two
the number of actual pairs (N, /2 —1). Therefore, the
process of breaking one bond introduces two holes (unoc-
cupied states) in the I, which we denote by I", a=1,2.
It turns out25 that in this case the appropriate choice of
the quantum numbers of the broken bond is

Ih Iu+ 1

CX J 2
(4.14)

The momentum of the excited state consists of the con-
tributions due to the M' unbroken bonds and those due
to the broken bond:

M'

1V, —M
(4.1 la)

N, —M+1
(4.11b)

(4.11c)

where a = 1, . . . , M'. Careful analysis of Eqs. (4.10)
shows that the choice of I", j=1,2 uniquely determines
the set t J ]. The presence of holes in the distribution of
numbers I drives a jump of unity in the numbers J ex-
actly at the position of the holes.

for j=1,2.
At arbitrary values of the band filling, the number of

available positions for the I in the excited state exceeds
by two their number in the ground state. However, Eq.
(4.14) no longer needs to be true, since we may choose the
I" outside the range of occupied states:
I;„+~I ~I,„, where I;„is determined from count-
ing states (I;„=(N, N 1)/2). T—his l—eads us to distin-
guish various cases, according to whether the unpaired
rapidities u1 and u2 are embedded in the sea of two-
strings or not.

In the thermodynamic limit, we replace (4.10) by two
coupled integral equations for the distribution of the spin
rapidities A and real part v of the electron rapidities

p(u)+ [5(u —u, h )+6(u —
u2h )]=—1 1 1

1+v I + f dA'o(A')—
—oo B ~ 1+(v —A')

(4.15)

j + J dA'o(A')—
—B ', , 1 1 + [6(A—v, h )+5(A —

uzh )]
1

a . ~ 1+(A—A')'

+— + + dv'p(u') —
z

(4.16)
N ~ 1+4(A ulh)2 ~ 1+4(A—v2h)2 . -- Q . ~ 1+(A—v')'
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In (4.15) and (4.16) the rapidities v, h and 'u2h parametrize
the holes in the sea of two-strings and, according to
(4.15), are such that to O(%, ') u.h

=u . On substitution
of (4.16) into (4.15), (4.16) simplifies to a single integral
equation for p(u):

1 1
p(v) =2R (2u )—

X~ 2 cosh(77[v u lb ] )

+ 1

2 cosh(~[u —
vugh ] )

+ f du'p(u')2R(2[v —v']) .—Q

It is convenient to split p(u) into contributions of 0 (1)
and O(X, '):

1
p(u)=po(v) — p, (v) .

a
(4.18)

Qp+ f du'pi(v')2R(2[v —u']) .—
Qp

(4. 19)

The energy of the excited state can be derived straightfor-
wardly by manipulations similar to those of Ref. 49. We
find

As above, po(u) is the ground-state distribution at fixed Q.
From (4.17) and (4.18), we obtain a simple integral equa-
tion for p, (v):

1 1pi(u)= +
2 cosh(~[v —u, h ]) 2 cosh(~[u —

vugh ])

e(u ih, u2h ) /2t ='rrPi(0)+2[1+9(Qo ) ] f +f" dvp(u) —1 (4.20)

To calculate the crystal momentum relative to the
ground state we assume without loss of generality X/2
odd. The appropriate choice of the [I,J I yields to or-
der O(X, ') (Ref. 25)

u, ;„,„(u,h ) =—[1—5]tanh(~u, h ),splnon 1h (4.25a)

p(uih )=[1+5] ——tan '[sinh(mvih )] . (4.25b)

g(I —J )= — I;„,
a a

(4.21)

The spin excitation spectrum for various fillings is shown
in Fig. 8.

The spinon velocity is calculated from

1 Bc
uspinon(vlh ) o (vlh )2', (uih ) vih

(4.23)

where I;„=(X, —X—1)/2. From (4.14) it follows that
2

I'=2~ 2kF +—8(2v h
—

)
j=l

—
Qp 2

+ f + f du po(v) g 6)(2[u,h
—u]) .

j=1
(4.22)

0.0

2.0

0.0

~ 2, 0

0.0
(U

2.0
0.0

N N, = 0.3P

0.75

277 —4k~ 2kF 27T —2kF 4k„

rnornenturn p

a Qp Bp1
(0)—[I+@(Qo)]f du (v) .

~U1h Qp BU 1h

(4.24)

The integral equation for Bp&/t)uih(u) is readily obtained
by taking the partial derivative of pi(u) with respect to
U1h. The spinon velocity versus filling is shown in Fig. 7.

In the limit of a half-filled band, an expansion in terms
of the hole density (5 ((1)is straightforward. We obtain

FIG. 8. Triplet (spinon-spinon, s-s) excitation spectrum for
several values of the filling factor rY/N, . For N/N, ~1 the
spectrum of the Heisenberg model is recovered. The branches
a, p, and y are obtained by starting with v, h =v2h = ~ and
moving u, „~—oo(a), uih ~ oo(p), and finally taking v, „=uz„
together back to ~ (y), see Fig. 1(c). The branch o. is the spi-
non excitation spectrum spanning a Fermi surface of 2kF. The
lowest (gapless) excitation is obtained by breaking a singlet pair
at A =+~, where the binding energy goes to zero. As
N /N, ~0 the free particle triplet excitation spectrum is
recovered.
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Hence v, ;„,„(p)=n (m. /2)cos(p ). The spinon velocity
near half-filling at the pseudo-Fermi surface (v» ~ ~ or
p =0) is linear in the particle density, i.e., the insertion of
holes into a half-filled band merely renormalizes the spi-
non velocity. The physical interpretation is as follows:
the probability for a domain wall (spinon) to propagate to
the nearest sites is proportional to J„„=Jn and the spi-
non velocity ~J„„.This behavior is in contrast with
that of the large-U Hubbard model.

In the low density limit, the spinon spectrum trans-
forms into

E(p i,p2 ) /2t =Eo(p i ) +Eo(p2 ) (4.26)

E(Vlh, V2h ) —E(vlb )+E(U2h ) r (4.28a)

where E( v ) =m /2 cosh(~v ). The momentum is readily
shown to be

P(vlh~v2h ) p(Vih )+p(V2h ) (4.28b)

with p(v)=m/2 —tan '[sinh(mv)]. Setting pi=p(vj),
j= 1,2, the dispersion relation can be written as

where Eo(p) =1—cosp. Notice that the particle-spectrum
(4.26) is two parametric. At half-filling, Eq. (4.17)
reduces to

p, (v)= 1 + 1
(4.27)

2 cosh(vr[v —v, h]) 2cosh(7r[v —
V2h])

From (3.6) and (4.20) the energy of the triplet excitation
[the spin of the state is S=S'=(N, —2M')/2=l] is
given parametrically by

shift, that the spin excitations behave as true spinons only
at low energies and near half-filling.

V. SUTHERLAND'S REPRESENTATION

Ml

8(2[ivi —v p] ) = 2m I
P=1

(5.1b)

where 8(x)=2 tan '(x). The J are integers provided

M1 —M&+1 is even, h.o.i. otherwise, and Ij is integer if
M, is even, h.o.i otherwise (M, =Nh+Ni, M2=Nh). In
the limit of a large system, the energy of the t-J model in
Sutherland's representation (in zero magnetic field) is
given by [see (2.14) and (2.15)]

1

In Secs. III and IV we determined the ground state and
the excitation spectra from the set of Eqs. (2.11). In this
section we derive the same results from Eqs. (2.13) and
establish the equivalence of the two representations. The
advantage of Sutherland's formulation is twofold: (a) the
ground state and part of the low-lying energy spectrum
involves only real roots of (2.13) and so is technically
more appealing; (b) at half-filling (2.13) reduces to the
known form of the solution of the Heisenberg spin- —,

'

chain. ' However, the physical picture of the excitations
is more transparent in Lai's representation.

