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Generalized semiclassical model for the density of states in heavily doped semiconductors
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An accurate description of the density of states, properly combining both statistical and many-particle
effects, seems not available for heavily doped semiconductors. We propose a semiclassical approach
which exhibits a number of attractive features. First of all, the resulting density of states is easily com-
puted in contrast to quantum-mechanical models. The proposed model describes the exact high-density
limit and simply includes the many-body effects, yielding still an analytical expression. Two-dimensional
systems appear to be best described. The model approximates the number of the majority carriers very
well. The main drawback lies in an overestimation of the number of deep energy states. A formula to
estimate the Fermi-level shift purely due to band tailing is derived which allows the easy incorporation
of the effect of band tails in a device simulator.

I. INTRODUCTION

In a heavily doped semiconductor, the density of states
(DOS) diff'ers from that of the pure crystal due to a num-
ber of different physical mechanisms. The electron-
electron interactions' mainly shift the conduction and
valence bands towards each other, but also slightly de-
form the DOS through a modification of the quasiparticle
energies. A stronger distorting of the DOS occurs when
electrons interact with impurities. This electron-impurity
scattering has been calculated in detail by Serre and Gha-
zali in three dimensions (3D) and by Ghazali, Gold, and
Serre in 2D. Beside these many-body effects, the ran-
dom distribution of impurities, a statistical effect, intro-
duces band tails in the DOS.

A detailed description that rigorously combines both
many-body and statistical fluctuation effects must be
exceedingly complicated, if it exists. A theory that par-
tially includes many-body effects with statistical effects
has been given, but this requires huge numerical calcula-
tions and a number of approximations. A totally
different approach would be an introduction of many-
body effects into a Feynman path integral because in the
absence of many-body effects, an exact path-integral for-
rnula exists, which was the basis of the work of Sa-
yakanit. ' However, it is known that the path-integral
method is not the best one to describe many-fermion sys-
terns.

The discouraging difFiculties arising in first-principles
models suggest approximate techniques. We would like
to demonstrate that a combination of both the electron
medium and the statistical fluctuations can be comprised
in a semiclassical model. Because band-tail effects as well
as many-body effects only significantly alter the DOS at
high doping concentrations, a semiclassical approach"
(SA) looks highly suitable, since it covers the high-density
limit (HDL) exactly. The major advantages of the gen-
eralized semiclassical DOS are its simple physical inter-
pretation and the explicit use of an arbitrary isotropical
energy versus wave vector, E(k), relation, necessary to
include many-body effects and to deal with nonparabolic

unperturbed DOS's (such as the DOS of InSb„As, ).
Moreover, the expression for the DOS can be written as a
closed analytical formula. In addition, the semiclassical
model is the only existing simple formula that covers the
whole energy range. The analyticity of our approach in-
troduces the possibility to present DOS expressions in
different dimensions. However, it does not describe im-
purity bands, nor the deep energy tail region.

In material research, one is mainly interested in estima-
tions of the expected band-gap narrowing (BGN). In or-
der to make quick estimations of the band-tailing effect,
an analytical closed formula is presented. All numerical
results are calculated for n-type GaAs.

II. THE GENERALIZED SEMICLASSICAL DOS

A. The SA

Kane' and Shlovskii and Efros' have applied the
semiclassical method to the calculation of the DOS in
heavily doped semiconductors. Our approach generalizes
their result to different dimensions, interacting Fermi
liquids, and arbitrary initially unperturbed DOS s.

The SA assumes basically one approximation: the clas-
sical description of the electron wave packet. The poten-
tial fluctuations caused by the charged impurities are as-
sumed to be smooth in the sense that they change little
over the electron wavelength. The electron only "feels"
the potential of the point where it is located. This ap-
proximation considers electrons with energies sufriciently
higher than the average potential V„ in Fig. 1 such that
the actual potential V ( r ) can be replaced by the
smoothed, slowly varying potential V, ( r ). Let po(E)
denote the DOS in the crystal not perturbed by impuri-
ties. The energy E is measured from the bottom of the
band in the noninteracting electron system, which will be
represented by the subscript n while the interacting elec-
tron system will be denoted by the subscript i. From Fig.
1 and Refs. 11 and 12, we obtain a semiclassical expres-
sion for the DOS:
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V(r)

