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Inhuence of internal electric fields and surface charges
on the transport of an optically generated electron-hole plasma
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A hydrodynamic description based on a heated displaced Maxwellian approximation is used to inves-

tigate the perpendicular transport of an electron-hole plasma, generated by a laser pulse in a thin semi-
conductor slab. Internal electric fields and surface charges are built up due to difFerent bulk and surface
properties of the two charge-carrier types. The response of the plasma is studied on difFerent time and
length scales in terms of hydrodynamic and electric variables. If the surface charges are small, the inter-
nal electric field is measurable as a small external voltage known as the Dember effect. In this regime,
the field has practically no inAuence on the transport, and an ambipolar model can be applied for the cal-
culation of the hydrodynamic variables. Large surface charges, however, lead to fields much stronger
than the Dember field and limit the validity of the ambipolar approximation.

I. INTRGDUCTIQN

The transport of optically generated electrons and
holes in semiconductors has initially been investigated
within the framework of steady-state problems in bulk
samples. ' New techniques in fabrication of micro-
structured and nanostructured samples and generation of
short laser pulses allow one to study the carrier dynamics
on short length and time scales. Various problems, like
carrier cooling, transport in systems with reduced
dimensionality, carrier capture in quantum wells, or
inhuence of surface fields, ' are of actual interest.

The theoretical model used to explain the measured re-
sults for a given experiment depends not only on the sam-
ple geometry but also on the details of the experimental
conditions. The excitation with low laser energy and
power density generates only a few quasithermalized car-
riers that do not form an electron-hole plasma but an ex-
citon gas. Then transport can be explained in terms of
isothermal diffusion. ' In other cases, especially if high
energies and power densities are used, it is necessary to
take into account additional degrees of freedom, like the
carrier temperature or hot phonons. " Common
methods are either a direct integration of the transport
equations' or Monte Carlo techniques. " While the
former is appropriate to get the whole distribution func-
tion, the latter provides primarily its moments.

In the plasma case electrons and holes do not neces-
sarily remain together after generation, but, due to
different masses and mobilities, diffuse apart and build up
space charges and thus internal electric fields. This
phenomenon, the so-called Dember effect, ' leads to an
externally measurable voltage, the transverse photovol-
tage. But the internal field reacts on the carriers, reduc-
ing the diffusion of the light carriers by a backward-
directed drift and accelerating the heavy ones. In case of
a strong coupling the carriers form a new effective parti-
cle Quid with a local charge neutrality on length scales
larger than the Debye length, and the so-called ambipolar

approximation can be applied. We previously have used
this approach to investigate the perpendicular transport
of an inhomogeneously generated ambipolar electron-
hole plasma in a semiconductor slab. ' '

An analogue to the Dember effect is given in the case
of carrier capture in and emission from quantum wells '
or at surface states. A typical experiment is to generate
carriers in a quantum well (In& Cra„As/InP) by using a
laser energy smaller than the barrier gap. Due to a small
activation energy the electrons may leave the quantum
well and move into the bulk while the holes remain in the
well. The diffusion of the electrons is then hindered by
the increasing electric field.

Quite contrary to an ambipolar behavior is the func-
tioning of a photodiode: here, the charge carriers are
separated by an intentionally built-in field due to the
band structure, a phenomenon which is not the subject of
this paper.

In the present contribution we will investigate the devi-
ations from local charge neutrality and effects of internal
fields. Then, by comparing the results with those ob-
tained within the ambipolar model, we will estimate the
validity and the limitation of the latter approximation.
Section II introduces the model and scenario we use. In
Sec. III some simulations for the spatial and temporal
evolution of hydrodynamic and electric quantities in the
bulk are presented. The inhuence of different surface pa-
rameters is studied in Sec. IV. Finally, some conclusions
are drawn in Sec. V.

II. THE MADEL

We investigate a semiconductor sample, which is
confined in one direction (the z direction, width L) and
has large extensions in the two lateral directions. A
simplified band structure with a direct gap and two para-
bolic bands is assumed. The surface at z =0 is perpendic-
ularly illuminated by a monochromatic defocused laser
with time-dependent intensity. Entering the crystal, the
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laser beam generates electron-hole pairs with an excess
energy depending on the laser frequency and with a spa-
tial distribution due to an exponential absorption. Car-
rier transport is induced by density and temperature gra-
dients. Scattering events of the carriers among them-
selves and with phonons, impurities, and disorder lead to
relaxation of momentum and energy of the carriers. Fi-
nally, surface recombination is taken into account, which
is assumed to be large compared to bulk recombination.
For the simulation the material parameters of
Gao. 8Alo. &As are used.