Taking the logarithm of Eq. (2.15) we obtain (N, even)

M, M2

N, O(2v )=2nJ+ g. 9(v —vp) —g 8(2[v ivy]), —
/3=1 j=1

(5.1a)

E(p„p2)= —(sinp, +sinp2), 0 p„p2 vr .
2

E=2tN, 1 n —I dv—p, (v) (i)2+ 2
2

(5.1c)

Hence, the triplet excitation reduces, at half-filling, to the
two-parametric family of states of Ref. 51 (N even). We
see that Lai s form of the solution is suited to physical in-
terpretation. At arbitrary filling, the triplet (singlet) exci-
tations corresponds to the process of breaking the singlet
bonds with (without) spin fiip. For various fillings, the
excitation spectrum is shown in Fig. 4: it is gapless as ex-
pected. This is due to the presence of pairs with arbi-
trarily weak "binding" energy. We find that the effective
Fermi surface for the spin excitations is at kF, i.e., at
~v ~

= ~, and does not coincide with the pseudo-Fermi
surface. Real rapidities embedded in the sea of singlet
pairs, i.e., low energy excited states are identified, near
half-filling, with spinons (chargeless spin- —, kinks). This
terminology should be used with care, for the spinons are
pure spin only at n = 1. Isolated rapidities (

~
u

~

(Q) can
be associated with real particle-excitations (carrying both
spin and charge). Upon decreasing the band filling, the
spinon spectrum gradually transforms into a real particle
spectrum (Fig. 8). It is known that the spin excitations in
the Hubbard model generate, in addition to the spin
current, a charge current which can be evaluated in the
large-U limit. We expect that same phenomenon to
occur in the t-J model. In Sec. VI we study the problem
of separation of charge and spin degrees of freedom and
demonstrate, by calculating the spinon-spinon phase

We define the crystal momentum by Tg=e' P, where f
denotes the usual fermion amplitude This prescr. iption
requires the addition of a constant to the expression
(2.15) given by Sutherland

M1 M2

P= g J + g I, +m.(N, —M, —l, mod(2)),
a &=1 j=1

(5.1d)

where X, —M1 —1=N& —1. To clarify this point, con-
sider the case when one of the up spins is at x =X, . A
translation of the system by one lattice unit leads to the
transfer of the up spin to the other side of the chain at

NT 1x = 1. In this process, a phase factor (
—1) ' must be

taken into account for the up spin has been carried
through the N&

—1 remaining up spins.
Again, it is crucial to count correctly the number of

available states for the bare quantum numbers. They are
restricted to the intervals

~
J

~

~J,„and ~IJ ~
~I,„withJ,„=(N, +M2 —M, —1)/2 and I,„=M,. The maxi-

mal number of available positions for the I J I is N, —Nt
and the number of unoccupied quantum numbers for an
eigenstate (provided there are no complex roots, see
below) with definite spin S=S' is Nt —Ni =2$'.

For simplicity we consider in this section excitations
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above a nondegenerate ground state. A careful analysis
shows that the ground state is degenerate in all cases but
two: either for X, even, M, odd and Mz even, or for N,
odd, M& even and M2 odd. The nondegenerate ground
state (assume X, even, X even, and Iv /2 odd) is uniquely
specified by the choice ~J

~
~J,„and ~I, ~

~I,„, withJ,„=(%, +X/2 —1 ) /2 and I,„=(Xi, —1 ) /2. In the
limit of a large system, Eqs. (5.1) transform into coupled
integral equations for the distribution of roots on the real
axis:

p, (u)

2 cosh(harv )

+ ~, 1 ~p &, sech' w' —v 0 i)
1+4(w' —v')2

Qp

p, (w)=2R(2w)+ f dw'2R(2[w —w'])po(w') .

1 1

O 1 2 Qp 2

p, (v) =— + dw'p, (w')—
ir ( —,') +u ~0 ' ~ ( —,') +(w' —u) An alternative and useful form of (5.2b) is

(5.4b)

du'p, (v')—oo 0 1 1

~ 1+(u' —u)

1

po(w)= f du p, (v )
rr (,' )2+ ( v

' —w )

The normalization is such that

f dv p, (u)=
Q

(5.2a)

(5.2b)

(5.3a)

p, (v)= 1

2 cosh(m u )

Qp 1+ dw'p, (w') (5.5)
&0

' 2 cosh(a[w' —v ])
The integral equations (5.4b) and (3.5) are identical (pro-
vided we identify the limits of integration). Therefore,
p, (w) and po(u) (see Sec. III) denote the same analytic
function over the whole real axis. They are complemen-
tary in the sense that the occupied roots on the w axis
give precisely the unoccupied roots on the v axis, and vice
versa. Notice however that the relationship between
o(A) and p, (u) is more involved. Again, the ground-
state energy can be written as

Eo =2t [5—~p, (0)j, (5.6)

Qp M2
Jwp w (5.3b)

The limit of integration Qo alone determines the band
filling. Applying the Fourier transform technique we can
rewrite (5.2) as two uncoupled integral equations:

where 6=1 n is th—e hole density. Equations (5.6) and
(3.5f) are identical. The holon-antiholon spectrum is con-
structed in the same way as in Sec. IV A. A bare quan-
tum number I =I& is transferred from the occupied re-
gion to the locus I above the pseudo-Fermi surface.
Again, writing the BAE in discrete form and taking the
thermodynamic limit, we obtain

p, (v)= 1 + 1 1

2 cosh(harv ) X, 2 cosh(m [u —
w~ ] )

1 ~, 1 g, sech~ v —w'+ GU — 8W ps u
2 cosh(m [u —

wi, ]) — ~ —g 1+4(w' —u')

(5.7a)

p, (w)+ 5(w —wh)=2R(2w)+ 2R(2[w —w ])+f dw'2R(2[w —w'])p, (w') .
1 1 Q

X, g
(5.7b)

In order to compare the excitation spectrum with our
previous results we express the energy in terms of the dis-
tribution p, (w) instead of p, (u) [see (5.1c)]. Splitting in
(5.7) the terms of dift'erent orders and subtracting the
ground-state energy, we arrive at the simple expression

E(w~, wh)/2t =7rp,'(0) [ph(QO)+ I] dw p,'(—iv),
&0

(5.8)

where p„(QO) is the chemical potential for the holes [see
(4.15)]

(5.9)

The distribution p,'(w) incorporates the eFect of back-
Ilow in the charge distribution p, (w)=p, (w) —(5(w—

wh )+p,'(w ))/N, and obeys to the integral equation

p,'(w) =2R (2[w —
wi, ] ) —2R (2[iv —

w~ ])
&0+f dw'2R (2[w —w'])p,'(w') . (5.10)

0

On account of (5.9) and the relation [following from
(5.10)]
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f dw p,'(w)= —2 f + f dw p,'(w), (5.11) ~—2k, ~F —~ p — F

it is seen that (5.8) and (4.4) are identical.
The momentum of the charge excitation can be ex-

pressed as in Sec. IV A

P= (I~ Ih—),
a

(5.12a)

where the ranges of the bare quantum numbers are such
that

lIh l
~sr 2k~-277

a

In the limit of a large system we obtain to O(N, ')

p(w, wh)=2m f dw p, (w) ~
llew

p

(5.12b)

as in (4.6).
The spin excitations are straightforward in

Sutherland's representation. We consider first the triplet
excitation for which X~ —X& =2. Therefore, the spec-
trum is two-parametric. We denote by UI&, U2h the two
holes (the missing rapidities) in the distribution p, (v). In
the thermodynamic limit we find

p, (u)+ [5(v —v, h)+5(u —v2h)]= — + f dw'p, (w')—Q, , 1

~ ( —') +v —
Q ~ ( —') +(w' —u)