FIG. 1. Sketch of the semiclassical method: all states with
energy above the smoothed potential V, (r) are counted. The
summation of states within the shaded in6nitesimal energy strip
in coordinate space is equivalent to the shaded area (convolu-
tion) of the right-hand-side plot.

k

~ E'(k)
k

Po;k2

Po;k3(k) = (2.2a)

(2.2b)

E —po'(0)

p(E) = f po(E —V)P ( V)d V

po(v)P (E —v)d v, (2.1)
po (0)

where P( V) is the distribution function for the potential
energy V(r) which is to be determined, and where
X =Pp '(y) is the inverse DOS function or solution of
P=Pp X(x). This notation is required for interacting elec-
tron systems, where the DOS shifts down to lower ener-
gies due to many-body interactions. Hence, po (0)(0,
in contrast to po„'(0) =0, by definition as reference ener-

gy.
Figure 1 illustrates that in the SA, all energies above

V (r) contribute to the DOS. The actual energy levels asS

E are discrete and spaced farther from each other as the
potential well gets narrower, which happens for lower en-
ergies. As the SA ignores this quantum-mechanical
e6'ect, the semiclassical DOS overestimates the number of
electrons in the deep tails, but gains accuracy for increas-
ing energies and finally becomes exact in the HDL. For
degenerate semiconductors, most of the physics will be
included if the electron can be regarded as classical. En-
ergy states deep under the unperturbed energy band sure-
1 need a quantum-mechanical description, such as that
given by Halperin and Lax. Because these deep-lying14

energy states are not properly taken into account in a SA,
the presented model will only describe majority carriers
(with Fermi level above the unperturbed band edge)
sufficiently well.

Let us now assume that the energy versus wave
vector relation is isotropic in k space, then
E(k)=E(~ki)=E(k). From the Bloch theorem, we can
derive an explicit relation between the DOS expressed as

15, 16a function of k and the band structure. ' For a
difFerent dimension d, po. kd(k) yields

A substitution of the independent variable V by E E(—k)
in (2.1), yields

p(E) =f po(E (k) )P(E E(k—) )E'(k)dk,
0

(2.4)

since the lowest-energy po '(0) corresponds to k =0. Ap-
plying (2.2) and (2.3) finally gives pd(E) in different di-
mensions,

' f "k'P(E —E(k))dk,

(E)= f k P(E —E(k))dk,P2

p, (E)=—f P(E E(k))d—k .
0

p3(E) = (2.5a)

(2.5b)

(2.5c)

From these relations we conclude that, if the distribution
function P( V) and the E(k) relation of electrons in an
unperturbed crystal are known, the DOS for majority
carriers can be calculated.

P(V)=- f exp iVt+n f dR(e "' "—1) dt,
2~ oo

(2.7)

whose properties are further explored in Appendix A.
The superposition (2.6) implies a superposition of the
charge densities, indicating that the Poisson equation
must be linear, which generally is not the case in an elec-
tron medium. ' As long as the potential Auctuations are
small, linear-response theory ' applies, providing a gen-
eral expression for the potential induced by an impurity
charge Ze5(r) in an electron medium,

Vq
( ) Z dq iqr (2.8)

(2~)' e(q)
'

with v the Fourier transform of the bare Coulomb po-

B. The distribution function P ( V) of the potential
energy V in an interacting Fermi system

There only exists an analytical, exact expression for
P(V) on the condition that the potential at a certain
point r can be written as a superposition of the infIuences
of all impurities in a system with volume Vp. For, if the

robability p(r ) having an impurity at an arbitrary pointp l —1 ~ ~

r; is constant and, hence, equals Vp and if the potential
energy V(r, I r,. I ) at r, caused by a configuration of X im-
purities at positions Ir,. I, can be written as a superposi-
tion,

N

V(r, Ir;I )= g u(r —r;), (2.6)
l =1

where u(r) is an arbitrary well-behaved function, then an
exact expression for the probability distribution function
P ( V) can be derived', yielding
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tential and E(q) the static dielectric function of the sur-
rounding electrons. With an explicit expression for E (k),

E(k) = +A'X(k, E)
2fPl

(2.9)

where iiiX(k, E) denotes the system's self-energy due to
many-body interactions, all quantities to calculate (2.5)
are defined. In this general form, as both A'X(k, E) and
E(q ) depend on the number of electrons and thus on p(E),
Eqs. (2.5) and (2.7)—(2.9) represent a coupled system of
equations.

