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One-electron calculations of spherical supershell structure are presented for metal clusters with up to
8000 valence electrons over the range of metallic densities 2 <r; <6, using potentials adapted from self-
consistent bulk surface calculations. Good agreement is obtained with detailed trends in the experimen-
tal data and with corresponding self-consistent cluster jellium calculations throughout. In the 77=0 lim-
it, aspherical perturbations anticipated from the incipient ionic lattice are shown to eradicate the super-
shell structure at a cluster size corresponding to near-degeneracy at the Fermi level between valence-
electron states differing by A/ =4, where / is the angular-momentum quantum number. This critical size
is on the order of N ~ 10° valence electrons for all metallic densities; in the specific case r, =4, the result
is N =1640, in excellent agreement with the experimentally observed transition in Na clusters to “shells

of atoms” in the range 1400 < N <2000.

I. INTRODUCTION

Electronic shell structure has been observed in atomic
clusters of a wide variety of metals, including the alkali
and noble metals, and such diverse polyvalent metals as
Al and Pb.!”7 This shell structure is analogous to the
shell structures found in atomic and nuclear physics, with
the valence electrons of the metal highly delocalized, and
bound to first approximation within a spherical effective
potential. The most common experimental evidence for
shell structure has been the observation of abundance
variations in mass spectra, but specific physical proper-
ties of clusters have also been investigated, including pho-
toionization potentials, static polarizabilities, and collec-
tive dipole resonances. In each case, shell effects have
been observed.

These studies were conducted on small clusters, typi-
cally with less than 100 atoms. More recently, spherical
shell effects have been observed in mass spectra of Na
and Cs metal clusters containing several hundred
atoms.®® The experimentally observed pattern of
features corresponds to the sequence of the largest
theoretically predicted energy gaps between electron
shells. For still larger Na clusters, mass spectra show a
distinctly different pattern of abundance variations above
1500 atoms.!® In the region Na,, 1500 <n <22 000, the
pattern is associated not with electronic shells, but with
icosahedral or cuboctahedral “shells of atoms.”

Stimulated by the promise of spherical shell structure
in systems with hundreds or even thousands of electrons,
there has been a renewal of theoretical interest in eigen-
value density oscillations, or “bunching” of eigenvalues,
in cavities small enough that the ratio of the wavelength
to the dimensions of the cavity is not a very small quanti-
ty.!171®  Although the fundamental theory is, strictly
speaking, restricted to cavities with infinitesimal boun-
daries, the density oscillations also occur for models with
more complex potential shapes. This has recently been
demonstrated for Woods-Saxon and ‘“‘wine-bottle” poten-
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tial shapes more nearly characteristic of clusters.!*> In a
metal cluster, the maxima in the eigenvalue density oscil-
lations correspond to groups of electron shells which lie
close together in energy. Following Ref. 13, we refer to
these groups of shells as ““supershells.”

An appropriate choice of fitting parameters for the
Woods-Saxon potential'® gives good agreement with ex-
periment for Na clusters up to several hundred atoms.’
This success of the model makes it attractive to extend it
to other metals, and to larger clusters. Results from the
two phenomenological potentials studied in Ref. 13 show
significant differences, however; it is hard to know which
potential shape would give more accurate results, partic-
ularly as the number of valence electrons increases.

The present paper examines the dependence of the
electron energy level distribution on the details of the ra-
dial potential. In Sec. II, a simple model is employed to
investigate trends in supershell patterns among different
metallic densities, and to illustrate the special need for
accuracy in the potential shape close to the cluster sur-
face. Section III presents detailed numerical calculations
of supershell effects for the entire range of metallic densi-
ties using effective spherical potential shapes adapted
from a self-consistent study of flat metal surfaces;* com-
parison of these results with experiment is emphasized.
Section IV goes on to investigate the implications of
spherical supershell models for aspherical structural tran-
sitions such as those recently observed in Na clusters of
thousands of atoms. Section V presents a summary of
our conclusions.

II. GENERAL SCALING ARGUMENTS

The following definitions are adopted throughout. We
will always mean by N the number of valence electrons in
the cluster; a,=#*/me? is the Bohr radius; the Wigner-
Seitz radius 7, is defined by 4m(a,r,)*/3=1/n,, n, being
the valence-electron density in the bulk metal; and
R,=ayr,N'/? is a characteristic cluster radius."”
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In this section, a simple model is developed which will
illustrate some basic features of the dependence of super-
shell patterns on metallic density. We begin with an ob-
servation about the Schrodinger equation with a spheri-
cally symmetric potential V' (r): any linear change of ra-
dial and energy scales which leaves the product V(r)r?
invariant results in the same equation. The energy eigen-
value distribution (i.e., the supershell structure) is precise-
ly the same, apart from the scaling of the energy variable,
for problems which transform in this way.

Consider the variations in effective one-particle metal
cluster potentials ¥ (r) as a function of the parameter ;.
A natural set of units for free-electron-gas problems
expresses length in units of the Fermi wavelength A, and
energy in units of the Fermi energy €,:

9 1/3
kp= |20 | (aor) ™",
Ap=2m/kp 2.1)
7k}
Ep= m .

To the extent that the set of potential functions V' (r) for
various metals scale in energy as € and in length as Ag,
the product ¥V (r)r? is independent of kr, and thus in-
dependent of r,. For such an idealized set of potential
wells, the supershell structure is the same for all metallic
densities.

