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Local approach to calculate total energies in semiconductors
beyond the Hartree-Fock approximation
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We present a method to calculate the total energy in semiconductors. The kinetic, Coulomb, and ex-

change contributions to the energy are calculated exactly within a finite cluster of atoms. The electronic
correlation energy is included a posteriori via a local-density-functional approximation. The calculated
electronic density for large enough clusters of atoms is in excellent agreement with experimental data for
crystals. The method is tested against the H2 molecule with excellent results and then applied to silicon
and interstitial oxygen in silicon. The local aspects of the electronic correlation are discussed in detail.

I. INTRODUCTION

The problem of the calculation of the total electronic
energy in molecules and solids has been addressed from
different approaches in the past decades. The problem is
indeed important since it allows the determination of
equilibrium atomic geometries and therefore the ground-
state properties of the system. The main difhculty in the
total electronic energy calculation is the proper treatment
of the electronic correlations. To handle the calculation
of the correlation energy the most widely used ap-
proaches have been based on the density-functional for-
malism in its local-density-approximation (LDA) ver-
sion. This method presents several important advan-
tages that make it flexible and suitable for application to
many different .and complicated systems. In its more
widespread versions, the LDA not only makes a local-
density approach for the correlation energy, but also the
exchange energy is approximated by a local functional.
The overwhelming successful results obtained with this
approximation are, to some extent, due to the partial
compensation between the underestimated exchange and
the overestimated correlation energy contributions. This
probably is one of the major weaknesses of the method al-
though several attempts, beyond the local-density approx-
imation, have been made to overcome it.

In this work we develop a method in which the kinetic,
Coulomb, and exchange energies are calculated exactly
[i.e., the Hartree-Pock (HF) energy] whereas the correla-
tion energy is calculated by means of the LDA taking
proper account of the self-correlation terms. The
method, which is similar in spirit to the one developed by
Casua and co-workers, ' is applied in this work to clus-
ters although in principle it can be extended to infinite
systems.

This work is organized as follows. In Sec. II we discuss
the method and apply it to the Hz molecule to test it.
Also in this section we calculate the electronic structure
of clusters of silicon atoms within the Hartree-Fock ap-
proximation; once a good electronic charge density is ob-
tained the correlation energy is calculated. In Sec. III the

local character of the correlation energy is discussed in
two specific problems, namely, pure silicon and intersti-
tial oxygen in silicon. Finally, in Sec. IV the conclusions
of the work are summarized.

II. METHOD QF CAI.CUI.ATION

In this section we describe the method of calculation
for two different systems, namely, the H2 molecule for
which exact results to compare with are available and
silicon where only approximated calculations of the
correlation energy are possible.

A. The H2 molecule

To discuss the method of calculation and show how it
works we will concentrate in this section on the H2 mole-
cule in which most of the expressions can be written in
closed form and exact results are available in the litera-
ture.

We start with one 1s atomic orbital per hydrogen atom
of the form

P(r)=(g i~)'~ e

where g is a variational parameter. To solve the H2 mole-
cule in the restricted Hartree-Fock approximation we
construct the bonding molecular orbital

eb( ) rIel(r)+02(r)]I

(2+2S) '

where S is the overlap between the orbitals in the two
atoms. The total energy can then be written as

EHF =Hk+H~+H

Hk, Hc, and H stand for the kinetic, Coulomb, and ex-
change energies, respectively, and have the form

Mk =g P„H„"",
pv

H"" being the Coulomb potential produced by the nu-
clei,
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Hc= ,' g—P„„Pi,(pv~k, o ),

H„=—
—,
' g P„,Pq (pk,

~
vo ) .

pvk, o'

P„are the matrix elements of the density operator, i.e.,

PI v=2+ cpicv& ~

where the c„, is the coefficient of the orbital p in the
molecular orbital labeled i and (pv~ko) ,are the two elec-
tron integrals of the form

(pv~1o )=f f p„(r, )p (r, )~r, —rz~

Xgi(rq)P (r2)dr, dr2 .

