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In an earlier paper [Phys. Rev. Lett. 66, 41 (1991}],we calculated both the dielectric constant (e„)and
the nonlinear optical susceptibilities for second-harmonic generation (y' ') in the static limit for A1P,
A1As, GaP, and GaAs in the local-density approximation with and without a self-energy correction in
the form of a "scissors operator, " including local-field effects. In this paper, we expand our presentation
of this calculation. Agreement with experiment to within 15% for the nonlinear susceptibility is demon-
strated where experiments are available (GaP and GaAs); the dielectric constants are in no worse than
4%%uo agreement with experiment. The "virtual hole" contributions are reformulated to avoid large nu-

merical cancellations in the case of near degeneracies. The "virtual electron" terms dominate over the
"virtual hole" terms by about one order of magnitude. Local-field corrections are smaller than the main
terms by about one order of magnitude. The formulas needed to apply a self-energy correction in the
form of a "scissors operator" to this problem are presented. The addition of a self-energy correction re-
quires a renormalization of the velocity operator; a failure to include the velocity-operator renormaliza-
tion leads to a factor-of-2 correction to y' ', destroying the good agreement with experiment. The
neglect of the short-wave charge induced at the second-harmonic frequency is justified. The f-sum rule
and another, related sum rule for second-harmonic generation is well satisfied numerically. For well-

converged results, a plane-wave-basis-set energy cutoff of 9—12 hartrees is required for GaAs, but only
eigenfunctions with eigenvalues less than about 1—2 hartrees need be included. Using a special-points in-

tegration scheme, 10 points are not su%cient, 28 points are typically adequate, and for the material con-
sidered with the smallest band gap, GaAs, 60 special points are marginally desirable.

I. INTRODUCTION

Recently, we presented the results of a calculation of
the nonlinear susceptibility for optical second-harmonic
generation in III-V semiconductors. ' This work followed
the presentation by one of us of band theoretic formulas
for optical second-harmonic generation including local-
field effects. Our work was distinguished from earlier
work in that we predicted both linear and nonlinear opti-
cal susceptibilities from the band structure; i.e., we did
not use linear-response parameters to predict nonlinear
response. The III-V semiconductors AIP, A1As, GaP,
and G-aAs are a good choice because they are among the
simplest real substances for which second-harmonic gen-
eration in the bulk is allowed. Moreover, they are the
parent compounds of certain celebrated semiconductor
heterostructures. Extremely large values of the nonlinear
susceptibility for second-harmonic generation have been
observed in Al-Ga-As heterostructures recently.

In Ref. 1, the response calculation was based on a
Kohn-Sham local-density-approximation band structure,
corrected for self-energy effects by a "scissors" opera-
tor. ' That is, our Hamiltonian is

~LDA +y ~LDA +g Pk k k k k ck&

where k labels crystal momentum, Xk is a one-electron
term intended to represent the electron self-energy, and
P,k is a projection operator onto the conduction bands.
The parameter 6k, taken to be independent of k, was tak-
en from G8 calculations in the literature. Our calcu-
lation matched the experimental values of the linear opti-
cal susceptibility in Si, Ge, ADP, A1As, GaP, and GaAs
within 4%. For the second-order susceptibility, agree-
ment was found with one set of experimental values
within 15%%uo for the cases of GaP and CxaAs. Various pre-
dictions were made, the most striking being that the
change of the nonlinear susceptibility y' ' with the lattice
constant a, d lny' '/d lna, is some 23 for GaAs in our
theory. (Experimentally, the lattice constant may be
changed by applying hydrostatic pressure. )

The purpose of the present work is to present the de-
tailed formulation necessary to conduct this study, and to
present numerical results which determine the precision
of the present work. Moreover, a mistake was found in
our computer program which affects the earlier re-
sults' ' by up to 3%%uo,

' specifically, we were calculating
2 i tr/a =0.86 (where a is the lattice constant in Bohr ra-
dii) times V&Vi, instead of Vi, Vk. Since the operator
Vk Vk leads to terms nearly one order of magnitude small-
er than those involving p = —i V, this error, while regret-
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table, is not suKciently large to change our understand-
ing. Revised values for Ref. 1 are presented in this re-
port. Qualitative conclusions are not affected by these
modest numerical changes.