We consider the energy scale first. Bulk surface calcu-
lations'* suggest values for the depth of the cluster poten-
tial well in the range 1.3ep (for r,=2) to 2.7¢p (for
r,=6). This moderate variation with r; might be expect-
ed to lead to changes in the supershell structure; the
direct effect, however, is negligible. This is so because
supershells, being a semiclassical property of bound
states, essentially depend only on the shape of the poten-
tial below the highest occupied state (here, the Fermi lev-
el); the shape of the well above the Fermi level is ir-
relevant to the problem in the semiclassical limit.'¢

A simple potential form appropriate to the present
problem may therefore be constructed as follows. We de-
scribe the shape of the potential beneath the Fermi level
with a Woods-Saxon parametrization, fixing the well
depth so that the potential at the cluster radius R corre-
sponds to the Fermi level. The total depth of the
Woods-Saxon potential well then becomes fixed at 2ep,
regardless of the metal:

_2€F

Vin= 1+exp[(r —Ry)/al -~

(2.2)

The parameter a characterizes the length over which the
potential varies significantly near R,. Transforming to
dimensionless (starred) variables by dividing all lengths
by Ar and all energies by €, we arrive at the scaled form

—2

V¥(r*)= s
1+exp[(r*—RgE)/a*]

(2.3a)
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9N =0.3054N173 |

RE=Ro/Ar= |3

(2.3b)

independent of r,, with the possible exception of
a*=a/Ag.

The surface width coefficient @* may be estimated!” by
considering the surface correction term in the expression
for the density of eigenvalues in a cavity!'!

Qk? __ Sk

plk)=""_F ==+ 0(R/Q),

5 Py (2.4)
T

where ), S, and R are the volume, surface area, and ra-
dius of the cavity, and the minus and plus signs denote
Dirichlet and Neumann boundary conditions, respective-
ly. The total number of electrons N in a spherical volume
of radius R is given by an integral over the density of
states (including a spin degeneracy of 2) up to the Fermi
level. Neglecting terms of order R /Q},

—2 [ p(hrdk = 2 (kpR )T L(kyR )
N—Zfo pk)dk == (kpR ' F 1(kpR )" . (2.5)
For a fixed number of electrons N the radii R; and Ry
corresponding to Dirichlet and Neumann boundary con-

ditions will differ, but they will be related by the above
constraint:

4 4
o krRp P —1(kgR) )2=;(kFRN)3+%(kFRN)2 i

(2.6)

For purposes of estimation, we may take the radius R, of
the Dirichlet problem to indicate the point at which the
electron density falls effectively to zero, and the radius
R, of the Neumann problem to indicate the point at
which the electron density reaches its maximum inside
the cluster. Then the first-order difference w of these two
radii
37

w=Rp—Ry=——=3\p

4k, 2.7

is a measure of the width over which the electron charge
density varies at the surface. Now spatial variations in
the electron density near the surface closely correspond
to variations in the one-electron potential; so we also take
w to be an estimate of the width over which the potential
varies at the cluster surface.

This width, along with the actual cluster potential
depth U, leads to a first-order estimate U /w of the slope
of the potential at the cluster surface; in dimensionless
form, 8U* /3, where U*=1U /e, and Ay =1. Associating
this slope with the slope 1/2a* of the Woods-Saxon po-
tential (2.3) at R §, we find the general relationship

U*a*=3=0.1875 . (2.8)
In this simple model, if U* is constant, so is a*, and
supershell patterns are invariant. However, as U* in-
creases, a* decreases, sharpening the potential edge and
causing the well to be deeper just inside the surface. As a
result, states of higher angular momentum !/ tend to be
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lowered in energy relative to surrounding states, and
“bunching” or near degeneracy of levels differing in / by
3,4,5,6,. .. occurs at smaller values of N. Supershell
patterns shift to smaller N for a sharper potential edge.
The general result (2.8) may be compared with the pa-
rameters adopted in Ref. 13 based on comparison with
self-consistent calculations for Na clusters:
U a _ 6.0eV 0.74 A

U*a*= J—

=— —=0.201 .
ep A 3.24 eV 6.81 A

2.9

The model may also be applied to atomic nuclei; average
estimates from the nuclear physics literature!® for the
various quantities give

U a _ 50 MeV 0.67 fm
ep Ap 37 MeV 4.62 fm

U*a*= =0.196 . (2.10)

Results for both clusters and nuclei are thus in very
reasonable agreement with the present model.

Sharpening of the potential well at the cluster surface
is only one of a variety of changes which may cause vari-
ations in the supershell structure. Chief among the
remaining effects is the variation in the potential shape
just inside the cluster surface. The previous analysis indi-
cates that for typical values, a <<A. In such a potential,
the semiclassical electron orbits (those with relatively
high angular momentum) will, like their classical coun-
terparts, be largely confined to the first Fermi wavelength
inside the surface. These states will depend sensitively on
the detailed potential shape in that region, and variations
in the one-particle potential shape near the surface, such
as those associated with Friedel oscillations, will
significantly influence the energies of these states, i.e.,
their supershell structure.

In summary, we expect the supershell patterns for met-
al clusters to vary only moderately with r,, but the varia-
tions which are expected depend strongly on the potential
just inside the surface. The calculations of Sec. IIT will
therefore be devised to emphasize careful treatment of
the surface region.

III. NUMERICAL CALCULATIONS

Given the large number and size of clusters to be con-
sidered in this study, we choose to model the effective
one-particle potential of a cluster by taking over the cor-
responding potentials from published self-consistent
local-density-approximation (LDA) calculations of flat
metal surfaces, with the radial coordinate » substituted
for the Cartesian coordinate x.

There are several advantages to this approach. It is
simple: calculation of all energy eigenvalues for each of
thousands of clusters can be performed on a microcom-
puter. Although no recursive techniques are used to
achieve self-consistency, the potentials adopted are based
directly on the potentials of a self-consistent theory of the
bulk metal surface. It is thus an approximation particu-
larly suited to studies of large clusters; it should improve
in accuracy as the number of valence electrons N in-
creases toward the bulk limit. Moreover, a range of po-
tentials are available, each corresponding to a specific
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electron density, so that varying results can be correlated
with the variations in electron density among different
metals. Finally, the present method gives a detailed
description of the potential just inside the cluster surface.