With the above basis set the total (electronic plus nuclear)
energy can be written in a closed form as a function of
the atom's separation R. The minimum energy is at
R =0.735 A with an energy of —30.689 eV, the exponent
coefficient g of the ls orbital being 1.19. This is a very
well-known result which, as far as the energy is con-
cerned, is far from the exact value of —31.947 eV. One
can also perform the same calculation using the local-
density approximation. The results for the exchange-
correlation functionals of Gunnarsson and Lundqvist
(CxL) and Vosko and co-workers ' (VWN) are given in
Table I.

One natural way to improve the Hartree-Fock result is
by including the electronic correlation corresponding to
the Hartree-Fock charge density assuming it is close to
the actual charge distribution in the H2 molecule. This
contribution can be easily calculated with the result that,
at the Hartree-Fock equilibrium distance, the calculated
correlation energy is —3. 165 and —2.598 eV for the GL
and VWN density functionals, respectively. If this ener-

gy is added to the above Hartree-Fock result we end up
with a total energy which is much lower than the exact
value. The main source of error of the above calculation
is the fact that we have included, when using the LDA,
the interaction of each electron with itself. This spurious
interaction should be subtracted from the above calcula-
tion. To do this we consider the correlation of each sin-
gle electron in each occupied molecular orbital; this self-

correlation energy is —1.114 and —1.343 eV for the GL
and VWN functions, respectively. In this way the elec-
tronic correlation reads

E,= fp(r)E , [.p(r)]dr — g fp (r)e, [p (r)]dr,
a= f, $

(9)

where p(r) and p (r) are the electron density of the H2
molecule and the charge of one electron in the occupied
molecular orbital [Eq. (2)]. E, stands for the functional of
the correlation energy density.

The result for the total energy is now —31.829 and—32.031 eV for the GL and VWN functionals, respec-
tively. These results are in excellent agreement with the
exact result of —31.947 eV. Also for the binding energy
we obtain the values of 4.629 eV and 4.831 eV, respec-
tively, as compared with the exact result of 4.747 eV.
The LDA also gives good results for the binding energy
of the H2 molecule, the values being 4.79 and 4.91 eV for
the GL and VWN functions, respectively.

TABLE I. Calculated parameters of the H2 molecule along
0

with the exact (experimental, Ref. 5) results. Distances are in A
and energies in eV.

Total
energy

HF
LDA (VWN)
LDA (GL)
This work (VWN)
This work (GL)
Experimental

0.73
0.77
0.76
0.73
0.73
0.74

1.19
1 ~ 17
1.17
1.20
1.20

—30.69
—30.86
—31.40
—32.03
—31.83
—31.95

FIG. 1. Electronic charge distribution in silicon. (a) Calcu-
lated total electronic charge distribution for the Si8H» cluster
for the minimal basis set. (b) Calculated charge distribution for
the SisHl8 cluster for the ten orbitals per silicon atom basis set.
(c) Experimental results of Ref. 10. The units are electrons per
crystal unit cell.
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B. Silicon

The fact that the above method works for the Hz Inole-
cule does not guarantee it can successfully be applied to
more complicated systems. To show the applicability of
the method we describe in this section the results for sil-
1con.

We consider first a cluster of eight silicon atoms in the
tetrahedral coordination properly saturated with hydro-
genlike atoms to simulate the rest of the sihcon crystal.
We perform a complete restricted Hartree-Fock calcula-
tion in this cluster for the valence electrons while the
e6'ect of the core electrons is simulated by a proper non-
local pseudopotential. Since the aim of the method of
calculation is to include the correlation energy by using
the local-density approximation an accurate electronic
charge distribution is needed. In Fig. 1 we show the
charge density obtained for the cluster at the equilibrium
distance (2.31 A) along with the experimental data. ' For
the sake of comparison we present the results for a
minimal basis (one 3s and three 3p) orbitals and for a
more complete ten-orbital basis set (one 3s, three 3p, five
3d and one 4s) used throughout this work. In Fig. 1 it is
clearly seen that a good basis set is needed to obtain an
accurate charge distribution. From this result two im-
portant facts should be noticed: (a) the charge density
obtained with the Hartree-Pock calculation is very close
to the correct charge density, and (b) a finite cluster of
atoms properly saturated reproduces the experimental

electronic charge density of the infinite crystal. To stress
this point we have plotted in Pig. 2 the crystal energy ei-
genvalues distribution obtained from the cluster Hamil-
tonian matrix elements in the manner described else-
where. As we can see the band structure obtained for
the ten orbitals per atom basis with the information pro-
vided by the cluster calculation reproduces fairly well the
Hartree-Fock band structure obtained by other
methods. ""