The assumption of linearity is, of course, an approxi-
mation, but a very good one for heavily doped but non-
compensated semiconductors and becomes exact in the
HDL. Thus, the proposed model based on the SA and
the requirement of linearity describes exactly band tailing
and many-body interactions in the HDL. In the follow-
ing, we will illustrate the proposed model for a simple
case of a 30 interacting system and a 20 noninteracting
system.

O

bQ

bO

47

10

1 p16 10 10
-3

Dopant concentration (cm )

1P19

FIG. 2. The 3D noninteracting screening length, calculated
both self-consistently (K,„,) and not self-consistently (x3 ) vs
versus doping concentration for different temperatures. Notice
that in the HDL, the screening length becomes temperature in-
dependent.

X(k,E)= —
2 kI;F

e' /k/

2m'e,
(3.1)

F(x)= —+ ln
1 1 —x 1+x
2 4x 1 —x

Further, we choose the Thomas-Fermi dielectric func-
20, 21

e(q) =1+
q

yielding for the potential (2.8),

Since a detailed discussion of the self-energy is beyond
the scope of this paper, the calculation will be demon-
strated for the simplest expression of the self-energy. We
confine ourselves to exchange efFects because they dom-
inate in the HDL. We neglect the correlation inAuence
and describe the exchange efFect by the simple Hartree
model (at T=0 K)

e df FD(E EF)—
po(E) — dE,

63 Po '(0) dEF
(3.6)

while in Fig. 3, the relative difFerence 6~3„/~3„, is drawn,
where 6~3„=~3,—x3„,. For heavily doped materials,
where nas ) 1 with as =4vre3A /me is the eff'ective Bohr
radius (or nG, A, & 10' cm ) this difFerence is obviously
negligible. Moreover, in the HDL, we prove in Appen-
dix B that (3.5) tends to (3.6). Consequently, further cal-
culations invoke (3.6) rather than the unattractive (3.5).

10

2 diverge. The same problem occurs in Kane's model. "
Restricting ourselves to the HDL, however, P ( V)
reduces to a Gaussian (A12) that only needs the
knowledge of a.3. Although (3.5) reveals that ~3 has to be
solved self-consistently, we argue that this self-consistent
procedure is needlessly sophisticated compared to the ap-
proximations already made. Indeed, in Fig. 2 we show
the 30 noninteracting screening length, calculated both
self-consistently (z3„, ) with (3.5) and not self-consistently
(~3„),where

2

v{r)= exp( 113r ), —
4me3r

(3.4)

(3.5a)

with x3 the inverse screening length in 30, which obeys
~ 1/2

2 dn~i(EF )
K3-

E3 dEF

10

Ip
-1

10

—T = 300K
--- T = 200 K
-- T = 100K
--- T = 50K
~-- T=10K

or, worked out,

df FD(E —Ep)
p(E) dE, -

—oo F

where f FD{)x=[1 +ex(px/&k)T] ' is the Fermi-Dirac
distribution function. At this point, we have the problem
that (2.7) diverges for the screened Coulomb potential
(3.4) because all semi-invariants (A5) of order higher than

10'

10
10 1 p17

1
018

-3
Dopant concentration n (cm )

1 019

FIG. 3. The relative difference 6~3„/v, „, vs doping concen-
tration for different temperatures.
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„='k.3
3m2

(3.7)

Plugging the Hartree 3D expression for the exchange
(3.1) into (2.9), we find

We still have to determine the interacting inverse
screening length (at T =0 K). If the E(k) relation is iso-
tropic, the number of carriers at zero X equals

8xlO 19

—p~(E—p3 (E
--- p3;(E

6 —n=510
T=OK

fl 2 e
EF kF kF e

2m 4~ e

kF= 1

7Tag

Solving this equation for kF results in

I 24
7Tag m

1/2

(3.8)

(3.9)

-0.1 0.0 0.1

Energy (eV)

0.2 0.3 0.4

Substituting (3.9) into (3.7) and using (3.Sa) not self-
consistently, we find the zero-temperature inverse screen-
ing length for the interacting system

2kF
K3I—

a~kF 1. — (3.10)

A comparison with the noninteracting DOS and free-
electron DOS, shown in Fig. 4, shows the supplementary
downwards shift due the electron exchange,
b,E,„=(3e /16m e3)kz. Besides the low-energy band
tail, a stronger nonparabolical behavior around the Fermi
level is observed. At high energies, all DOS functions
tend to the free-electron DOS.