Potentials from self-consistent LDA calculations of
metal clusters'®2?® and bulk surfaces'* are very similar
near the surface, even for very small clusters. Near the
center the cluster LDA potentials vary significantly with
N, alternately rising or falling at » =0 to satisfy the re-
quirements of self-consistency. The present approach
makes no attempt to achieve self-consistency, and so does
not describe these details. However, the good correspon-
dence between cluster and bulk potentials near the sur-
face should lead to calculations which do approximately
reflect the supershell patterns of much more complicated
self-consistent cluster calculations. This approximation
should become even better in the limit of large N, and it
retains the distinctive features caused by Friedel oscilla-
tions near the surface.

The published potentials of Lang and Kohn (LK) (Ref.
14) are adopted in the present study. To model the clus-
ter potentials, we fix the jellium edge x =0 of the LK po-
tentials at the radius » =R, and potentials are truncated
at a distance R, in from this edge at the center of the
cluster (r =0). For the larger clusters, where the radial
extent exceeds the range of values given by LK, the po-

| Ar !

r= Ry
T‘//\F

FIG. 1. Effective metal cluster potentials, in dimensionless
form, for N =1000. Solid lines: potentials used in the present
study (adapted from Ref. 14). Dashed lines: the Fermi level.
Dotted lines: Woods-Saxon potentials (2.3); a* is determined in
each case from (2.8), with U™ taken from the LK potential
depth.
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tentials are extended inward to » =0 at the constant value
of the potential far within the metal.?}

Potentials for »,=2, 4, 6 are displayed in Fig. 1 along
with corresponding Woods-Saxon potentials from the
analysis of Sec. II. The approximate scaling of the adapt-
ed LK potentials with €z and Ay is evident, but certain
features of the potential wells vary substantially with 7,
particularly in the region just inside the surface. The
variation with r; of the potential slope at the surface is
well described by the analysis of Sec. II. Features which
differ from that analysis include the shift of the potential
wall beyond R corresponding to spillout of the electron
gas at the surface, and oscillations in the effective poten-
tial corresponding to Friedel oscillations in the electron
density. When allowance is made for the outward shift of
the potential wall, the ;=2 potential in the critical re-
gion just inside the surface looks very much like the
Woods-Saxon case. As r, increases, the potentials deepen
inside the surface from the Friedel oscillations. Just as
the sharpening of the potential wall shifts the supershell
pattern by lowering the high-/ states, so too this deepen-
ing of the potential in the surface region will shift the
supershell patterns to smaller N.

In principle, the proposed substitution of the radial
coordinate r for the Cartesian coordinate x is a reliable
approximation only when the cluster radius is much
greater ‘than the characteristic width of the cluster sur-
face; in terms of the Woods-Saxon potential, R§ >>a*,
or roughly N'/3>>0.3. This condition is well satisfied
for all but the very smallest clusters. Performance of the
model for the smallest clusters will be discussed below
when comparison is made with experiment.

A. Results

Calculations of energy levels were performed using the
Wentzel-Kramers-Brillouin (WKB) approximation?? for a
selection of cluster sizes in the range 1 =N =<8000. The
selection was made by increasing N/ successively in in-
crements of 0.04, and selecting the nearest integer N for
calculation. To ensure that the clusters with closed shells
were included, the value of N corresponding to filling of
the topmost (partially filled) electron shell was retained
during the course of each calculation. Calculations were
performed for each of these values of N also.

To make comparisons with experiment, we follow Ref.
13 and calculate a “‘shell energy”

Egq(N)=E(N)—E,/(N), (3.1a)

N
E(N)= ¥ &, (3.1b)
i=1

where ¢; are the one-particle energies of the N valence
electrons measured from the bottom of the potential
well,?! and E,,(N) is determined by a parametrized fit to
the set of points E(N) for a series of clusters. In this
work we make a least-squares fit to an expansion in
powers of N!/3, resulting in the equation

E,,(N)=gg(a,N +a,N**+a.N"3+a,) . (3.2)
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Values of the coefficients, and a discussion of their physi-
cal significance, are given in Appendix A. The volume
coefficient @, is found in each case to be very close to the
bulk free-electron-gas value a, =32, as it should be. The
other coefficients depend sensitively on surface proper-
ties. For the purposes of the present analysis, E, (N)
simply provides a convenient means for isolating the shell
effects.

E 4. (N) is displayed in Fig. 2 for integral values of r,.
A calculation of an infinite square well of radius R, is in-

Egpen/ ep

square well

N1/3

FIG. 2. Eg;(N) as a function of N'/3. The unit of energy is
the Fermi energy €. Dots mark N values listed in Table I as
major supershell closings. Triangles mark “crossovers:” cluster
sizes at which the highest / levels near the Fermi level become
near degenerate (a =3,4).
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TABLE 1. Major supershell closings, N < 3000. Clusters with the number of valence electrons listed are identified with the closing

of a supershell, with E gy, < —er/4.

(]

'4‘ H‘ H‘ h‘

Il

II
< VR RN

oY
Il

20, 40, 70, 138, 198, 268, 338-356, 440, 562, 706, 854, 1012, 1118, 1314, 1556, 1788, 2048, 2368, 2684

20, 40, 58, 92, 138, 198, 254268, 338, 440, 556, 676, 912926, 1100, 1284, 1516, 1760, 2048, 2334, 2672

20, 34-40, 58, 92, 138, 186—198, 254, 338, 440, 758, 912, 1074, 1284, 1502, 1760, 2018, 2328, 2654, 2886

20, 34-40, 58, 92, 138, 186, 254, 338, 440, 612, 748, 912, 1074, 1282, 1502, 1734—1760, 2018, 23142328, 2524, 2762, 2886
20, 34, 58, 92, 138, 186, 254, 338, 438, 612, 748, 890-912, 1074, 1282, 1502, 1734, 2018, 2130, 2314, 2420, 2524, 2762, 2886

cluded also for comparison.??> The supershell pattern is
similar in all cases. This similarity is directly related to
the geometrical arguments of Ref. 12: so long as the sur-
face width is much smaller than the cluster size, the
closed classical orbits are approximately the same in di-
mensionless form for all metal clusters. The nodes do,
however, shift substantially to smaller N with increasing
r,. Table I lists the values of N for which major super-
shell closings occur. The numbers at which these clos-
ings occur vary, but there is still a strong tendency for
the same closing numbers to appear; especially for r,
values which are close, the sequences of numbers are
similar.