To calculate the correlation energy we proceed as for
the H2 case. The full correlation energy is obtained by in-
tegration of the density-correlation functional weighted
by the total charge density. This calculation has been
performed using the VWN functional (for the GL func-
tional the results are similar) and for various separations
of the cluster Si—Si bonds. The total correlation energy
is almost constant being —65.716 eV ( —80.255 eV for
the GL functional) at a 2.31-A separation. In order to
take proper account of the self-correlation correction we
have calculated the the correlation energy of each elec-
tron in the different molecular orbitals. In this way the
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FIG. 2. Hamiltonian eigenvalue dispersion vs wave vector
along the crystal main symmetry directions. (a) Results for the
minimal basis set. (b) Results for the ten orbitals per silicon
atom basis.

FIG. 3. Di6'erent contributions to the total energy vs silicon-
silicon distance in the Si,H» cluster. (a) Hartree-Fock result.
(b) Correlation energy after subtracting the self-correlation
terms [Eq. (10)]. (c) Final total energy.
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correlation energy is

OCC

c p(r)sc I p(r) ] X y pn (r )Ec [pn
n

(10)

where the sum is extended to all the occupied molecular
orbitals and p„&r j is e e ecth 1 ctronic charge of one electron
in a particular molecular or

'
rbital n. The second term in

q. (10) is the self-correlation correction. At the
'1'b '

d t nce of 2.31 A the self-correlation energyequilibrium istance o—20.377 eV, which has to be subtracted rom eis . e
of —45. 339 eVa overb esult giving a correlation energy o

ice that the(—48.211 eV for the GL functional). We notice a
self-correlation entails approximately 30%o of the total

The results ofcorrelation energy as in the H2 molecule. Th
s of the siliconthe calculations for different separations o e si

atoms are isp aye ind' 1 d in Fig. 3. The correlation energy

Q = 2.821 e
E, = -1.930 eV

does not depend very much on the atomic separation
near equilibrium [see Fig .3(b)] being larger for shorter
separations of the silicon atoms as in the H2 molecule.
Its main efFect when added to the Hartree-Fock energy is
to shift the equilibrium position to shorter distances, in
this case from 2.31 to 2.29 A.

In order to test the above results for silicon we can
compare them with other calculations. In particular we
can compare wi e'th the results obtained by Ganduglia-

14Pirovano et a . usingl ' sing the local ansatz. To do this we
have to ana yze e

'
1 th intra-atomic and interatomic corre a-

tions, which is done in Sec. III.

HI. LACY.L ASPECTS

Once the total correlation energy is obtained it is im-
portant to study to what extent it depends on the local
charge distribution. For this purpose we have calculated
the partial correlation energy due to partial charge con-
tributions of the total charge. Since we are working with
a local basis set this can be unambiguously defined. We
define the correlation energy related to a set of atoms [s I
as the correlation energy of the electronic charge associ-
ated with that particular set of atoms. The partial charge
reads

Q = 5.972 e
Ec = —4.533 eV

3,g

(b)

n a=), $

P„I')(r)E,[p„t')(r)] dr . (12)

The results of the analysis of the partial correlation ener-

where the summations are over a11 the or
'
itals of the

atoms in t e se sh t
~

~~ The correlation energy associated
with this set would then be

E Is I pIs I r 8 pIs I

L

(c)

FIG. 4. Partial electronic charge distribu
'

ributions and the corre-
(see the text for the de6nitions) ofsponding correlation energies (see

i n. (b)silicon in t e i»sc us e .h S' H 1 t r. (a) Atomic charge contribution.
Charge contribution from nearest-ne'gi hbor silicon atoms. (c}

'b t' from nearest- and next-nearest-neighbor
silicon atoms. The units are electrons per bulk silicon unit ce .
The total charge contained in each partial d'~ ~

artial distribution is in i-
cated.