II. FORMULA FOR y' ' IN THE STATIC LIMIT

In Ref. 2, the nonlinear susceptibility for second-
harmonic generation in the static limit is given by Eq.
(5.15) with a correction in the erratum. This equation is

reprinted below. In a slight notational shift, all operators
and wave functions are assumed to have phase factorse'"' and e'q' omitted; i.e., In, k) of Ref. 2 is simply Ink)
here. Here, q is the wave vector of the applied scalar po-
tential. The long- and short-wave potentials, given previ-
ously as P'," and P',", are simply P, and iP here. The
phase factor is included so that P is purely real for fre-
quencies less than the band gap. (Note that Pi here is Po
of Ref. 5 divided by the dielectric constant. } The formula
is given in atomic units:

limp' '(2', co, co)= —— j dkg pi( —12Im(nklH, G„kH2lnk)+12Im(nklHiG„kHiG„kHi Ink)
o

' 2 (2~)3 Bz

+61m& nklH, G„'„H,G„'„H, I«&)

+pi(4Re(nklHzG„kplnk) +4 Re(nklHi6„kHi6„kplnk)

+ Io Re& nk IH, G„kyG„'kH, lnk) +2 Re(nklH, G„'kH, G„'kg Ink)

+4(«IH, G„',y'„kG„'kH, I«&+» R.& «IH, G„',H, G„kyl«&

—14& nk I&ink & & «IH, G„'kHi I «& —16& «IHi Ink &Re& «IH, G„'k@Ink & )

+2 Im& nklHi G.k@G.'kg Ink &+4 Im& nklHi G.'kpG. kg Ink &

+21m(nkl@G„kHiG„kplnk) —6(nklplnk)lm(nklH, G„kplnk) . (2)

In the above formula, Hi =q.VkHi„H2 =
—,'q Vkq VkHk,

and G„k=(e„k—Hk) ' is the static Green's operator.
The pseudoinverse is intended, i.e., we project away from
the one-or-more-dimensional subspace of eigenvalue E„i,.
The final result of Eq. (2) is purely imaginary.

As it stands, Eq. (2) is not computationally tractable.
Two occupied states with nearly equal energies will con-
tribute terms of large magnitude which nearly cancel
when summed. These states will contribute large values
to the energy denominator; moreover, the denominator is
raised to various powers up to the fifth in Eq. (2).

In discussing second-harmonic generation, Aspnes'
notes that it is useful to divide each spectral sum into
conduction and valence parts. In the present notation,
we let

G.i =~.ko.i+~.k& i

where J', i, is the projection operator onto the valence
bands for crystal momentum k. (Obviously,
1 =P,k+ P,k. ) For the formula Aspnes considered,
which is equivalent to the second and third terms of Eq.
(2), the terms were classified as uuu, uuc, or ccu according
to whether they had zero, one, or two unoccupied states
in the spectral sum. We extend this notation to include
uv and cu terms for the cases where there is a single
Careen's operator in the matrix elements. Aspnes noted

Gnk Gmk ( Enk+ emk)GnkGmk (4)

is used repeatedly to cancel apparent divergences in the
energy denominator. The 10th, 11th, and 15th (i.e., last)
terms of Eq. (2) turn out to be just what are needed to
release the restriction nWrn on the double summation.
The result is

that the uvv terms vanished for his formulation; they and
the uv terms vanish here as well. Here, we only give the
essential relations needed to establish this relatively sim-
ple result. Time-reversal symmetry guarantees Ink) = n—k)*, s„k=c.„k, (nklH, Im —k) = —&m —klH, n
—k), and (nklH2lmk) =(m —klH2ln —k}. Before
summation the individual uu and uuu terms can be very
large, so this is an important result numerically.