The electron shells of a spherical cluster may be
characterized by two quantum numbers: a radial quan-
tum number v equal to the number of nodes in the radial
wave function plus one, and the orbital angular momen-
tum quantum number /. All states (v,/) have the
2(21 +1) degeneracy associated with orbital and spin an-
gular momentum, but are otherwise mutually nondegen-
erate. In certain cases, however, near degeneracy can
occur between two or more of these shells, which may
then be considered a larger shell with the pseudoquantum
number

n=av+bl , (3.3)

where a and b are small integers.”* The ratio a :b of these
integers describes the supershell pattern appropriate to a
given case. We shall restrict our attention to the a:1
cases, as these correspond to the strongest effects.'>!* In
the special cases where the potential possesses some
dynamical symmetry,?® the appropriate pseudoquantum
number may be an exact quantum number for all states:
examples include the Coulomb potential (a:b =1:1) and
the spherical harmonic-oscillator potential (a:b =2:1).
In more general cases, the degeneracies will only be ap-
proximate. Appropriate ratios a:b for metal cluster po-
tentials vary, both with cluster size, and within a given
cluster as a function of v and /. In the small cluster limit
a 2:1 ratio gives a good description of level ordering:
e(v,l)~e(v+1,] —2). As the cluster size increases, the
ordering in energy of the higher angular momentum
states gradually changes, causing near degeneracies
e(v,l)~e(v+1,l —a) for a =3,4,5,6,... at the Fermi
level over certain size ranges.

The size at which these near degeneracies occur may
be characterized by identifying the smallest N for which
e(1,1,,) <€(2,l,,—a), where [, is the state of highest
angular momentum beneath the Fermi level. We shall
refer to this condition as an a:1 “crossover.” Calcula-
tions of the appropriate levels were extended to cluster

sizes up to N =66 000, to locate the values of N for which
the a:1 crossovers (a <6) would occur. These values of
N are listed in Table II, and the 3:1 and 4:1 cases are indi-
cated by triangles above the Eg ;(/N) curves in Fig. 2.
Major antinodes in the supershell structure are clearly as-
sociated with near-degeneracy of high angular momen-
tum levels in a cluster.

B. Comparison with other work

The supershell effects calculated here are qualitatively
very similar to those calculated in Ref. 13. The general
pattern of nodes and antinodes, including their magni-
tude and their extent in N, is much the same. Overall,
the closest correspondence with the Woods-Saxon poten-
tial calculation of Ref. 13 is found, not for r, =4, but for
r,=2, where the Friedel oscillation effects are smallest.2®
As r; increases, the deepening in the potential near the
well edge gradually shifts the supershells toward the
values found in the infinite square-well solution.

The distinctly different results obtained in this work
for the various metallic densities are clearly reflected in
experiment. For r,=2, major features occur at
N =20,40,70,138,198, in excellent agreement with recent
experimental data for Al clusters.>?”"2® Equally interest-
ing is the absence of major features at N =34,58,92 both
in the present calculation and in experiment. This is not
necessarily an indication of a partial failure of the spheri-
cal jellium model, as has been recently suggested;® rather,
the decrease of these features relative to N =40,68-70 is
a natural tendency of shell models for metal clusters as
the electron density increases.?>%

For r, =3, experimental results are available for the no-
ble metals Cu, Ag, and Au.""> The abundance spectra of
positive and negative Ag cluster ions show major features
at N =20,40,58,92,138,198. The present calculation ac-
curately exchanges the feature at N =70 in the r, =2 case
for features at N =58,92. The experimental results for

TABLE II. Values of N (and, in brackets, of [/,.x]) for
which near-degeneracy occurs at the Fermi level for a:b =3:1,
4:1, 5:1, 6:1 shell structures in the spherical model.

¥ 3:1 4:1 5:1 6:1

2 320 [9] 2580 [21] 15000 [41] 66 000 [70]
3 240 (8] 1930 [19] 12000 [38] 53000 [65]
4 180 [7] 1640 [18] 9400 [35] 44000 [61]
5 170 [7] 1400 [17] 8000 [33] 36000 [57]
6 120 [6] 1190 [16] 6800 [31] 30000 [54]
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Cu and Au show similar features. More detailed compar-
isons of the spectra show differences between the shell
patterns of Cu, Ag, and Au for the smallest clusters
(N <40) which cannot simply be described by changes in
rs;1 for example, Au cluster ions have a feature at N =34
rather than at N =40. A more sophisticated treatment is
required to describe these variations accurately.
Nonetheless, we note that the observed variations from
Cu to Ag to Au could be described by a progressive shar-
pening of the potential edge (as if, in the present calcula-
tion, r, were allowed progressively to increase). Estimat-
ing the well depths U for each metal as the sum of the
Fermi energy and the work function of the bulk metal,
this progressive sharpening is just what is expected from
the analysis of Sec. II; the surface thickness a becomes
progressively smaller for Cu, Ag, and Au.