—f du'p, (v')—
~ 1+(u —v')

(5.13a)

1

p, (w)= f dv'p, (u')—
~ ( —')'+(u' —w)'

(5.13b)

Separating contributions of different orders,

1 0 1 1
p, (w) =p, (w )

— p,'(w) and p, (v) =p, (u) — [5(u —u, h )+5(v —
u2h )]+ p,'(u),2 ~ s

and applying the Fourier-transform technique we obtain

Qp 1 1 1
p,'(v) =2R (2[u —u, h ])+2R (2[u —

uzh ])—f dw'sech(vr[w' —u ])— +—
Qp 1+4(w' —u») 1+4(w' —uzh)

, sech m v —m'

rr —
&o 1+4(w' —u')

(5.14a)pl(w)'+'+ f dw'p, '(w')2R(2[ww])
2 cosh rr w Ulh 2 cosli rr w v2h

(5.14b)

For the excitation energy we find 2%
P =2m —2k —- ( Jh 1+~h2)F (5.17a)

From (5.14b) it follows that

Qpf dw p,'(w)= —2
p

f + f" dwp'(w) —1

E(u,„,v2„)/2t

=vrp,'(0) —[1—huh(QO)] f dw p,'(w) .
p

(5.15)

with 2rr/N, l J, 2h l

~ sr k~, or in the —limit of a large sys-
tem

(Ulh U2h )
T

=2~ 2kF 2' —f d—u p, (u)+ f du p, (u)
I 0

(5.17b)

(5.16)

On account of (5.9) and (5.16) the identity of Eqs. (4.20)
and (5.15) is easily verified. The momentum of the excita-
tion is given by

The spin singlet excitation requires more algebra. As in
the Heisenberg AFM chain, these elementary excitations
involve a pair of comglex conjugated roots in the v plane
u

—=u, +i /2+O(e '). Equations (5.1a) and (5.1b)
have to be replaced by
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M —2
1

3f2

N, 8(2U„)=2~J + g 8(u —up) —g 8(2[u —w. ])
p=

The energy and momentum of the excitation are given,
respectively, by

+8(—', [u —u, ])+8(2[u —u, ]),
1

8( 2 [wJ
—

u& ] ) +8( wj
—v, ) =2~I/,

P=1

(5.18a)

(5.18b)

E =2tN, 1 n ——f du p, (u)
(

i )2+U2
2

1 1

&. 1+V,'

(5.19a)

where J are integers if M, —M2+1 even (h.o.i. other-
wise) and Ij are integers if M, —1 is even (h.o.i. other-
wise). The sets [J ] and II~] are restricted to the inter-
vals [J (

~(N, —M, +M2 —1)/2 and (I )
~(M, —1)/2.

Again, the excitation is two-parametric. The center of
the string U, is determined from the equation

P = g 28(u )+ [m. +28(u, )] .
a=1

(5.19b)

On account of Eqs. (5.18) the crystal momentum can be

written as

Mi

N, 8(v, )= g [8(—', [u, —v&])+8(2[u, —u&])]
P=1

M2—+8(u, —w ). (5.18c)

P =2' 2kF —— ( Jh, +Jl, 2) .2m
(5.19c)

Equation (5.19c) coincides with (5.17a).
In the thermodynamic limit, Eqs. (5.18) transform into

p, (u)+ [5(u —v, h)+5(v —U2&)]= — — — +—1 1 2 1 1 2 1

~ ( —,')'+v' N, ~ ( —,')'+(u —u, )' ~ ( —')'+(u —u )'
L

1

Q 1 2 ~, , 1 1+ dw p, (w )— — du'p, (u')—
~ ( —,') +(v —w) —~ ' ~ 1+(v —v')

(5.20a)

1 1 1 1 2

p, (w ) = — + du'p, (u')—
N, ~ 1+(u, —w)' — ' ~ ( —,')'+(w —u')'

(5.20b)

8(u, )=f du p, (u)[8( ', [u, —u—])+8(2[u, —v])]—f dw p, (w)8(v, (5.20c)

By Fourier transformation, it is readily shown that

p, (u)=h(u)+ dw p, (w)
Q

—g
' 2coshm v —w

where

(5.21a)

(5.21b)
1 1 1

v lh )+&(v U2q )+—
2 2

+2R (2[u —v L& ])+2R (2[v u2h ])—2cosh nu N, ~ ( —')'+(u —u, )'

On substitution of (5.21b) into (5.20b) we find

p, (w)=2R(2w) — + + f dw'p, (w')2R(2[w' —w]) .
1 1 1 Q

2 COSll 7T LU Vlh 2 COSll 'TT w U2h ) —Q
L

(5.21c)

Again, separating contributions of difterent orders, we arrive at the following expressions for the back-Row distribu-
tions:

1

2

p,'(v)=2R(2[u —v, „])+2R(2[u U2h]) —— — + f dw p,'(w)
m (

l )2+(u —u )2 —g
' 2cosh ~ u —w

(5.21d)

p,'(w )= + + f dw'p, '(w )2R(2[w' —w]) .
2 cosh TT lu Ulh 2 cosh(77 LU U2g

—Q
(5.21e)
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The center of the string U, is determined by substituting
the expression (5.21a) for p, ( v) into (5.20c): the terms of
0 (1) cancel out whereas those of O(1/N, ) imply that

8(2[v, —v, q ])+8(2[v,—v2q ])=0 . (5.22a)

In other words, the center of the string at arbitrary filling
is given by

(5.22b)

as in the case of the AFM Heisenberg chain. ' Notice
that Eq. (5.21e) for p,'(w) agrees with the corresponding
equation for the charge back-Aow distribution in the trip-
let case [see (5.14b)]. On substitution of (5.21) into
(5.19a), it is readily shown that the contribution of the
string to the energy cancels out. We therefore obtain for
the energy of the excitation the same expression as (5.8),
and so the triplet and singlet excitations are degenerate
for arbitrary band filling. This degeneracy is a conse-
quence of the spin-SU(2) symmetry and supports the in-
terpretation according to which the triplet and singlet ex-
citations correspond to the symmetric, respectively, an-
tisymmetric combinations of the two spinons. The sym-
metry can be lowered by applying a magnetic field. As a
consequence, the degeneracy is lifted and a gap arises be-
tween the triplet and singlet spectra.

In a recent work Kawakami and Yang applied the
technique of conformal invariance to determine the ex-
ponents of the large distance behavior of correlation
functions in the t-J model. In their paper, the use of Lai's
form of the solution is made. Alternatively, the method
of Woynarovich' to evaluate the finite-size corrections to
the energy can be applied advantageously to Sutherland's
form of the solution which involves only real roots at low
energies.

Motivated by the failure of Fermi liquid theory in one
dimension, Haldane developed in the early eighties the
concept of Luttinger liquid. ' For a one-dimensional sys-
tem without internal symmetry, the central result of the
Luttinger liquid theory is that a single renormalized cou-
pling parameter e~ controls the exponents of correlation
functions. The fundamental content of the theory can be
expressed in an equation which relates the three spectral
velocities vs (sound wave velocity of collective density ex-
citations), vz, and vJ (associated with charge and spin
current-carrying excitations, respectively)

vs = ( vx vJ )

which can be used to define the coupling parameter e~ as

where Vis a diagonal matrix with matrix elements v, and
U„ the holon and spinon velocities at the pseudo-Fermi
surface. Z denotes the dressed charge matrix as defined
in Refs. 18 and 19. In fact, it is readily shown that the
dressed charge matrix is nothing but the scattering ma-
trix for the elementary excitations of the model at the
corresponding pseudo-Fermi surfaces. As in the scalar
case, the velocity-matrix VJ controls the mean current
(charge and spin) and V~ is related to the susceptibili-
ties. ' The fundamental relation of the Luttinger theory
now generalizes to

VJ V~=ZV Z (5.24)

E(bN, D )
—Eo= bN V~EN—+D VqD

a

+u VgN (5.25a)

P(bN, D) —Po= bND+F D+u g aN0
ct=+

(5.25b)

where the superscript T denotes transposition and u, AX,
D, I', X— are two-component vectors defined as

+I 2 2q, , »d
The pseudo-Fermi surfaces q, , for the

charge and spin excitations are given for the t-J model by
q, =~—

kI;&
—

kI;& and q, =m —kz&. The remaining nota-
tion is that of Ref. 19.