In a kinetic description an electron-hole plasma is
characterized by two Boltzmann equations for the distri-
bution functions f, for electrons (c =e) and holes
(c =h), respectively, and, due to the charge of the car-
riers, by a Poisson-equation for the electric field E. We
assume that the phonons remain in equilibrium and take
them into account as a heat bath only. Due to the lateral
homogeneous excitation the distribution functions have a
one-dimensional space dependence, and the electric field
vector has a single component, E, . In velocity space a
full three-dimensional dependence on the carrier velocity,
v, is considered. Thus we have

a q.E.f, (z, v, t )+u, f, (z, v, t)+ f, (z, v, t )

coll

8, (z, t)= [v —u, (z, t)e, ] f, (z, v, t)d u;1 1

3n, z, t 4rr3

where e, is the unit vector in the z direction. These three
moments, called the hydrodynamic variables, character-
ize the respective heated displaced Maxwellian (HDM),

n, (z, t)fH (z v, t)= 2K

8, (z, t)

X exp
[v —u, (z, t)e, ]

20, (z, t)

n, + n, u, =G (p)

Bt Bz

0. a a au+ n+u, u+ 8, —q, E,
m

=1 (J(&) u G(0))
C

Inserting the HDM (6) into the Boltzmann equation (I)
and forming the three moments in analogy to Eqs. (3)—(5)
we get six nonlinear hydrodynamic equations,

a=g, (z, v, t)+
Bt

c =e,h, 0, +—0, u, +u, 0,a 2 a a

E, = (nh n, +X~——X~ ) .e

BZ EpE„

n, (z, t)= 3 f, (z, v, t)d u;1

4m
(3)

u, (z, t)e, = vf, (z, v, t)d u;1 1

n, z, t 4~3

Here, n, is the density of carrier-type t." =e, h, XD and
the densities of ionized impurities, q, = —e and

q&
= +e the charges, m, the effective carrier mass, and e,

the background dielectric function. The generation term

g, is proportional to the laser power density and has an
exponential spatial dependence. Finally, the collision
term consists of three parts: (i) electron-electron and
hole-hole; (ii) electron-hole; and (iii) carrier-lattice
scattering (scattering with phonons, impurities, and alloy
scattering).

For a carrier-carrier scattering rate large compared
with the carrier-lattice scattering rate, the distribution
functions are approximately heated displaced Maxwelli-
ans. In a previous paper' we have already investigated
the validity of this hydrodynamic approach for a station-
ary scenario of the problem. But also in the case of
pulses, ' when the density raises from an equilibrium
value up to its maximum, the calculated carrier-carrier
scattering rates' fulfill the hydrodynamic condition. The
first three moments of the distribution function determine
the carrier densities n„ the drift velocities u„and the
carrier temperatures T„expressed by 0, =k~ T, /m, :

(J' '+G' ' —38 G' '), c =e, h . (9)
1

3 C C C

C

The G,' ' and J,' ' are the vth moments of the generation
term and the collision term, respectively. They are
defined in Appendix A.

The model for the boundary depends on the technolog-
ical realization of the slab: For pure bulk effects a very
thick slab is sufhcient, and no special boundary model is
needed. Slabs of a width of several micrometers may
have two free surfaces. However, a slab a few microme-
ters wide can only be grown on a substrate, thus having
one free surface and one interface to the substrate. Then,
three limiting cases can be distinguished: (i) the substrate
has a larger gap than the slab and acts as a potential bar-
rier for the carriers; (ii) the substrate has a very small
conductivity and the carriers remain close to the inter-
face; (iii) the substrate has a very high conductivity and a
large extension and the carriers spread out into the sub-
strate. In all three cases the carrier density in the sub-
strate (and thus space charges) will approximately vanish:
the interface acts an an effective surface, and for simplici-
ty we will also call it a surface. Due to dangling bonds,
lattice mismatch or other technological reasons, the sur-
faces provide a certain number of bound states for the
carriers.