For the alkali metals, the present calculation gives an
accurate description of all features of the shell structure
seen in earlier studies (V < 100), including the variation
of shell structure with electronic density.?%*! We also ob-
tain excellent agreement with recent self-consistent
spherical jellium calculations for Na (r;~4) and Cs
(r,~6) for all major shell closings through N =440.371°
In particular, the shell closing at N =40 is present for
Na, but absent for Cs. All calculations are in good agree-
ment with experiment, although shell closings found in
all calculations at N =186 and 254 are slightly lower in N
than the corresponding experimental features. An ex-
planation for this discrepancy may be found in the calcu-
lated ionization potential curve for Cs clusters.® In this
calculation, a major shift in ionization energy, corre-
sponding to a major energy gap, occurs at N =186 (as in
the present work). The ionization energy continues to de-
crease slightly thereafter, however, reaching a local
minimum around N =198; it is this local minimum which
is reflected in experiment.

Only minor shell effects are observed experimentally
between N =440 and 600 in Na and Cs clusters. This ab-
sence of major features appears to be associated with the
first node in the supershell patterns in the present calcula-
tion. For Na, a very weak experimental feature® is ob-
served at N =558+8 which may correspond to a smaller
feature at N =556 in the present calculation.

For Cs, the experimental feature at N =557+5 remains
unaccounted for, both in the present calculation and in a
fully self-consistent one.® The present spherical model
also fails in its description of features identified in abun-
dance spectra of larger Na clusters (700 <N < 1500), and
is clearly inadequate to describe the icosahedral or cuboc-
tahedral structure observed in the largest Na clusters
(1500 <N <22000).'° In the following section, we shall
improve correspondence with experiment for N <1500
by including appropriate aspherical perturbations. Con-
sideration of these aspherical effects will also lead to a
simple description of the transition from spherical to pro-
tocrystalline shell structure.

IV. ASPHERICAL EFFECTS

Although spherical shell models have provided a sim-
ple, successful description of the basic features of metal
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clusters, many experimental results require an aspherical
description: two examples are the plasma resonance
splittings observed in small Na clusters®? and the proto-
crystalline shells of atoms observed in large Na clusters.'”
We now consider to what extent these varied effects may
be understood in the context of a general theory of as-
pherical perturbations.

Theoretical tools appropriate to the present problem
have been developed in the study of collective effects in
nuclei and crystal-field effects in ions.'®** We may ex-
pand the aspherical part of the one-particle potential in
spherical harmonics**

V(r6,6)=Vyr+ 3 Fv,,(nNY5,(0,4), (4.1a)
AZ1 p
imposing the constraint
Va (==}, (7) (4.1b)

to keep the potential real-valued. More detailed
specification of the functional form of the v,,(r) could be
achieved, for example, by adopting the assumptions of
the leptodermous model,>® in which the variation of the
potential is largely confined to a region near the surface.
The results which follow, however, will not depend on
these assumptions. The A=1 terms in the expansion (4.1)
correspond to a translation of coordinates in the lepto-
dermous model, and are often omitted. The quadrupole
and octupole terms (A=2,3) are well known in nuclei,
and have been considered for clusters.>*3” Hexadecapoie
moments (A=4) have also been identified in nuclei,*® but
these and higher moments are more common in the
analysis of molecular spectra and crystal-field splittings
of ions where octahedral or icosahedral symmetries are
known to be involved.3*3’

These examples illustrate two distinct mechanisms for
aspherical deformation in metal clusters: spontaneous
symmetry breaking and lattice effects. The spontaneous
symmetry breaking with which we are concerned is in-
dependent of the lattice, and applies to any model in
which spherical degeneracies of fermions occur. Lattice
effects, on the other hand, are specifically associated with
the fixed arrangement of the ionic cores. Opposed to
these two mechanisms is the surface energy of the cluster,
which increases with any variation away from spherical
shape.

Order-of-magnitude estimates of the energy scales
characteristic of each mechanism are instructive. A
rough upper bound for the energy variation associated
with symmetry breaking may be inferred from charac-
teristic shell structure energies. For spherical shell struc-
ture to appear at all, the energy associated with symme-
try breaking cannot be much greater than the part of the
binding energy associated with spherical shell structure.
Thus, following a discussion of shell effects in nuclei, we
may write*°

AE(symmetry breaking)~* 24
=+(0.09)N 3¢ . (4.2)

We consider the surface energy next. Variation of AS in
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the surface area S causes a corresponding change in ener-
gy

AE (surface change)~ %asNzﬁsF

=+—A§§(0.18)N2/35F . 4.3)
Here the numerical factor a, is taken from the analytic
value for the infinite square-well case (Appendix A);
values from other sources are typically within a factor of
2 of this estimate. Geometric arguments for a volume-
conserving shape variation from a sphere to a cuboc-
tahedron give an estimate for the factor (AS /S) of 0.105.
Finally, we estimate the energy variation for the change
from a liquid state to an ordered lattice by taking the
difference between liquid and crystalline values for the
jon-ion interaction term in the theory of bulk metals.*!
We include in the estimate only the fraction g(N,) of
atoms which, like their bulk counterparts, are full coordi-
nated, i.e., atoms not on the surface:

2
AE (lattice ordering)=g(N, )?,ﬁ—m( 1.73—1.792)

Xr 1Z*N

=(—0.011)Z%*r,Ng(N,)eg . (4.4)

In this expression, Z is the valence of the metal, and
N,=N/Z denotes the number of atoms in the cluster.
The approach, which excludes the surface atoms entirely,
and directly applies theories based on translational in-
variance of the interior atoms, is, of course,
oversimplified. More sophisticated methods could be
used, but this will suffice for the current discussion.