For the t-J model in zero magnetic field, the spectral
velocities take the form

VJ=
2K U,

EpVc

E Vc

K Uc Usp c + s

2 2

(5.26a)

U U

+ Us2E 2

and the renormalized coupling parameter of the theory is
simply the dressed charge matrix, which determines the
exponents of the asymptotic behavior of the correlation
functions, as we know from conformal field theory. ' Us-
ing Sutherland s representation, the finite-size scaling of
the energy and momentum can be calculated as in Refs.
18 and 19 and in terms of the three-spectral velocity ma-
trices can be written, in analogy with Haldane's formula-
tion, ' as

U~ =Uge, UJ =Uge 2U
(5.26b)

v =(z')-'vz-'
VJ =ZVZ

(5.23a)

(5.23b)

The appropriate generalization of the Luttinger liquid
concept to systems with internal symmetry, i.e., t-J mod-
el, is provided by the finite-size scaling in conformal field
theory. To illustrate this point let us define the velocity
matrices

where K is the charge exponent introduced at the end of
Sec. III. The diagonal matrix elements of VJ, i.e.,
vh l,„=2K v, and v,';„,„=v,/2+% v, /2 represent ve-
locities associated with the 2q, =2~—4k~ and 2q,

"
=2m —2k+ processes, respectively, and are defined as the
corresponding excitation energy normalized by the unit
momentum 2~/%, . This velocities versus band filling are
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shown in Fig. 9. The mean charge and spin currents are
then given by-

j, ~ v„'„,„[2D,+D, ],
I I

~s spinon 2Ds + U holon c

(5.27a)

(5.27b)

Therefore, a spin current-carrying state with D, WO and

D, =O involves a charge current ~ vh, &,„D,. This fact
corroborates our picture of the spin excitations according
to which the low energy part of the spectrum has a
predominantly spin character near half-filling where

I

holon spinon

VI. THE EXCITATION SPECTRUM
NEAR HAI.F-FILLING

The analysis of the excitation spectrum near half-filling
deserves particular attention. Anderson has emphasized
the concept of separation of charge and spin degrees of
freedom in strongly correlated systems. Anderson's idea
finds its justification on a subtle analysis of the excitation
spectrum of the one-dimensional large-U Hubbard mod-
el. ' The key step in his approach is to recognize that
the low energy part of the spectrum can be thought of as
consisting of parametrically independent solitonlike exci-
tations carrying separately charge (holons) and spin (spi-
nons).

For the t-J model, the main results can be summarized
as follows: the concept of separation of charge and spin
degrees of freedom is applicable only at low energies and
near half-filling. To illustrate this phenomenon the case
of one hole in an even chain is considered.

Furthermore, the holon and spinon spectra in odd
chains show interesting structure. A pure spinon spec-
trum in an odd chain extends in momentum space over a

region of width 2kF =m. However, exact numerical diag-
onalization of small clusters shows the existence of spi-
nonlike excitations covering the full Brillouin zone. The
additional branch can be explained in terms of composite
excitations involving singlet broken bonds. The insertion
of a hole into the odd chain leads to a pure holon spec-
trum (over a nondegenerate ground state) spanning
2k+=a. Again, numerical calculations indicate a holon-
like spectrum extending over the whole Brillouin zone.
The full spectrum is generated by taking into account
composite excitations involving the rearrangement of the
spin degrees of freedom.

The spin excitations described in Secs. IV B and V alter
gradually their spinon character as the band filling is de-
creased. Owing to this peculiar behavior, counting the
number of degrees of freedom in the problem is not a sim-
ple task and may easily lead to erroneous conclusions.
For instance, it is confusing at first sight that the number
of states in the spin spectrum (see Fig. 8) increases as the
filling decreases, in contrast to the Hubbard model. The
reason for this unusual situation is given below.

In order to elucidate the mechanism of separation of
charge and spin degrees of freedom in the t-J model, we
investigate excitations involving a change in particle
number (doping). The simplest case is certainly obtained
by doping an even chain with a single hole. We start
with a half-filled band, assume a nondegenerate ground
state (M& odd and M2 even), and insert into the system a
single hole. For clarity we deal with Sutherland's repre-
sentation. In the presence of one hole, the Bethe-ansatz
equations (5.1) read

M)

X,O(2u )=2~7 —8(2[v —w])+ g 8(u —u&),
P=l

(6.1a)

1.0 1.0 0(2[tv —u p] ) =2~I,
/3= 1

(6.1b)

0
0

0.5 0.5

where the quantum numbers I and J are always half odd

integers. They are restricted to the intervals ~I
~

~X, /4,
~
J

~
~X, /4. The number of available states for the J is

(X, /2+1) whereas the number of actual roots is N, /2.
Therefore, there is one empty state Jl, (uh ) which
parametrizes the spin degree of freedom. On the other
hand, I is associated with the charge degree of freedom
(holon). More explicitly, a general state is determined
from

0.0
N,
4 i i[ ]i i 2i 2i . i 4

0.5 1.0
particles per site N/N,

and

(6.2a)

FIG. 9. Holon vh, ),„and spinon v p' „velocity vs particle
density n =N/N, . The quantities vh, &,„(v,'„;„,„) are defined as
the finite-size excitation energies at 4kF (2kF) of the charge
(spin) excitation, normalized by the momentum unit 2m/N, .
The squares denote the results obtained from exact diagonaliza-
tion for a system of 16 sites.

N,Ic
4 ' 4

(6.2b)

where JI, denotes the unoccupied quantum number. The
crystal momentum of this state is given by
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P= (I J—g) .
a

The ground state is obtained for either choice

1 ) ~ ~ ~

(6.3)
where p, (tv) denotes the distribution of unoccupied roots
w whereas p, (v) denotes the distribution of occupied roots
v in the ground state of the N, -particle system [see (5.4b)
and (5.5)]. From (6.7) and (6.8) the energy and momen-
tum of the excited state is given additively by the energies
and momenta of the individual kinks

or

N, —1, I=—,
4 '

2

e(v&, m) =2t[Ea&a«(w)+E», .„«(vz )], (6.9a)

where E„„,„(x)=ln2 —22rR (2x ) and e, ;„,„(x )

=2r/2cosh(2rx) denote the contributions of the holon
and spinon, respectively, and

) ~ ~ ~
—1

P( vg i tv ) =i2goj«( ~ ) +P»inon( h ) (6.9b)

N, I=——
4 ' 4 '

2

1 2 1 1+~ ( —,') +v N, 2r ( —,') +(v —w)

1 1
dv'p, (v')—

2r 1+(v —v')
(6.4)

Substitution of p, (v) =p, (v )+ 1/N, [p,'(v) —5(v —
v~ )]

into (6.4) leads to

p, (v)= 1

2 cosh(harv )

p,'(v)= +2R(2[v vt, ]) .—1

2 cosh 2r v —Lv

(6.5a)

(6.5b)

The energy can be expressed directly in terms of p, (v) as
(see Sec. V)

E= —t(N, —2) —2tN, f dv p, (v), —1

2

(6.6)

On substitution of (6.5) into (6.6) we find

E(vz, w ) = —2tN, ln2+2t(1 2R (2tv ))—
+2t

2 cosh(m. v„)
(6.7)

Thus the ground-state energy is given by (see Sec. III)

E(vt, =+~, tv =0)= —2tN, ln2+2t(1 —ln2) .