Various surface models for kinetic and hydrodynamic
boundary conditions have been discussed in Refs. 16 and
18. A particle reaching the surface is either rejected or
captured in a bound state, where it can recombine with
the other carrier type. If the surface is an effective one as
described above, the capturing also contains the
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transmission of the particle through the (inter)face. In
the hydrodynamic model the properties of the surface are
described by surface recombination velocities for elec-
trons and holes

s, (0)= —j, /(n, —n,' ') ~,

s, (L)=j,/(n, —n,' ')~, L, c =e, h .

Here, j,=n, u, is the particle current density, and n,' ' is
an equilibrium density (see Appendix C). The values for
s, specifying certain interaction mechanisms between car-
riers and surface are discussed in Sec. IV.

The capture of a carrier by a surface state is, in our
model, the first step of a recombination, which reduces
the number of electrons and holes in the surface states
pairwise. Different surface recombination velocities im-
ply a different occupation of these states, and thus a sur-
face charge o. is built up. For this quantity we get after
integrating a simple charge continuity equation

density raises outside the generation region. Apart from
screening, Eqs. (7)—(9) scale with the laser power while
Eq. (2) depends on absolute densities. Therefore, the
inhuence of an internal electric field comes more and
more into play with increasing density. ' Another fact is
observed from Fig. 1. Even in the case of small coupling
the holes behave nearly as they do in the strongly coupled
case, which means that the ambipolar transport is dom-
inated by the holes: The formula for the ambipolar
diff'usion constant' expresses this, D ' = (D, '

+Dh )/2. The densities reached in the low power simu-
lation are of the order of the equilibrium values. Thus
the excess energy of newly generated carriers is also sup-
plied to heat the cold equilibrium carriers and the carrier
temperatures cannot reach the values of the high power
simulation (the step in the electron temperature curve is
due to a nearly vanishing excess density).

The ambipolar approximation is based on the assump-
tion that the local densities of electrons and holes are
equal due to electric forces, which means that the charge
density is vanishing. Therefore, a good measure for the

The surface charge is directly connected with the
difference of the electric field across the boundary by the
equation

o (0)=eoe„E, , o, cr(L) = eoe„E, l, — (12)

III. NONEQUILIBRIUM IN BULK

This equation acts as a boundary condition for the
electric field. The remaining boundary conditions are
listed in Appendix B.

Our scenario will be the following: All the simulations
start from thermal equilibrium (see Appendix C). The
laser excitation is a single Gaussian pulse with a width t
centered at t =0 (see Appendix A). The response of the
sample is described in terms of the hydrodynamic and
electric variables.
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In this section we study the inhuence of the electric
field and, by Poisson equation (2), its derivative, the elec-
tric charge density. To get mainly bulk properties and
reduce the inAuence of the surfaces to a minimum, we
choose equal surface recombination velocities for both
carrier types at both surfaces in this section. The next
section will justify this choice.

Due to quite different masses electrons and holes tend
to move independently, but they are coupled by the inter-
nal electric field. The strength of this coupling is now in-
vestigated. In Fig. 1 two simulations of Eqs. (7)—(9) with
difFerent laser power densities are compared with each
other. Instead of an absolute density the difference be-
tween the density and the equilibrium value normalized
to the maximum of the corresponding hole densities is
plotted. We recognize that in the higher power case the
densities and velocities are nearly identical, while in the
other case the electrons reach a drift velocity one order of
magnitude larger, due to small restoring forces, and the

150 .

120

90

E~ 60

30

L

~ V

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z m)