FIG. 5. Total calculated electronic charge d'e distribution at the
vicinity of interstitial oxygen in silicon. e

4 ~ 4

e units are electrons
per bulk silicon unit ce11.
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gy for silicon are depicted in Fig. 4. We obtain a correla-
tion energy per electron in the range of 0.7—0.8 eV. To
study the interatomic correlation we subtract from Fig.
4(b) twice the the value of Fig. 4(a), obtaining for the
nearest-neighbor correlation energy the value of —0.673
eV. With the data of Fig. 4(c) we can estimate the next-
nearest-neighbor correlation energy which is negligibly
small. These results clearly show the local character of
the correlation energy in agreement with previous calcu-
lations performed using the local ansatz. ' ' We can also
calculate the correlation energy per silicon unit cell
which gives the value of —6.812 eV as compared with
—7.425 eV obtained by Ganduglia-Pirovano et al. ' us-
ing the local ansatz. This is remarkable agreement con-
sidering the difFerence in the basis set used in the calcula-
tions and the difFerent approaches used. Also we can cal-

Q = 5.927 e
E, = —6.180 eV

culate isolated atomic silicon which gives a correlation
energy of 2.624 eV (4.816 eV total correlation and 2.192
eV self-correlation correction) as compared with the
value of 2.448 eV as quoted by Ganduglia-Pirovano et al.
The agreement of the above results stresses the appropri-
ateness of our method of calculation and the need for the
self-correlation corrections.

In the same spirit we have analyzed intersitial 0 in sil-
icon. The structure of the puckered Si—0—Si bond has
been discussed elsewhere. ' In Fig. 5 we show the total
electronic charge near the oxygen atom. In Fig. 6 we
show the correlation energy contributions of the difFerent
partial charges. We first notice that the energy correla-
tion per electron at oxygen is about 1.04 eV which is
larger than for silicon as corresponds to a higher local
charge density, the correlation energy at the Si—0—Si
bond being —1.958 eV in contrast with the above value
of —0.673 eV of the Si—Si bond.

We can conclude this section stressing the local char-
acter of the electronic correlation in contrast with the ki-
netic and exchange contributions to the total energy. '

IV. CQNCI. UDING REMARKS

2I
2p»:
2py
Gpss:

Q = 1.63ie
Q = 1.131e
Q = 1.613e
Q = 1.548e

E = —1.242 eV
E, = —0.972 eV
E, = —1.374 eV
E, = —1.377 eU

(b)

Q = 4.533 e

E, = —3.371 eV

Q = 11.940 e
E, = —11.257 eV

FIG. 6. Partial electronic charge distributions and the corre-
sponding correlatio~ energies (see the text for the definitions)
near interstitial oxygen in the Si8H&8 cluster. (a) Oxygen atomic
charge contribution. (b) Charge contributions of the two silicon
atoms bonded to oxygen. (c) Charge contributions of the
silicon-oxygen bond. The total charge contained in each partial
distribution is indicated. The x axis is orientated along the
direction joining the two silicon atoms bonded to oxygen. The
units are electrons per bulk silicon unit cell.

We have presented a method to calculate total energies
in semiconductors. The method, similar to the one
developed by Causa and co-workers, ' entails the calcu-
lation of the Hartree-Fock energy adding, a posteriori, the
correlation energy by means of the local-density approxi-
mation. From our analysis we can conclude the follow-
ing.

(i) The method includes exactly the kinetic, Coulomb,
and exchange energies for finite clusters of atoms.

(ii) The Hartree-Fock electronic charge density is in
excellent agreement with the experimental charge density
for crystalline silicon. This warrants the use of this
charge distribution to calculate the correlation energy.

(iii) The use of finite clusters of silicon atoms suitably
saturated provides a very good description of the elec-
tronic states of the infinite crystal.

(iv) In order to get a good correlation energy the self-
correlation of each electron at the difFerent molecular or-
bitals has to be subtracted. This is difFerent from the
self-interaction correction. ' Moreover, the self-
correlation discussed in this work is unambiguously
defined.

(v) The method of calculation allows us to show in a
simple manner the local character of the correlation ener-
gy in contrast to the kinetic and exchange energies. '

(vi) The method as it stands is not fully self-consistent,
with only the Hartree-Fock part being done self-
consistently. Its extension to a fully self-consistent pro-
cedure is conceptually simple and will be considered in
the future.

(vii) The method only allows us to study ground-state
properties; however, quasiparticle energies can be calcu-
lated if a proper self-energy operator is included.

(viii) The extension of the method to study open-shell
problems is possible and is under consideration.
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