From (6.3) the momentum in the limit of a large system
can be written as

vh

p(vt„w ) =22r f dtv'p, (w') —2m f dv'p, (v'), (6.8)

and so, the ground state of the X, —1 particle system is
twofold degenerate with momentum P =+22r/
N, ([(N, +2)/4]) =+kF.

In the limit of a large system, the configuration of
quantum numbers (6.2) yields

1
p, (v)+ 5(v —

vz )
a

with the notation pz, &,„(x)=22rF(2x ) and p»;„,„(x)= —tan '(sinh(2rx)), where F(x)= Jody R(y).
From this simple algebra we infer that the one-hole ex-

citation in a half-filled band is two-parametric. Upon
doping, the system is left in an excited state of the N, —1

particle system. The insertion of a hole with momentum
P =0 produces a spinon (spin soliton of charge q =0 and
spin s= —,) at +kF, and by crystal-momentum conserva-
tion a holon (charge soliton with charge q=e and spin
s=0) at +kF which is energetically unfavorable. The
ground state of the N, —1 particle system is degenerate
and corresponds to a state with momentum P=+ /2r2,

for which the charge and spin degrees of freedom of the
hole have been separated. A physical picture of this
mechanism of separation is as follows. Consider an
even chain of spins with short-range AFM order and re-
move, say, an up spin at site i. The vacancy left at posi-
tion i is surrounded by a ferromagnetic (FM) alignment
of the down spins. Now, let us propagate the hole to the
nearest neighbor sites by applying the Hamiltonian to the
system. After the hole has hopped by one lattice site, the
hole is surrounded by an AFM alignment of the spins
(holon) and a FM domain wall (spinon) arises on the adja-
cent sites. The holon carries an excess charge q=e
whereas the spinon carries an excess spin s =

—,'. By fur-
ther applying the Hamiltonian to the chain, it is easily
seen that the spinon and holon propagate independently.

The low-energy hole spectrum is shown in Fig. 10 for a
finite doping. At high energies the interaction of the spi-
nons and holons is responsible for the recombination of
charge and spin degrees of freedom and so the simple ad-
dition of the holon and spinon spectra is meaningless
(dotted part of the spectrum in Fig. 10).

As in the Hubbard model, the BAE dictate selection
rules for the number of holons and spinons present in the
system: ( —1) ""'"(—1) '"'"'"=( —1) ', where Nz, &,„,

p' o denote the number of holons and spinons, respec-
tively. The topological character of the spin solitons im-
poses constraints on their number although the latter is
not fixed (in zero-magnetic field, the chemical potential is
zero): for even N, the spinons occur in pairs whereas for
odd N their number is always odd (see Sec. IV). The
chemical Potential for the holons is Pholon Pelectron and
so their number in the holon Fermi sea is fixed:

holon holes '

In order to understand the peculiar features of the spi-
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FIG. 10. Single particle (s-h) excitation spectrum. Removing
a particle leaves the system back in an excited state character-
ized by a spinon s and a holon h. Top: holon and spinon excita-
tion spectra with Fermi surfaces at 2kF and at kF, respectively.
Bottom: combination of the s and h excitation spectra into a
real particle (s-h) excitation spectrum. The state at k& (3kF ) is a
combination of a 2k~ holon and a —kF (k+) spinon. The spec-
trum has been folded back into the first Brillouin zone.
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4 ) ~ ~ 0 7 p ) 2 ) ~ ~ ~ )

X, —5

4

or

non and holon spectra we now consider the case of a
chain with an odd number of sites X, .

Assume first a half-filled band with M, =(N, —1)/2
odd. The quantum numbers I J I are h.o.i. and such that
IJ I

~(N, —1)/4. By counting the number of available
positions for the I J I, it is readily seen that the state is
one-parametric. The ground state is degenerate and is
obtained for either choice

right number of degrees of freedom. To elucidate this
point a detailed analysis of the BAE is required.
From the previous section we know that spin excita-
tions parametrized by a pair of complex roots

cX
v

+—=v, +i /2+0(e '
) are singlet and become degenerate

with the triplet excitations in the limit of a large system
for even chains. Consider now such singlet excitations in
an odd chain. The BAE are given in (5.18) with the num-
bers I J I as h.o.i. (M, odd). They are restricted to the
interval IJ I

~ (N, —1)/4 and so the excitation is three-
parametric. The manifold of excited states with the
lowest energy is obtained by choosing two unoccupied
quantum numbers at +(N, —1)/4 and letting one unoc-
cupied number vary over the allowed range of parameter

space. The energy dispersion for this class of states is
E(uh ) =2t E,~;„,„(vh ), p(uz ) =p,~;„,„(uh ). Therefore, the
one-parametric subfamily of states is degenerate with the
pure spinon spectrum and the presence of the complex
roots only affects the crystal momentum by a constant
2kF. The full spinon spectrum is shown in Fig. 11(a).

The physical picture which arises from these con-
siderations is as follows: a FM domain wall in a pure
AFM background of spins moves undisturbed within the
same sublattice (open boundary conditions) whereas a
spinon does not. The propagation of the spinon takes
place on both sublattices, however for a finite chain the
spinon propagates preferentially on the same sublattice.
The propagation of the spinon on the adjacent sublattice
is accompanied by the emission of pairs of antiparallel
FM domain walls, i.e., pairs of spinons in a singlet state.

Let us now insert one physical hole into the odd chain
(N =N, —1). In this case we have M, =(N, +1)/2 even

and M2=1 odd, and the J are h.o.i. and I is integer.
The number of available positions in the J is exactly
equal to the number of rapidities U . Therefore, the state
is one-parametric and the dispersion relation for the
holon is given by e(w ) =2tE„„,„(w) P(w) =p„,i,„(w).

In real space, the holon has been pictured as a hole sur-
rounded by an AFM configuration of the neighboring

N, —5

4
~ 0 ~ ) 2 ) 2 ) ~ ~ ~ )

N, —1

4

The crystal momentum of the ground state is clearly
P =+it/2 (modulo 2'). The unoccupied quantum num-
ber Jh parametrizes the spinon. The dispersion relation
of the excitation is simply given by c(vi, ) =2tc,~;„,„(vh ),
P(vi, ) =7r+p, „;„,„(vh ) Isee (6.9)]. Thus, the spinon spec-
trum extends over a region of momentum space of width
2kF =~.

As mentioned above, there is a simple and physical pic-
ture of the spinon as a FM domain wall in an AFM back-
ground of spins. The domain wall propagates on either
the even- or odd-numbered sublattices. Periodic bound-
ary conditions ensure that after one turn around the ring,
say on the even-numbered sublattice, the propagation
takes place on the odd-numbered sublattice and vice ver-
sa.