Additional analytic cancellations may be achieved by
considering the uuc terms. " We just sketch this long and
elementary derivation here. Aside from the first and
fourth terms, each term in Eq. (2) has two Green's opera-
tors. To obtain the vuc term, one Green's operator
should be restricted to the conduction band, and the oth-
er to the valence band. A double summation over the oc-
cupied valence states arises, with the restriction that
num. Terms may be simplified by interchanging dummy
indices. The relation
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limy' 'I,„,(2', co, co)= ——g(E„I,—e k)Im[(nkIH, Imk)(mkIH, (66„qG k+96„kG q+66„kG k)H, Ink)]

+Re[(nkIH, Imk)(mkIH, ( —76„qG q
—26„kG q

—76„kG q)qbInk)]

+Re[(nkI+Imk)(mkIH, ( —56„qG q
—46„qG q

—56„qG j, )H, Ink)]

+(E„z—e z)lm[(nkIH, Imk) (mkIqbG„&G zqbInk) ]

+Im[(nk yImk&(mkIH, ( —26„'„G.„—46„„6.'„)yInk&] . (5)

The full term lim oy' '(2', co, co) is the sum of the Uuc

terms given by Eq. (5) and Eq. (2) with each Green's
operator restricted to the conduction bands which give
the cU and ccu terms. We have implemented these equa-
tions in our computer program.

III. SUM RULE FOR SECOND-HARMONIC
GENERATION

In linear response, the well-known f-sum rule for crys-
tals ensures that the static limit of the long-wavelength
dielectric function is finite for an insulator. An analogous

I

I

result for the nonlinear susceptibility for second-
harmonic generation is required to prevent a divergent
response in those terms which are first order in the local
field P. (Terms which are zeroth and second order in P
are nondivergent in the static limit even for a metal. )

Equation (2) is valid only for insulating systems.
The number density defined by

U

p„(r)= g (nkIr&(rInk)
n

obeys

—,'q Vz[q. V~k(r)]= g 2 Re((nkIr) (rI6„~H2 Ink) )+2 Re((nkIr) (r G„t H, G„kH, Ink) )
n

+ (nkIH, G„kIr) (r G„&H, Ink) —2 Re((nkIH, Ink) (nkIr) (rIG„kH, Ink) )

+(nkIr)(r nk)(nkIH, G„'~H, Ink) (7)

for values of k not on the Fermi surface; this class of
point includes all k in the Brillouin zone in the case of an
insulator. In deriving Eq. (7), the wave function is ex-
panded to second order' via

Ink+q& = Ink&+G. ~H& Ink&+G, gH2Ink&

+G„,H, G„„H,Ink)
—6„'„H,Ink) (nkIH, Ink)

—,'Ink&(nkIH, G„',H, Ink&+O(q')

and the parts second order in q in the square of the wave
function are collected. The penultimate term of Eq. (8) is
associated with a perturbation-induced eigenvalue shift,
and the final term in the expression above arises from the
"wave-function renormalization constant. "' Recall that
H, is first order in q and H2 is second order in q.

For an insulator, the divergence theorem causes the in-
tegral of Eq. (7) over the Brillouin zone to vanish. [An
analogous argument on —,'q Vz(q. Vke„k) is made to derive
the f-sum rule for crystals. ] Therefore,

0 = f uk y 2 Re( & n k
I
r & & r

I G,gH2 I
n k & )+2 Re( & n k

I
r & ( r

I G,kH ) G, gH ) I
n k ) )

BZ

+(nkIH, G„„Ir)(rIG„kH, Ink) —2Re((nkIH, Ink)(nkIr) (rIG„kH, Ink) )

—(nkIr) (rInk) (nkIH, 6„'„H,Ink) .