FIG. 1. Spatial profiles at t = —t /2 of the density, (a), drift
(b), and temperature, (c), of electrons and holes for two diff'erent
laser power densities. Solid and dashed line: P=2 W mrn
maximum density 1.5 X 10" cm; dashed-dotted and dashed-
triple-dotted line: P =0.02 W mm, maximum density
1.2X10" crn . Remaining parameters: T& =10 K, s, =10'
cm/s, ND =7X10' cm, N~ =3X10' cm, t =20 ps,
E„,=75 meV.
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validity of this assumption is the difference between elec-
tron and hole densities, An. In Fig. 2 we see the temporal
evaluation of this quantity (divided by the arithmetic
mea, n of both, n ) at different positions in the sample. The
carriers are generated in a region less then half a microm-
eter away from the illuminated surface. Then, due to
their smaller mass, the electrons move faster out of this
region than the holes. The first curve (z =0.25 pm)
shows the dominance of the holes after some electrons
have left the generation region. On the other hand, the
curves with z =1.5 pm and z =2.75 pm demonstrate
that the electron density is now larger than that of the
holes, due to the transport into the rest of the sample.
The second curve (z =0.5 pm) is approximately in the
boundary region of the generation region and shows a su-
perposition of both processes. In the beginning the elec-
tron density increases due to the incoming transport from
the greater part of the generation region, but then the
electrons keep on moving into the rest of the sample and
the hole density dominates. Transport is also responsible
for the maximum of the fourth curve (z =2.75 pm) ap-
pearing retarded compared to the third curve (z =1.5
pm) which is only half the distance away from the gen-
eration region. In any case, the maximum value of An is
about 20—30% of n. This seems to be substantial; how-
ever, these peaks are at a time (beginning of leading edge
of the pulse) and in a region (far away from the genera-
tion region) where the density is still small: The absolute
local density differences are negligible in all phases of the
simulation for these special boundary conditions.

The inhuence of electric quantities on transport is
given by the term of the electric field in Eq. (8). As a
measure for this influence we choose the internal field
strength. This quantity can be reduced by screening
effects and "compensation transport. " Compensation
transport means that regions with a space charge of
different sign exchange mobile charge carriers by trans-
port until the charges are reduced to a minimum. In Fig.
3 we show the electric field at t = —t . The solid curve
corresponds to the simulations as of Fig. 2. We recognize
a rapidly increasing field (excess of holes) in the genera-
tion region and a decreasing field in the rest of the sample
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FIG. 3. Electric field at t = —t /2. Excitation by three
different pulses: t„=20 ps and E,„,=75 meV (solid line),
t =20 ps and E,„,=125 meV (dashed line), t =100 ps and

E,„,=75 meV (dashed-dotted line). Other parameters as in Fig.
2.

(excess of electrons). The field has its maximum in the
generation region because a high carrier temperature
there reduces the screening of the carriers. Furthermore
we notice a nearly vanishing field at the boundaries indi-
cating a vanishing surface charge [see Eq. (12)j due to
equal surface recombination velocities for both carrier
types. This and the inhuence of a substantial surface
charge will be discussed in the next section. Compared to
the 75-meV curve, the 125-meV curve has a higher field
everywhere because a larger excess energy implies a
larger carrier temperature and thus a reduced screening.
On the other hand a larger pulse width (100 ps instead of
20 ps) reduces the electric field: The carriers have more
time to compensate local charge accumulation by trans-
port.

The electric potential, the integral of the field, is not
explicitly contained in the transport equations, but as
voltage between the two surfaces it is a measurable quan-
tity. The fact that such a voltage appears due to internal
electric fields, is called the Dember effect." In Fig. 4 we
see the temporal evolution of this voltage. The influence
of different excess energies and different pulse widths on
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FIG. 2. Temporal evolution of the difference of electron and
hole densities, An, with respect to their arithmetic mean n at
several positions in the sample. I'=2 Wmm, other parame-
ters as in Fig. 1.

FIG. 4. Temporal evolution of the voltage between the
two surfaces {Dember effect). Parameters and line types as i.n

Fig. 3.
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the amplitudes is the same as in the case of the electric
field. The maximum voltage occurs at a time between the
turning point and the maximum of the laser pulse. This
confirms that the nonequilibrium has its greatest
inhuence at the leading edge of the laser pulse.

IV. INFLUENCE QF SURFACE PARAMETERS

The surface recombination velocity contains all mecha-
nisms describing the interaction between a carrier and
the surface. In realistic samples the capture by surface
states is a process more important for holes than for elec-
trons. Furthermore the density of states is usually larger
at a free surface (z =0) than at an effective surface (inter-
face to the substrate, z =L). The transition through an
interface depends on the value of the band discontinuity
of the two adjacent regions. A substrate with a smaller
bandgap (GaAs) than those of the slab often leads to
higher surface recombination velocities than a substrate
made, e.g. , of AlAs. The surface models ' show that
the transition through an interface is proportional to the
thermal velocity of the carrier. Due to a higher tempera-
ture and a smaller mass the electrons have a larger transi-
tion probability.