This picture however indicates that the number of
states in the one-spinon spectrum does not reproduce the

1.0

0

O

Q 0.5

0.0
—k F kF

0
momentum p

FICi. 11. (a) Single spinon spectrum in an odd chain at half
filling and (b) single holon excitation spectrum in an odd chain
near half filling.
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spins, allowing for a a-phase shift of the spin arrange-
ment. 3 priori, the holon can propagate on every site of
the lattice without disturbing the AFM arrangement of
the spins and so we expect X, states in the holon spec-
trum. Counting the number of degrees of freedom is a
confusing task, for the holon spectrum covers only half of
the Brillouin zone. This apparent discrepancy is solved
by invoking states with complex roots. Consider the
holon spectrum in the presence of one pair of complex
roots v+—=v, +i/2. The corresponding BAE are then
given by Eqs. (5.18) where M, =(%,+1)/2 (even) and

M2 = 1 (odd). The bare quantum numbers describing the
distribution of real roots are such that ~J ~

((X,—1)/4
and ~I

~
«(M, —1)/2, and the family of states generated

in this manner is three-parametric. Again, the manifold
of lowest energy states is one-parametric and the
dispersion relation is simply E( w) =2t eh, l,„(w ),P( w)
=rr+ph, l,„(w). Notice that this spectrum is degenerate
(in the thermodynamic limit only) with the pure holon
spectrum discussed previously but that the crystal
momentum differs by a constant of that of the pure holon
spectrum. In the limit of a large system the holon spec-
trum of the t Jmode-l is 2kF periodic [see Fig. 11(b)] in

momentum space in contrast with that of the Hubbard
model which is 4kF periodic. ' The physical content
can be expressed by saying that the propagation of the
holon strongly couples to the spin degrees of freedom.
Consider a single holon on the chain: on both sides of the
holon we have a Heisenberg chain (periodic boundary
conditions) with one open boundary. The propagation of
the holon to the nearest sites involves the transfer of a
spin from one end of the chain to the other: this process
implies a rearrangement of the spin configuration over
the whole chain. This picture indicates that the short-

range AFM correlations in the t-J model strongly affect
the holon dynamics. The effective masses near half-filling
at the bottom and top of the holon band follow from
(6.9) (in units of 2t): m, ~" =4[ln2] /3g( 3 ), and

m,'ri'= —
—,
' where g(z) denotes the Riemann g function,

and so: lm', r I
—rid",r".

This analysis of the holon spectrum can be easily ex-
tended to arbitrary filling. As mentioned in Sec. IV, the
presence of a pair of spinons in a singlet state affects the
momentum of the charge excitation and additional
holon-antiholon branches arise at +2kF (modulo 2vr)

These excitations are not elementary in a strict sense,
since they involve the composition of two types of ele-
mentary processes. However, it is worth mentioning
them: they reAect the fact that the coupling of charge
and spin degrees of freedom in the t-J model is strong
over a wide range of energies and momenta. This proper-
ty is also manifest in the spin spectrum as is discussed
below.

In Sec. IV we claimed that the spin excitations behave
as spinons only at low energies. We wish now to show
that at low enough energies the scattering phase shift be-
tween the spin-solitonlike excitations is identical to that
which occurs between spinons (FM domain walls) in the
AFM Heisenberg chain. As the band filling decreases
from n = 1 the energy region of the excitation spectrum
with dominantly spinon character shrinks and finally col-
lapses at zero filling. The spinon-spinon, the holon-
holon, and the spinon-holon scattering phase shifts have
been evaluated by Korepin's method. For convenience
we present the results in Sutherland's representation.
In particular, the spinon-spinon phase shift (as defined in
Ref. 47) in the triplet state is given, up to an unimportant
constant, by

Qo tan '(2[w' —
u2h ])

4 „(u,h, u2h ) —2vrF(2[u, h
—

u2h ])—f dw
Qo cosli 77 Ulh W

Q, sech(m [u lh
—w'] )

+ f du" —f dw', „2— 4„(v",V2h) .
&o 1+4(w' —u" )

(6.10)

Notice that @„(—v, h,
—

v2h ) = —4, (u, h, u2h ), as re-
quired by time reversal symmetry and that the expression
(6.10) is Galilean invariant only at half-filling. Provided
that

QO ((U lh i U2h ~

the phase shift reads

(Vlh, U2h ) 2&F(2[v lh V2h ])+O(e '"
)

(6.1 1)

(6.12)

In other words, Eq. (6.12) gives the phase shift for the
spin excitations in the triplet channel of the Heisenberg
AFM chain. ' The same analysis applies to the singlet
case. ' Provided that condition (6.11) is fulfilled, the con-
cept of spinons make sense. However, this condition may
be violated as n ~0, since then Qo ~ oo and the last term
on the RHS of (6.10) is no longer an exponentially small Pholoo(W (6.13)

term. In the dilute limit the picture of the domain wall is

poorly defined and the propagation of the spin excitation
requires a substantial rearrangement of the charge de-
grees of freedom. In the Lieb and Wu solution of the
Hubbard model, the situation is different: the rapidities
parametrizing the charge degrees of freedom
[u(k)=sin(k)] are bounded. As a consequence, the spin
spectrum in the Hubbard model has spinon character
down to zero filling over a wide range of energies.

A similar analysis applies to the scattering of holons off
other holons and spinons. Near half-filling, the phase
shift acquired by scattering a holon m off another holon
m' can be approximated by

@„(w, w') = —2~F (2[w —w'] )
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4&„(vh, iL) ) = —tan '(sinh(m [vh
—u) ] ) )

=pspinon( Vh (6.14)

that is, the holon-holon scattering phase shift is identical
(up to a sign) to the triplet spinon-spinon phase shift near
half-filling: the holons behave as spinless spinons in this
regime. For the scattering of a spinon off a holon we find

[ A, B ]= AB —( —1) ~8 A, (a,13=0, 1 are the grades of A
and 8, respectively). The operators X' form a basis of
the doubly graded superalgebra spl(1, 2; C). It is possi-
b1e to construct a certain set of integrals of motion for
Hz. We find that (for arbitrary dimension of the underly-
ing lattice)

(7.4a)

At very low energies and near half-filling, the spinon-
holon scattering phase shift is simply given by the
momentum of the spinon p, ;„,„.

where the conserved charges are defined as

Q' = gX', Va, b=0, 1, 1 .
J

(7.4b)

VII. THE SUPERSYMMETRY AND THE t-3 MODEL

The t Jmo-del in the form given by Sutherland [see
(2.14)] shares some basic features characteristic of super-
symmetric models. ' ' However, an important distinc-
tion has to be made from ordinary supersymmetry
theories: ' the t-J Hamiltonian cannot be written as the
sum of the squares of appropriate conserved charges. In
the present model it is possible to place the holes (bosons)
and the electrons (fermions) in a supermultiplet.
Sutherland's Hamiltonian reads [see (2.14)]

N

Hs —g P
j=1

(7.1)

where P~ I+i denotes a graded permutation operator. In
fact, the Hamiltonian (7.1) can be directly diagonalized
by means of a generalized QISM based on the graded
counterpart of the Yang-Baxter algebra. '

Alternatively, the Hamiltonian (7.1) can be expressed
in terms of the Hubbard operators where the occupancy
of the lattice is restricted to at most one particle per site
(we set t = 1 in this section and define X' =

~
a ) ( b

~
with

a, b =0, 1', $) (Ref. 62)

H =~(X X. +X X o)s ~ j j+1 j+1 j
[H)J Q+. ]—=+2Q.+ . (7.5)

The subset {Q —,Q' ] (for each cr) generates a subalgebra

The supercharges Q' generate the same algebra as that
defined by (7.3). Therefore the symmetry group of the
Hamiltonian is the supergroup obtained by "exponentia-
tion" of the superalgebra Spl(1, 2;C) (see Ref. 61). The
even part of the algebra, i.e., the subset {Q,Q
(o,cr'= 1', f), contains the algebra su(2). The odd part of
the algebra is the set IQ

—
] cr =1, l [with the notation

Q+ =Q, Q =(Q+ ) ]. Clearly, the supercharges Q—
are fermionic, i.e. , [Q', Q' ]+=0, s=+. As a conse-
quence, the whole spectrum cannot be generated by suc-
cessively applying the generators of the algebra. Notice
that Q' =[Q+,Q ]+=N +Nh is also a (trivial) con-
stant of motion. The supercharges Q

— connect in the
Fock space the Hilbert spaces with different particle
numbers, i.e., [N, Q

+—]=+Q+, and so are the supersym-
metric analogs of the spin lowering (raising) operators.
They annihilate (create) a particle with spin o in a zero-
momentum projected state: Q =ch o, with

N
ch =Pg~', e'"~c P (P is the projector defined in Sec.
II).