The different powers of N in Egs. (4.2)-(4.4) make each
of the three mechanisms important in different size
ranges. In the small cluster limit, spontaneous symmetry
breaking is the dominant effect, and quadrupole (A=2)
deformations arising from symmetry breaking must be in-
cluded to give an accurate description of many observed
effects.’>3® As N increases, the energies associated with
symmetry breaking and surface changes are both rapidly
overtaken in magnitude by the lattice ordering energy; es-
timates for the relevant parameters suggest that lattice
ordering should typically be the dominant effect above,
say, 50 atoms. The argument is merely an order-of-
magnitude estimate, but the physical significance remains
clear: a transition (at 7"=0) is to be expected in this gen-
eral size range from a liquidlike to a protocrystalline clus-
ter. Detailed molecular-dynamics calculations of melting
in free Au particles*? substantiate this picture, and pro-
vide a more reliable quantitative estimate. In these calcu-
lations, no stable crystalline phase is found at T'=0 for
clusters with N <200, but cuboctahedra are found to be
most stable for N >200. Experimentally, protocrystal-
line clusters of a few hundred atoms (both cuboctahedral
and icosahedral) have been observed on substrates;*
these results, however, must be interpreted with some
care in the present context, since interactions with the
substrate may strongly influence the crystallization.*
The experimentally observed transition from electronic
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shell structure to shells of atoms in free Na clusters is in
qualitative agreement with the present estimate, but
occurs at a value of N which is over an order of magni-
tude larger.

To study this transition in more detail, we neglect
spontaneous symmetry breaking and restrict our atten-
tion to the perturbation of valence-electron shells by a
fixed protocrystalline lattice. For such a symmetric ar-
rangement of atoms in a cluster, many of the v,,(7) in
(4.1) vanish. The analysis depends only on the rotational
symmetry properties of the cluster; details are given in
Appendix B. In particular, for clusters of octahedral or
icosahedral symmetry, v,,(r)=0 for A=1,2,3. The first
nonzero terms in the expansion correspond to A=4 for
cuboctahedra, and A =6 for icosahedra.

To apply perturbation methods, we assume the vy, (r)
to be small enough that the matrix elements
(VIj| 3302, Y5, 1v'1'j") will generally be much smaller
than the typical gap €N ~!/3 between supershells. Here
we have used the index j rather than the customary m to
distinguish between the 2(2/ +1) degenerate states of a
given v and I, to indicate that the unperturbed basis
states we shall choose will not, in general, have orbital
angular momentum that is quantized about an axis.
Rather, we choose the sets of 2(2/ +1) degenerate basis
states |vlj ) in such a way that the submatrix correspond-
ing to the perturbation is diagonal, i.e.,
(VI 302, Y5, 1V'1'j) =0 unless j=j'; we further as-
sume that these nonzero diagonal elements are all
different.*> Given these assumptions, a perturbation
treatment is valid.

For our purposes, the usefulness of the perturbation
expansion lies in exploiting the symmetry of its terms,
which result in vanishing matrix elements unless the con-
ditions

(4.5a)
(4.5b)

| —1'"—A=even ,
I —1I"|SA<I+T

are satisfied.*® We begin by considering the first-order
corrections

e =Vl 3 v, Y5, V) (4.6)
Ap
to the energy of the (v,/) shell. The A=o0dd terms in this
expansion are zero by (4.5a); in particular, octupole dis-
tortions (whether spontaneous or fixed) will not affect the
energy to first order. The A=even terms will generally be
nonzero, but we have assumed that they are small com-
pared to the gap between supershells. Thus, if the v, are
small enough that perturbation methods are applicable,
the first-order energy corrections will not substantially
alter the predictions of supershell structure obtained
from a spherical model.
The second-order correction*’

2
<vlj S Y i VI j’> ]

e(v,l)—e(,1')
is a sum of terms which will be very small unless certain
of the energy differences €(v,l)—¢e(+v',]') are smaller than

2) vi#EV'I
&y =

4.7)
Vi
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(a) 3:1 case

1, £+2> |38, £—4>
|2, £—2>
<1, ]
|2, £—4>
1, £-2>
(b) intermediate case
13, £—4>
1, ¢+2>
|2, £-2>
<1, £|
|2, £—4>
|1, £-2>

FIG. 3. Schematic energy-level diagrams detailing the terms
which contribute to the sum (4.7) for (a) a:b =3:1, and (b) a case
intermediate between 3:1 and 4:1. For discussion see text.

the corresponding matrix elements; that is, much smaller
than the spacing between supershells. This, along with
the restrictions (4.5), simplifies the problem considerably.
We consider the case of a Y}, (cuboctahedral) perturba-
tion. Figure 3 shows all nearby states which contribute
to the sum (4.7) for the (1,7) level in two different cases.
States with I'—I/=odd, or with |/ —1I'| >4, are omitted
from the figure because the corresponding matrix ele-
ments are zero. In the 3:1 case [Fig. 3(a)], all remaining
levels are far removed from the (1,/) level, and the energy
spacings are not small in comparison to the gap between
supershells. Even the small level repulsion from the
closest contributing levels (2,/ —2) and (2,] —4) will
roughly cancel, as they are approximately equally placed
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above and below the (1,]) level. The second-order per-
turbation is thus negligible in the 3:1 case.

In the case intermediate between the 3:1 and 4:1 an-
tinodes of the supershell pattern [Fig. 3(b)], the relative
shift in energy levels results in the unperturbed (2,/ —4)
level lying closer to the (1,/) level. The decreasing energy
denominator e(1,/)—e(2,/ —4) gradually causes the in-
teraction between these levels to dominate the sum (4.7),
and the resulting level repulsion pushes the (1,/) level
higher and the (2,/ —4) level lower. As the 4:1 crossover
is approached, the energy denominator will decrease to
the point that the second-order correction &'’ becomes
comparable to the energy gap between supershells. At
this point, the gap opened by the repulsion between these
levels is the major experimental feature. Near the Fermi
level, the (1, ,,) level will be pushed upward into the
next supershell. The revised supershell closings may then
be calculated by subtracting the 2(2/_,, + 1) electrons of
the (1,/_.,) shell from the supershell closing numbers in
the spherical theory, giving the alternate sequence of
supershell closings in Table III. These are in much closer
agreement with experiment than the results of the purely
spherical model.