equation or equivalently from (2.8) with (3.3) in 2D, yield-
1ng

2

u(r) = Ko(lr2r),
27762

(4.1)

where Eo(x) denotes the modified Bessel function of zero
order and ~2, not self-consistently,

FIG. 4. A comparison between the DOS and the corresond-
ing Fermi levels for the unperturbed [p3, (E): free electron], the
noninteracting [p,„(E): Kane (DOS)], and the interacting
[p3;(E)] electron system for n =5X10" cm ' in GaAs. The
Hartree exchange shift equals AE,„=13.8 meV and agrees with
+F3n +F3i

IV. THE NONINTERACTING 20 FERMI GAS me 1

1+exp(E+ /kz T )
(4.2)

Assuming a noninteracting system [A'X(k, E)=0], the
potential energy u(r) is readily obtained from the Poisson

I

The charge density, neglecting self-consistency, equals,

mk, T FQy(r)=e 5(r)+ 'ln 1+exp
k~T

—ln 1+exp
Ez +u (r)

on

k, T (4.3)

which is perfectly linear in u(r) at T=0 K and almost
linear if E~ /k~ T) 1 (equivalent to a doping concentra-

on

tion )2. 5X10" cm in GaAs at 300 K), a condition
very well fulfilled in the study of band tails. Hence, the
Poisson equation is linear at T =0 K, perfectly satisfying
the required linearity for P ( V). For a 2D noninteracting
system, the SA clearly is best suited. Within the SA, all
impurity densities are exactly treated, in contrast to 3D,
where only the HDL is properly described through
linearization of Poisson's equation. Equation (2.1) then
reads

2~e2E
E Q

2 (4.5)

and a dimensionless density,

which demonstrates that p2„( —~ ) =0, pz„( ~ ) =m /nR
and that p2„(E) continuously increases from 0 to m /vrfi,
since P(V))0. The analytical expression for the 2D
DOS is obtained after performing one integration invok-
ing the relation jo"e '"'du =( I/it)+F5(t) and reads as
a function of a dimensionless energy,

p2„(E)= 2 f P(V)dV,
~A

(4 4)
27Tn 2

2
~2n

(4.6)

p2„(E*)= — 1+ . f dt —exp iE*t +v f drr I exp[ —it%&(t)]—1]
2m% m —~ t 0

(4.7)
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n = f dx fFD( —(x+EF«))f dt pp(t)P( —(x+t))
0 0

+ f ™dEf„D(E E—F,„)f dt pp(t)P(E t)—. (5.3)
0 0

For energies above the unperturbed band edge (E )0),
pp(E) varies much more slowly than P(E), which is
peaked as a Gaussian (A9), justifying the following ap-
proximation:

f pp(t)P(E t)d—t =p, (E)f P(E t)dt—.
0 0

For sufficiently high energies, we have to an excellent ap-
proximation

f P(E t)dt=—f P(E t)dt =—1 .
0 OO

and is shown in Fig. 5. The unperturbed Fermi level in
dimensionless quantities is found to be EF*,=v combining
(4.5), (4.6), EF, =(iii /2m)kF„kF, =+2nni, and
K2„(0)= (me /mh' e2)' . In the HDL (see Appendix A),
invoking (4.5) and (4.7) reduces to

p2„(E)= 1+erfI E
2~6 cr2„2

(4.8)

FIG. 5. The normalized p2„(q }= (M /m )p~„(E*
), where

g=(E*—v)/&v for different dimensionless densities v. Apart
from the HDL, an asymmetry of the step round E =0 is ob-
served.

Hence, for sufficiently high energies, the distribution
function P ( V) may be approximated by a Dirac function
6( V), yielding

dtpOtP E —t =pOE (5.4)
0

Substitution of (5.4) and (5.2) in (5.3) gives

pp(E) I fFD(E EFon ) fFD(E EFtn ) jdE
0

= J dx f dt pp(t)P( —(x+t))f„D(—(x+EF,„)) .
0 0

(5.5)

In the HDL, the Fermi level lies in the conduction band
(EF)0), providing a simplification for the right side of
(5.5) as

where f„D(—(x +EF,„))= 1 (5.6)

e2 n
OZn 2E'2K2„'JT

1/2

(4.9)

Physically, the DOS (4.7) may be used to explain the
asymmetry observed in absorption data of doped quan-
tum wells. For a pure 2D system, however, it is not pos-
sible to calculate the purely 2D Hartree-Fock exchange
energy as it diverges.