From (7.4) it follows that

J,OO

(7.2a)
[Q'. Q.+]-=o

[Q. , Q. ].=Q:
(7.6a)

(7.6b)
The t-J Hamiltonian may be rewritten as

H,~
= g (X, X, +, +X +,X) )

J O'

++X X+, —gX, XJ+i
JO JO

(7.2b)

The Hamiltonian (7.2a) is supplemented with the local
constraint

At this point, it is interesting to remember the extra hid-
den SU(2) symmetry occurring in the Hubbard model.
This particle-hole symmetry (which relates unoccupied
and doubly occupied sites) is generated by a su(2) algebra

N

Q+ (Q )t —g ( 1 )Jct

X +X +X =1
Q'= —,'(N, —N) . (7.7b)

[Xab Xcd] —b (bbcXad+f adXcb) (7.3)

where [, ]+ denotes a graded commutator,

The Hubbard operators can be represented in terms of
fermion fields as X. =c (1 n). Other ex—plicit ex-
pressions may be obtained by applying the simple multi-

plication law X'~X'."=5 'X'". For instance, the spin
operators are linear in the X operators. The structure of
the composition rules is

The Hubbard Hamiltonian H&„bb„d, in direct analogy
with (7.5), obeys

[H „„,Q —]=+UQ —, (7.8)

where U denotes the Hubbard U. The symmetry algebra
of the (modified) Hubbard Hamiltonian is (see, for exam-
ple, Ref. 56) so(4)=su(2)@su(2). In the same way, the
subalgebra (7.6) characterizes in the r Jmodel the sym--
metry between the singly occupied and unoccupied sites.
In the process of mapping the large-U Hubbard model to
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the (J« t ) t J-model, the extra SU(2) particle-hole sym-
metry is spoiled. However, the increase of J (so as to
reach 2t =J& restores a fermion-boson symmetry.

From (7.5) we infer that, to every eigenstate ~4 ) of
H,~ in the ¹-particle Hilbert space with energy E, there
exist (with the proviso that Q

+—~4 ) does not vanish)
eigenstates of the ¹ 1 and ¹ 2-particle system given,
respectively, by ~4 +—') =Q +—

~% ) and ~4 —+ )
=Q —Q: ~% ), and with energies E '=E +2,
E + =E +4. The spin of these eigenstates follows
from

[S,Q
—

]=—,
' Q+—+ cr Q

—S'+ Q
+— S

[s' Q;+ ) =+-,'~Q.+-

(7.9a)

(7.9b)

i.e., if ~% ) is the singlet ground state then the state
+—') has spin S=—,', S'=o. /2. As a consequence the

spectrum of the t-J model has a relatively simple struc-
ture as is observed in the numerical data obtained from
exact diagonalization of small clusters.

The commutation laws (7.3) imply a series of unusual
relations (selection rules) between correlators defined in
Hilbert spaces with diFerent particle number. For in-
stance, the spin-spin two-point function is easily shown to
be such that

'is's'ic" '& —(c is's'ie"&

=(s' —s' l(e'"-'~s'x" +x,"s'~e ), (7.lol

where it is assumed that Q ~

'0 )WO and that
~

4' ) is an
excited state of the X —I-particle system (S+ denotes the
z component of the spin). Similar relations follow for the
charge-charge correlator.

It is instructive to note that if
~
+ ' ) denotes the (sing-

let) ground state of the half-filled band then Q ~%'
' ) =0

N
and Q ~%

' ) corresponds to a high-energy holon-spinon
state (see Sec. VI). On the other hand, a two-particle
ei~enstate is constructed by applying successively Q t and

Qi to the vacuum. It is a zero-momentum state (the
ground state) with energy E = —4 and spin S=S'=0. In
this particular case, it is trivial that Q ~%'o) =0 and

Q ~%0)WO. In fact, this is the generic case as can be
seen from the numerical data. This simply indicates
that the ground state always contains zero momentum
states. So far, our attempts to rigorously prove this state-
ment have failed.

Finally, we emphasize that the supersymmetric proper-
ties of the model are independent of the dimension of the
underlying lattice. They may be useful, for instance, in
characterizing two-dimensional variational wave func-
tions at the supersymmetric point.

Recent numerical studies on the phase diagram of the
t-J model' clearly indicate that the model belongs to the
same universality class as that of the Hubbard model.
Nevertheless, several new features emerge from our in-
vestigations. The holon-antiholon spectrum shows a 2k~
periodicity in momentum space, a fact which reflects the
strong short-range AFM correlations. The spin spectrum
reveals interesting properties. Near half-filling, the spin
excitations behave as true spinons at low energies. In this
region, the propagation of domain walls is essentially re-
normalized by the presence of holes. Doping a half-filled
band with a few holes naturally leads to the separation of
charge and spin degrees of freedo~. As the filling de-
creases, the spin spectrum gradually transforms into a
particle spectrum where charge and spin have recom-
bined.

The numerical studies of Ref. 16 show clearly that the
supersymmetric line is not a critical line and that phase
separation occurs at higher values of the interaction with
a dependence on the band filling. Moreover, the super-
conducting correlations dominate in a region which lies
between the integrable line and the critical line.

Recently, Kawakami and Yang have determined
from finite-size analysis in conformal field theory the ex-
ponents of the large distance behavior of charge, spin,
and superconducting correlation functions of the super-
symmetric t-J model. They have shown that these ex-
ponents are those of the large-U Hubbard model near
half-filling. In the dilute limit the exponents reduce to
those of a noninteracting system. The analysis we pro-
pose of the excitation spectrum is consistent with these
results. It illustrates the idea that the separation of
charge and spin degrees of freedom in the low energy
spectrum is a universal feature of strongly correlated sys-
tems, and, as such, presumably a key concept in the un-
derstanding of the high-T, materials.
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VIII. CONCLUSION APPENDIX A

In this work we have discussed the ground-state prop-
erties and excitation spectrum of the supersymmetric t-J
model. We find that the Coulomb repulsion dominates
the attractive exchange interaction. There are no real
bound states in the problem and so no gap arises in the
spectrum.

In this appendix we brieAy consider high energy excit-
ed states which are parametrized by real charge rapidities
in Lai's formulation. As a function of band filling, they
define a line which divides the spectrum into two sectors:
excited states below the line necessarily involve complex
roots in the charge rapidities whereas states above in-
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volve only real charge rapidities. Although this type of
excitation is irrelevant in discussing the low-energy phys-
ics of the model, it is instructive to carry out the calcula-
tions.

Consider Eqs. (2.11a) and (2.11b) and assume real roots
for both the spin and charge rapidities. Taking the loga-
rithm of (2.11) leads to

N, 2 tan '(2u ) =2irI +g. 2 tan '(2[u& —Att]),
P=1

g 2tan '(2[u, —A ])

=2~J + g 2 tan '(Ap —A ), (A2)
P=1

Set now Q =0 and vary 8. At 8 =0, n =—', (see above)
and at 8 = ~ we find n =1. Therefore at Q =0, the limit
B alone determines the band filling. In this case, the in-
tegral equations (A5) and (A6) reduce to a single integral
equation

1 1o(A)=—
~ 1+4

f + f dA'o(A')—
—oo 8 m 1+(A—A')

(AS)

or by using the Fourier transform technique

o (A) =R, (A)+2 f dA'o (A')R, (A' —A),

4U —1E= 2t g—
4U 1

(A3)

where the quantum numbers I are integers if X, —M is
even (h.o.i. otherwise) and J are integers if N —M —1 is
even (h.o.i. otherwise). The energy and momentum are
simply given by

where R, (x ) denotes the function

l COX

R, (x ) = dtu
2~

The energy can be written as

E= tN, [—1 —pro(0)] .