We may view this in another way. The level repulsion
prior to the 4:1 crossover tends to move levels closer to
the levels with which they were near-degenerate in the
3:1 case [Fig. 3(a)]. Thus the repulsion tends to stabilize
the 3:1 supershell structure in this region, causing the
supershells to remain roughly intact even when, in a
purely spherical model, n=3v+/ can no longer be con-
sidered a good quantum number. This explains why the
pseudoquantum number 7=3v+1 is found'® to apply to
Na clusters over such a wide range in N.

Finally, at the cluster size for which the 4:1 crossover
occurs, the energy difference essentially vanishes, and
perturbation theory based on a spherical unperturbed po-
tential is no longer valid. For this size region, even small
shape distortions may result in large changes in level or-
dering, causing the supershell structure to disappear. In
the presence of a A=4 perturbation, the 3:1 supershell
structure is stabilized to some degree, but the 4:1 struc-
ture is unstable. For metal clusters, where energy esti-
mates suggest that the arrangement of the atomic cores
can provide such a perturbation, the assumption that
spherical effects are small breaks down entirely at this

TABLE III. Alternate supershell closings when a multipole perturbation with A=4 is included.
Ngph are the shell closings in the spherical shell theory, N, the revised shell closings when the pertur-

bation is applied, and N, the experimental values.

lmax Nsph 2(2lmax +1) Npert Nexpt (Cs)* Nexpt (Na)b
12 612 50 562 557 %5
13 758 54 704 700 =15
14 912 58 854 840 £15
15 1074 62 1012 1040+20
16 1284 66 1218 1220+20
17 1502 70 1432 1430£20

Reference 8.
"Reference 10.
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point. This is not a spontaneous symmetry breaking
effect; it involves the atomic lattice, which reaches a sub-
stantially lower energy by becoming ordered in this way.
As clusters grow even larger, the energy balance becomes
still more strongly in favor of such protocrystalline
configurations. Moreover, near degeneracy persists be-
tween certain (v,I) and (v+ 1,/ —4) levels, occurring at
energies gradually deeper in the well, below the Fermi en-
ergy. The breakdown of the spherical model is therefore
not limited merely to the size at which the 4:1 crossover
occurs, but persists thereafter as well.

The preceding arguments are essentially the same for a
Y§, (icosahedral) perturbation, except that (v,/+6) levels
must also be included in Fig. 3. At the 3:1 crossover, a
(3,1 —6) state would then be near-degenerate with the
(1,1) state, and these would, in general, be coupled by a
nonzero matrix element. If icosahedral crystalline struc-
ture were favored energetically for sizes smaller than the
size for which the 3:1 crossover occurs, then a breakdown
of the spherical approximation would occur for a Yg,
perturbation at this point. Such an effect has not yet
been observed experimentally. The lattice ordering ener-
gy per atom increases with the valency of the metal, vary-
ing as Z3/3; the tetravalent’ metal Pb is therefore a po-
tential candidate for such an effect. Apart from this
difference, the Y§, case follows the same lines as the
preceding discussion. In particular, in the 4:1 crossover
region the argument proceeds just as in the Y}, case,
with the same result: the perturbation theory breaks
down, and spherical supershell structure is eradicated.

The present argument has deliberately been kept as
general as possible, based largely on symmetry considera-
tions. Despite the generality of the argument, in conjunc-
tion with the calculations of Sec. III it leads to a very
quantitative result. For metal clusters which can be
modeled by a spherical mean-field potential, and for
which the above perturbation treatment is valid, the
number of electrons N corresponding to the 4:1 crossover
at the Fermi level characterizes the size at which a transi-
tion occurs from spherical to protocrystalline shell struc-
ture. For Na, this crossover is found in the present work
to occur at N =1640, in excellent agreement with the ex-
perimentally observed change from spherical electronic
shell structure to shells of atoms in the region
1400 < N <2000.°

Three final comments are in order. First, it does not
follow that clusters have no ordering of ionic cores until
the 4:1 crossover. On the contrary, the success of the as-
pherical perturbation treatment presented here for
500 <N <1500 indicates that significant protocrystalline
structure is already present prior to the crossover. Rath-
er, the 4:1 crossover marks the point at which protocrys-
talline structure is reflected in the energy-level distribu-
tion. This distinction is useful in understanding the
order-of-magnitude discrepancy between the estimates of
cluster crystallization and the size at which a transition
to shells of atoms is observed experimentally in abun-
dance spectra. Protocrystalline ordering of the ionic
cores may occur for clusters of a few hundred atoms or
less, but their effect on the energy-level distribution is
minor until the 4:1 crossover is reached.

12 999

Second, the argument presented here neglects finite-
temperature effects, and therefore strictly applies only in
the 7 =0 limit. Indeed, recent experiments on large Na
clusters*’ in which the cluster temperature is deliberately
kept high (7'~100°C-200°C) continue to display
features characteristic of electronic shell structure up to
N =2700.

Third, the present results suggest another approach to
the morphology of free metal clusters in this size range.
A cuboctahedral packing of shells of atoms differs from
an icosahedral packing merely by a small stretching and
shrinking along suitable axes.* The energy barrier be-
tween cuboctahedral and icosahedral configurations
should therefore be very small; indeed, single particles on
substrates have been observed to fluctuate between the
two configurations under electron irradiation.* We con-
jecture that the spherical shell structure of the valence
electrons of a metal cluster may in some cases determine
which aspherical configuration has lowest energy. An
a :1 shell structure has associated with it multipole defor-
mations of order A=a,2a,3a,. . . .*’ Based on the decom-
position into spherical harmonics of cuboctahedral
(A=4,6,8,9,10,...) and icosahedral (A=6,10,...)
shapes (Appendix B), we conjecture that a 4:1 shell struc-
ture will favor cuboctahedral shapes.