With the four surface recombination velocities (elec-
trons and holes, respectively, and boundary at z =0 and
L) a vast spectrum of parameters and scenarios is
covered. From all these possible combinations we now
investigate the three most important ones. Case a: The
four velocities are equal, which means that capturing in
surface states at z =0 is of the same order of magnitude
as the sum of transition and capturing at z =I., and the
eftect of a higher thermal velocity of the electrons is com-
pensated by a higher density of surface states for the
holes. This case has already been simulated in the last
section. Here it is used as reference for the other two
cases. Case b: At z =0 the hole velocity is more than one
order of magnitude larger than that of the electrons
(strong capture of holes in surface states), at z =L the sit-
uation is like case a. Case c: At z =0 it is like case b, at
z =I. the electrons have a larger velocity than the holes
(strong transition of electrons into the substrate).

The voltage between the two surfaces is a superposition
of two contributions, the voltage due to the surface
charges and their screening charges, and the Dember
voltage (as described in the previous section) due to
nonambipolar diffusion in the bulk. In Fig. 5 the tem-
poral evolution of this total voltage is plotted; in Fig. 6
we see the electric field profile at t =t . The electrical
quantities of case a are dominated by the Dember e8'ect.
Surface charges are small. Case b behaves like case a un-
til the pulse maximum, but then the Dember efFect loses
its dominant role: The strong capturing of holes in sur-
face states at z =0 builds up a large surface charge which
is not vanishing in the relaxation phase of the system
(Fig. 5). This means that also in thermal equilibrium a
surface charge will remain which is even more important
than the Dember-effect. The electric field (Fig. 6) of case
b and its gradient show at z =0 a positive surface charge,
followed by a negative space charge for screening, while
at z =L electric field (and surface charge) are nearly van-
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FIG. S. Temporal evolution of the voltage between the two
surfaces. Surface recombination velocities: case a,
s, (0)=sI, (0)=s, (L)=sz (L)= 10' cm/s; case b, s, (0)= 5 X 10
cm/s, sI, (0)=8X10' cm/s, s, (L)=sz(L)=2X10' cm/s; case c,
s, (0)=2 X 10 cm/s, s, (L ) =2 X 10' cm/s, sz (0)=sh (L ) = 8 X 10
cm/s. Other parameters as in Fig. 2.
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FIG. 6. Spatial profiles of the electric field at t =t . Parame-
ters and line types as in Fig. 5.

ishing. Near z =0 the electric field (Fig. 6) of case c
behaves like case b, but, due to surface recombination ve-
locities being of the same order, the (positive) surface
charge is smaller. At z =I a negative surface charge and
a positive space charge are built up. These charges have
to be transported through the slab by the carriers. Due
to this delay the charges do not yet have their steady-
state value at the end of the laser pulse, and the voltage
(Fig. 5) for case c is still increasing. For case b with a
small final charge at z =I. the delay due to transport is
negligible, and the voltage has reached its steady-state
value. We also see that Dember e6'ect is no longer impor-
tant for case c.

The change of voltage and surface charges by a laser
pulse has also been observed experimentally there, a
GaAs sample has been investigated within a pump-and-
probe experiment by time-resolved reAective electro-optic
sampling. The evolution of the reAection coeKcient
demonstrates the strong electrical field changes.

Finally, we come back to the ambipolar approxima-
tion. If the surface charge, and in consequence the com-
pensation (screening) space charge near the surface, are
large (Fig. 6), the difference of the densities of the two
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carrier types will be so distinct that an ambipolar model
cannot be used. However, if the slab is thick enough, this
approach might be applied in the bulk far away from the
surfaces.