(A 10)

(A 1 1)

N MI'= gI+ g J
a j=$ tx=i

(A4)

Notice that the energy is an analytic function of n on the
interval [—', , 1] and that the reality of the roots enforces
the state to acquire a finite magnetization as is easily seen
from the fact that B is finite.

In the thermodynamic limit we obtain the integral equa-
tions for the distribution of real roots APPENDIX 8

1
p(v) =—

(
1 )2+v 2
2

1

2+ d A'o (A')—
rt ( —,') +(u —A')

1

o(A)= f + f du p(v)—~ ( —,') +(u —A)
r

+ d A'o. (A')—
8 ~ 1+(A—A')

(A5)

E= —2tN, n — f +f du p(u) z 2
. (A7)—oo Q (

f )2+ 2

At Q=0 the band filling is n =—', whereas at Q = oo we

obtain n =0. Therefore the singlet sector extends from
n =0 to n =—', and the energy is analytic on the interval
[o —', ]

(A6)

where p(u) and o (A) denote the distribution of charge
and spin rapidities. Equations (A5) and (A6) have been
solved numerically and the results are shown in Fig. 3.
The nonanalyticity of the energy as a function of the
band filling at n =—', (a point of high symmetry) can be
seen as follows. Set 8 =0 in (A5) and (A6) and let Q vary
on the interval [0, oo ). 8 =0 implies that M=N/2 (N
even) and so we are in the singlet sector. The energy in
this case is given by

In this appendix we wish to discuss brieAy a technical
problem which arises when dealing with the two-string
ansatz (3.1). The ansatz in the form (3.1) applies only in
the thermodynamic limit and is consistent with a detailed
analysis of the BAE of the Gross-Neveu modejj performed
by Destri and Lowenstein. As emphasized in Sec. III,
in writing Eq. (3.3c) it was implicitly assumed that the
ansatz (3.1) remains valid for all values of the real part
u . There is however a pair of roots of (2.11) which lies
outside the ansatz (3.1) namely, when the real part tends
to infinity so does the imaginary part. For a finite system
these pairs of roots must be factored out explicitly. The
correct thermodynamic limit can then be performed. A
careful treatment of this limit yields

N/2 —],

N, O( )v=2~I + g 8(u —v&),
P=1

where the quantum numbers I are now integers if
(N, —M) is even and h.o.i. otherwise. They are restrict-
ed to the interval (3.4) but with I,„=(N,—M)/2 —1.
In the thermodynamic limit either (3.3c) or (Bl) lead to
the same result for the energy. However the expression
for the crystal momentum obtained from (3.3c) is errone-
ous (compare with the results of Sec. V). For example, in
the case of a nondegenerate ground state, i.e., X, even
and X/2 odd, the crystal momentum which follows from
(Bl) is zero whereas (3.3c) yields a finite momentum in
contradiction with the results obtained from exact diago-
nalization of small clusters. It is worth noting that the
number of pairs of complex conjugate roots of Eq. (3.3d)
is exactly equal to the number of roots of Eq. (Bl). For
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the purposes of investigating the properties of a macro-
scopic system it is more convenient to work with (3.3c)
rather than (Bl): the singular roots of (2.11) need not be
treated separately. This approach is legitimate as long as
we remember that only the relative momenta are repro-
duced correctly by (3.3c). In this paper we do so when
dealing with the excitation spectrum in Lai's formulation.
It can be shown in a careful treatment of the BAE that
all the results derived in this work are correct for the en-
ergies and relative momenta. Moreover the results of
Secs. III and IV are reproduced using Sutherland's repre-
sentation where no such difficulties arise: we find perfect
agreement. Nonetheless, we wish to emphasize that for a
finite system, the singular roots of (2.11) may be at the
origin of difficulties in a straightforward numerical ap-
proach.

Clearly Eqs. (3.3a) and (3.3c) are not equivalent to
(2.11) for a finite system: (3.3a) may be obtained from
(2.11) by substituting the ansatz (3.1) and taking the ratio
of two complex conjugate expressions in order to cancel a
divergence arising in the thermodynamic limit. For a
finite system this last operation eventually cancels a fac-
tor (

—1) and hence (3.3a) has more solutions in this sec-
tor than (2.11). Despite this fact, (3.3c) gives the correct
energetics: the reason is that in the thermodynamic limit
the roots of (3.3a) become degenerate with those which
one would obtain for the real part of the two-strings in
(2.11) (except for the singular roots discussed above).
Therefore, for the purposes of studying systems of finite
size, one should start with (2.11) or (2.13).

[ A ab A cd] gji(abc A ad gad A cb)j ~ i J J (Cl)

This is achieved by means of a Jordan-Wigner transfor-
mation for s =+

j—1

A sO ysO i~ ~ ass
I=1

(C2)

In terms of the new variables the t JHamiltonian reads

N

(A "A" +A" A")
j= ls =+

N

A$ $A $$

J= ls =+
A "A

j= ls=+

+ g (A" A" +A "A" )(I+e'.
a as=+

+ ( 1 l1TJV) g A $ —$A —$$

Qs=+
(C3)

where JP=+j.', Aj" and IV=IV +IV . The last two
N

terms in (C3) arise from the cyclic boundary conditions
and may be neglected for a large system. The form of the
local constraint on the X operators remains unaltered by
these transformations: A;+++ A; + A; =1.We define
spin operators according to

taken in (7.3), i.e., [Y ', Y,. '] =0. It is now possible to
transform the Y; operators to a new set of variables A;
which obey a u(3) algebra:

APPENDIX C S;+=&2(A+ +A )=[S; ] (C4a)

In this appendix we wish to mention a representation
of the t-J model in terms of the generators of a spin S= 1

su(2) algebra. The original motivation for seeking such a
representation was its convenience to numerical studies
at arbitrary values of the interaction and its eventual gen-
eralization to 2D. This representation shows that the
model is not SU(3) invariant at the supersymmetric point.
We restrict our considerations here to the case 2t =J.

From the definition of the Hubbard operators, it fol-
lows that at any given site j they obey a u (3) algebra.
However, operators at different sites commute or an-
ticommute according to their grades. The idea is to ex-
tend the u (3) algebra to the case when the X operators
act on different sites. In order to do this we introduce
two types of hard core fermions: Y + =X ~ and

NY„=X Q&
'

i (2XII"—1). This transformation leaves
the Hamiltonian (7.2a) [and (7.2b)] invariant and alters
the commutation rules (7.3). For each s =+, the Y
operators obey (7.3), i.e., [ Y ', Y; ']+ =6j'( Y, + Y;"),
whereas for different s the usual commutator should be

S'= A++ —AI (C4b)

It is easy to verify that the spin operators defined in (C4)
generate a spin S = 1 representation of SU(2). On ac-
count of (7.14) and omitting boundary terms in (C4), the
t-J Hamiltonian can be written as

N N

H,J=2 g (1—[S ] )
—g (S; S;+,+[S; S;+,] )

N

+ g (S S,'+, +[S,'S,'+, ] ) . (C5)

Alternatively, the pseudospin Hamiltonian (C5) may be
obtained using a slave boson approach. The constants
of motion (7.5) have no longer a simple expression in
terms of the spin operators and their interpretation in
these variables is complicated by the fact that the symme-
try mixes states of different spin. Notice that the band
filling in the original Hamiltonian fixes the magnitude of
g;[S ].
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