V. SUMMARY

Calculations of supershell structure in metal clusters
have been presented over the entire range of metallic den-
sities. Good agreement is obtained with detailed varia-
tions in experimental data for metal clusters ranging from
Al (ry=~2) to Cs (r;=~6), and with corresponding self-
consistent jellium calculations. The model is based on
self-consistent potentials for the bulk metal surface, but
requires far less computational effort than fully self-
consistent calculations for each cluster; this should make
it especially useful for surveys of properties of clusters
over a wide range in &, and for studies of the larger clus-
ters.

Examination of the details of spherical supershells in
metal clusters has led to an explanation for the recently
observed transition to shells of atoms in Na clusters. The
present analysis suggests that the 7"=0 transition to an
energy-level distribution characteristic of polyhedra rath-
er than spherical shells will occur for any simple free-
electron metal at a cluster size corresponding to near-
degeneracy at the Fermi level between valence-electron
states differing by Al =4. This condition is fulfilled by
clusters with on the order of N ~ 103 valence electrons for
all metallic densities. For N smaller than the critical

TABLE IV. Coefficients of the four-parameter least-squares
fit (3.2) E,,(N) for various values of r;.

s a, a ac aq

2 0.599 224 0.32555 0.1772 —0.407
3 0.599 075 0.23175 0.5165 —0.658
4 0.599 364 0.11941 0.9263 —1.086
5 0.599 969 0.04501 1.2730 —1.560
6 0.600 346 —0.03592 1.5077 —1.807
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value, the perturbations from the incipent ionic lattice ac-
tually stabilize the supershell structure of the electronic
levels, causing the supershell model to apply over a larger
range in N than might have been expected from energy
balance arguments alone.
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APPENDIX A: LIQUID-DROP MODEL

We present here details of the parametrized fit E, (N)
to the total energy E (N). The numerical values found for
the coefficients of the four-parameter fit (3.2) are
displayed in Table IV. This fit provides an excellent
smoothed curve for isolation of shell effects, but if a; and
a. are interpreted as the surface and curvature energy
coefficients in analogy with a liquid-drop model, the sur-
face energy becomes negative for r,=6. Therefore a
least-squares fit was also performed for the three-
parameter fit

E, (N)=¢gp(a,N+a,N**+a N'"7) . (A1)

The resulting coefficients are listed in Table V. The cur-
vature energy in this case is found to be negligible, and
the surface energies are all positive. These coefficients
are expected to provide better estimates of the surface en-
ergy of a cluster than those listed in Table IV, though the
lack of self-consistency in the present calculations may
seriously affect the surface energy.

As a further check on the calculation, we present an
analytic solution for @, and a; for the infinite spherical
square well of radius R,. In this special case, we may use
the expression (2.4) for the density of eigenvalues with
Dirichlet boundary conditions to evaluate the integrals

k .
Ew= [ "p(OE (K)dk , (A2)
E(k)=ep(k /kp ), (a3

k

for total energy E, ., and number N of valence electrons
in the well. Expanding the quotient of these two integrals
in powers of (S/Qkg), we have
E total =¢
N F

3 3

5 80

S

- ] L@
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TABLE V. Coefficients of the three-parameter least-squares
fit (A1) E,,(N) for various values of r;.

rS al) aS aC

2 0.598 656 0.344 41 —0.0004
3 0.596 977 0.296 40 —0.0025
4 0.595 527 0.23703 —0.0048
5 0.594 754 0.205 40 —0.0064
6 0.594 124 0.15498 —0.0077

where the surface term arises from the difference of two
considerably larger terms, and is thus very sensitive to
changes in boundary conditions. For a sphere of radius
Ro,

173

S , (A6)

- |12
Qk,

N

and a, and a, are determined by equating coefficients of
corresponding powers of N in (A1) and (AS5). We find

a,=3=0.6,
1 (or 172
m
=— [ZZ| =0.184.
ag 20 | 2 0.184 (A7)

The value for a; derived in this way corresponds exactly
to analytic estimates of surface energy per unit area in
the theory of liquid metals.’® In view of the sensitive
variation of a; with boundary conditions, the correspon-
dence of these idealized coefficients with the values for
the three-parameter fit is acceptable.

APPENDIX B: SYMMETRY RESTRICTIONS
ON TERMS IN THE ASPHERICAL POTENTIAL

If we neglect spontaneous symmetry breaking and con-
sider a symmetric arrangement of atoms in a cluster,
many of the v, in (4.1) are identically zero. This may be
demonstrated using group theory. We consider the
group of rotations which leaves the potential ¥ of an as-
pherical cluster (here a cuboctahedron, or an icosahed-
ron) invariant. This group is a subset of the group of all
rotations; and the representation D, of the group of all
rotations is in general reducible for this smaller group.
This reduction or decomposition of the D, is straightfor-
ward,”! and resulting sets of irreducible representations
are available in the literature for the octahedral®’ and
icosahedral®® groups. If these sets of irreducible repre-
sentations of the octahedral (icosahedral) group do not
contain the unit representation for a given A=L, then no
linear combination of the Y/, exists that maintains the
complete potential V invariant under every rotation of
the given group. If the potential is to have the desired
symmetry, then, we must fix v, »—0. We reproduce here
the sequence of A values (A<10) for which the
coefficients v,, may be nonzero: For octahedral symme-
try; A=0,4,6,8,9,10; for icosahedral symmetry,
A=0,6,10.

*Permanent address: U.S. National Academy of Sciences, Beij-
ing Office, Friendship Hotel Room 40522, Beijing 100873,
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