V. CONCLUSIONS

The numerical simulations of an electron-hole plasma,
which is generated and heated inhomogeneously in space
and time, demonstrate that a description with the as-
sumption of local neutrality, the so-called ambipolar
description, is a very good approximation on all relevant
scales provided the influence of surface charges is small.
The Dember efFect describing the formation of a voltage
amounts to a measurable but small quantity. It has its
maximum at the leading edge of the laser pulse. The
eFect is reduced by compensation transport in case of
large pulses and enhanced by high carrier temperatures.
Quite diff'erent surface recombination velocities for elec-
trons and holes support the buildup of surface charges.
The voltage induced by these charges and their compen-
sation space charges in bulk may even exceed the Dember
efFect: then the ambipolar model looses its applicability.
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APPENDIX A

(l)— 1 1
~c nc(Uc Uc') ()) ncUc X
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J,' '= n, —-(T, —T, )
3k~

+c(eh)

3k~
(T, —Tt)g

i +c(i)
nc

m

c,c'=e, h; c&c,
where Tz means lattice temperature and the sum indi-
cates summation over the various carrier-lattice scatter-
ing mechanisms. For the latter we refer to Ref. [13]. The
electron-hole scattering times are

—3/2
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(l) C C

+c (eh)

e h
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d
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(2) (l)
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The derivation of the collision term and its momentsJ" has already been published in Ref. [13]. The mo-
ments can be divided into two parts: the electron-hole
scattering and the carrier-lattice scattering. Scattering
times, depending nonlinearly on the hydrodynamic vari-
ables, are defined by

In the system of hydrodynamic equations (7)—(9) we
have used the following abbreviations for the moments of
the generation and the collision term:

6")=,J g, (z, v, t)d'U(o)

1 fgh(z, v, t)d u= e
aP(t)
AcoL

and

1 1
A =A,

4k~ m,

n ne + h

~oar ks Te T

e h+

6,' '= [v u, (z, t)e, ] g, (z—, v, t)d U
(2) 1

4'7T

6(0) + 2

(1/m, + 1/mh )m,
coll

J'"e = v ' '

d'v
4m'

coll

d v

P(t)=(2/lr)'/ P(t„/t )exp[ —2(t/t ) ],
where I' is an average power density and t„a pulse repeti-
tion time of 1000 ps.

J''= v —v zt e(2) Bf
4~ c

P (t) is the laser power density, a ' the absorption
length, %col the photon energy, and E„,the excess ener-
gy. For our scenario we have chosen a Gaussian laser
pulse

APPENDIX B

—n+- j =6 (o)

Bt ' Bz

—j,+ —b, n,
5 2/3 Jc

C C
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2jc
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c z (l)Bz''m,
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C

c=e, h .

The common boundary conditions for the first two equa-

To get boundary conditions for Eqs. (7)—(9) we express
v, and 0, by the»riables j,=n, v, and b, =n, 8c and
transform the equation system to these new variables.
The result is
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tions are Eqs. (10). For j,=0 the third equation becomes
an ordinary difFerential equation, which is integrable with
an initial condition and thus serves as spatial boundary
condition.

APPENDIX C

Our simulation starts from thermal equilibrium, and
thus fixing the initial conditions for the di6'erential equa-
tion system: Carriers and lattice have the same tempera-
ture, and the drift velocities are vanishing. In the bulk
the carrier densities are determined by thermal band-

band generation and ionization of impurities. We denot-
ed these densities n,' '~b. Close to the surfaces a few car-
riers are captured in bound states and leave ionized im-
purities in the slab until an electric field is built up. This
phenomenon can be considered either as an equilibrium
between a drift and a difFusion current or as a bending of
the bands due to a Fermi-level pinning. If this bending is
small compared to k'T', the Poisson equation (2) can be
expanded, and electric potential and field are decaying
exponentially in terms of a Debye length A, Using Eq.
(12) we obtain

n,' '(z)=n,' '~b. 1— ~'"(0)exp
ot ka ~I

+cr' '(L)exp z —L

with

2

(n,' '~b+nh '~b) .
EO&r~B ~L

for this process is available from the width of the region
of this density change, approximately A,„and the average
carrier velocity being in the order of their surface recom-
bination velocity. Using Eq. (10) and integrating Eq. (11)
formally we get the ansatz.

The resulting densities at the surfaces also enter Eq. (10).
To get a relation between equilibrium surface charge

and surface recombination velocity we consider the fol-
lowing picture: some carriers (mainly the part of nz '~b

due to ionization of impurities) move toward the surface
until the density has dropped to the value due to thermal
band-band generation, which we will call n„h. The time

c7 =e[(np, /b n„h)sg, (n /b 11h)s ] s, +sh /2

The equilibrium state is calculated by a simulation
without laser excitation and under steady-state condi-
tions.
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