V. AN ESTIMATION OF BGN
PURELY DUE TO BAND TAII ING

The tailing of the DOS induces a Fermi-level shift
REF =EF,„—EF,„. The indices indicate that we confine
ourselves to noninteracting systems. Assuming complete
ionization, both introduced Fermi levels are easily cal-
culated from the impurity concentration n, preserving
electrical neutrality, as

n =n.]
= J p(E)fFD(E EF,„)dE-
= f p(E)f„D(E EF,„)dE-

+ f p(E)f„D(E EF,„)dE, —(5.1)
0

where EF„denotes the Fermi level using the tailed distri-
bution, whereas EF,„ is defined by

n = f pp(E)f FD(E EF „)dE (5.2)
0

Combining (2.1) and (5.1), we obtain

for all x )0.
In general, the e6'ect of tailing is relatively small, so

that REF =EF,„—EF,„ is small. A first-order develop-
ment of f„D(E EF,n ) fFD—(E EF—«) is the—refore ade-
quate, reducing (5.5) to

EF p0 E FD E EF„dE
0

= f dx f dt p, (t)P( —(x+t)) . (5.7)
0 0

Integrating the right side of (5.7) by part, defining

Mp(E) =f pp(t)dt,

and applying (3.6) not self-consistently, we find

REF=, f dt M, (t)P( t) . —
ev

(5.8)

Invoking (A12) finally gives the desired estimate for b,EF,
2

REF = —f dt Mp(v 2rrt)exp( —t ) .
eK' &~ (5.9)

X exp

(5.10)

In two dimensions, only two approximations, (5.4) and
(5.6), lead to

EF2..
AEF2 =EF2on ka T ln . 1 +exp

k~T



GENERALIZED SEMICLASSICAL MODEL FOR THE DENSITY. . . 12 827

P(t)=exp n fdR(e '"' "—1)

10

&I

Zc

dd(t) i—n dR u(R)[e "' "P(t)],
dt

(A2)

and after taking the inverse Fourier transform of (A2), we
obtain an integral equation for P ( V),

from which all possible moments of the potential
fluctuations are deduced, because ( V"(r) )=f" V"P(V)dV=i "P'"'(0) DifFerentiating (Al) yields

10 n f dR u(R)P( V —u(R))= VP( V), (A3)
10 10 1018

-3
Dopant concentration n (cm )

1Pl9

FIG. 6. The EEF3 in GaAs vs doping concentration for
di6'erent temperatures. It should be stressed that REF, is only
valid at the high-density region (n3 &a& ), as clearly demon-
strated by extrapolations to low doping regions.

which first appeared in one dimension in the work of Lax
and Philips. '

Here we are mainly interested in asymptotic forms of
P( V). One observes that lim„oP( V) =5( V). The HDL
is somewhat more complicated. ' Expanding the argu-
ment of (Al) in a power series, we obtain

P(t)=exp g b
( it)—

m!
(A4)

while the zero-temperature b,EF2(0)=a 2„(0)/&2~ varies
as a square root of doping concentration.

Formula (5.9) is calculated for GaAs in 3D and is
shown in Fig. 6. Values of BGN in the literature indi-
cate that the maximum band tailing contributes to BGN
at T=0 K for approximately one seventh of the rnany-
body interactions.

In the validity region (HDL), BGN due to band tailing
barely depends on temperature, a feature that seems to
characterize the complete BGN. Estimations of the
band-tailing effect in InSb„As&, which exhibits a
strong nonparabolicity, are discussed elsewhere. ' We
have built this formula (5.9) into a device simulator in or-
der to extract inAuences of band tailing on the perfor-
mances of recent bipolar transistors. Usually, the
band-tail effect is neglected because it has a smaller im-
pact than does the BGN. We showed, however, that for
heavily doped devices, majority band tailing is too
significant to neglect.

VI. CONCLUSION

We have demonstrated that both the band-tail effect in
many-body interactions in different dimensions can be in-
cluded in an analytical model. Despite the semiclassical
approximation, the model is simple and very appropriate
for majority carriers.

Notwithstanding its unrealistic properties, a 2D system
turns out to be best described by our model, since P( V)
converges fastest to a Gaussian, and the superposition
principle for the potential is best satisfied. In order to es-
timate the Fermi-level shift due to the random distribu-
tion of impurities, an analytical expression is given, that
may easily introduce the band-tail effect into device simu-
lators.

APPENDIX A: PROPERTIES OF P ( V)

The distribution function P( V) can be written as the
Fourier transform of a characteristic function

where b is the mth semi-invariant of P ( V),

b =n fdRu (R) .

Defining

(A5)

(A6)

we can write P ( V) as

QO 0' 2

P( V) = exp ixo t —— t
2& oo 2

Xexp g b dt .(
—it)
m! (A7)

If all semi-invariants exist, then P(t) is an integral com-
plex function, which can be expanded as a power series in
t, converging for all finite t. Thus, we can write

exp g b
( —it)

m! ck(itcr )" .
k=0

(AS)

2 "
H& — exp( —x /2) .27TD'2

We finally obtain

2 /2 C

2m, g k 3
2k/2 " V2

(A9)

where the coefficients ck can be extracted from (AS).
Listed to order ten, we have

The remaining integral in (A7) can be done and written as
a function of Hermite polynomials H of order m,

O'Z. kexp( —ixo t — t )(ito ) dt
27T oo 2

dk
(
—1)" „[exp(—x /2)]&2~o. dx"
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co= &

C( =C2 =0
bs x
525/2

e

b3b4

3!4!o 2 &2

C3—
b3

3!o.
x

3

H9
( 3!)4 929/2

C4-
4t~4

bs

5 to.

c6= 6

C 7

+—
2(3!)

r

b3b4

/I 3t4t
+

6 ~ x + 1 3 s + 4b b b b

6!So. &2 16o 3'5' 2(4!) &2

b b3 4 ~ X

2(3!) 4!32o' &2

b4
+ Hi2(3!)4!64 ' &2

b8 b3bs
C8 —

8
+ +

b2

2(4!)

1 b9 b3b6 b4bs b 3+ + +
[

9! 3!6! 4!5! ( 3!)4

—O(nd ~), (A 1 1)

with p =1—d/4. If we put nd =I. ", where I. is a unit
length, it follows from (A10) and (All) that the second
dimension converges most rapidly. The distribution
function P ( V) clearly converges to a Gaussian

bio b3b7 b4b6 bs b3b4
c&o= + + + +

10! 3!7! 4!6! 2(5!)' 2(3!)24!
~2

P( V)= exp&2~o. 2o' (A12)

The shift bj results from the average potential of the
charged impurities. Due to charge neutrality, however,
this energy shift is exactly compensated by the potential
energy of the electrons, and will be disregarded further.

In order to evaluate P(V) in the HDL where n ap-
proaches infinity, we And after regrouping the terms in
(A9) in increasing negative powers of nd for the dift'erent
dimensions, taking into account that inverse Thomas-
Fermi screening length!rd -O(nd/ '/

),

(A10)

in the HDL, as it should, by virtue of the central-limit
theory.

APPENDIX 8: HDL INVERSE
SCREENING LENGTH

We will prove that the inverse screening length ~, cal-
culated self-consistently will tend to ~„calculated non-
self-consistently. Consider the di6'erence AK between

e' - df FD« —Ep)
p(E) dE—oo dE

x
3!o'2'" ' &2

e df FD(E EFo )

po (0) dE
(82)

2
b4 x b3 X

H4 — + H64!4o' &Z 2'~'(3!)'

Applying (2.1) and developing [dfFD (E EF ) jIdE—
around (E Ez, ) to first or—der, since AEF =(EF, Ez)is-
small (81) reads

po '!o! df pD(E Ep)—
~, = —f f, po( v)P (E —v)d v- dE—oo pO (0) dE

d pD(E Ep ) d pD(E —EF )—
(83)

The first integral becomes negligibly small in the HDL, where EI; &)0, and hence

oo oo - dfFD(E EF)—f, f, po(v)P (E —v)d v po(E)— --dF.
po (0) po (0) dE

oo oo df 2pD(E
—Ep; )

AE~ f f po(v)P(E —v)dv — dE .
po '(0) po (0) dE

(84)
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The approximation (5.4) reduces (84) to

e' - d FD« E—F. )
F i PO dE

(85)

which is very small. Indeed, both b,Ez and the integral are small because [df„D(E FF—, ) ]/dE is a rapidly decreasing
odd function around Ez„multiplied by a slowly varying function around Ez„and integrated over a range sufficiently
far extended around E~, . This completes the proof.
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