Recalling that the operator for the application of the local field is defined to be

y= fdrIr)y(r)(rI,

(9)

(10)

regardless of the form of the scalar function P(r), it is permissible to multiply both sides of Eq. (9) by P(r) and to in-
tegrate over r, yielding

V

0= f d k g 2 Re( n k
I QG„~Hz I

n k ) +2 Re( n k
I PG„&H, G„&H, I

n k ) + ( n k
I H, G„kPG„&H & I

n k )
BZ

—2(nkIH, Ink)Re(nkIPG„&H, Ink) —(nkIPInk)(nkIH, G„&H, Ink);
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this sum rule is required to show that an otherwise diver-
gent term vanishes for an insulator. The term in question
is given by Eq. (5.16) of Ref. 2; the argument given here is
the one promised in the erratum of Ref. 2.

To evaluate Eq. (11) numerically, it is useful to decom-
pose it into its vv, cv, vvv, vvc, and ccv parts. Like simi-
lar formulas, the vv and vvv terms vanish identically. The
cv and ccv terms are represented by the right side of Eq.
(11) with the Green's operators restricted to the conduc-

I

tion bands (first term for cv, second and third terms for
ccv ); of course, under this restriction the right side does
not sum to zero, in general. The vvc term of Eq. (11) is
derived by taking each term in Eq. (11) which has two
Green's operators with one Green's operator restricted to
the valence band and another to the conduction band.
Call this quantity X„,. As there are two ways to do this,
each term contributes twice, leading to

U'f dk y (&nklylmk&&nkla, G„,H, nk&+&nklyG„&a, mk&&mkla, lnk&
BZ

num

+ & «lai mk & & mkla) G.kylnk &+ & nklaiG. gai lmk & & mkl pink &

+&nkla) mk&&mkl&G„~H, nk&+&nkla)G„~&lmk&&mklailnk&)
—2 & n k

I H, I
n k &Re &n

klan'

G, ka) I
n k &

—
& n k I y I

n k & & n k a i G„'~a, I n k &

v

=(e.k —e k) 'I dk y [&nklylmk&&mkla)(G„g —G ~)ailnk&+&nkla) mk&&mkly(G. g
—G i, )ailnk&

BZ

num

+&nkla, lmk&&mk H, (G„k—G y)/Ink&]
—2&nklH, Ink&Re&nkIPG„ka, Ink& —&nklg nk&&nkIH, G„&a, Ink&

v= f dky [ —Re(&nklglmk&&mkla, G &G„,a, lnk&) —2Re(&nklH, lmk&&mklH, G &G„&/Ink&)] .
BZ

(12)

~vvc +~ccv ~cv

I&...I+ &„.I+ I&,. (13)

should vanish; a numerical verification is presented later
in the paper. The quantities X„, and X„are the ccv and
cv parts of Eq. (11), just as X„„given in Eq. (12), is its
vvc part. The factor of 2 is included to make the devia-
tions from 0 more comparable to the quantity Xf —1.

IV. RESULTS

We present our main results in Tables I—IV. These re-
sults were presented and discussed earlier, ' and are re-
printed here largely because of corrections due to a minor
problem found since the last publication. The main con-
clusions to be drawn from these tables are that we are
able to predict both linear and nonlinear response in III-

The expression after the second equals sign is obtained
from the expression after the first equals sign by inter-
changing the indices m and n in the second, fourth, and
sixth terms, and then pairing terms 1 and 4, 2 and 5, and
3 and 6. The next equality proceeds using Eq. (4),
Gn k Gm k Gm kGn k& additional interchanges of m and n,
and noting that the final two terms are just what is need-
ed to extend the sum from g„' „& to g'„. The de-
tailed argument to derive Eq. (5) from Eq. (2) has the
same character as the derivation presented in Eq. (12),
but is roughly ten times as long.

The quantity

V semiconductors with accuracy of 4% and 15%, respec-
tively. This is more accurate than all other published re-
ports of which we are aware. Local-field corrections for
second-harmonic generation are seen to be about —10%
in these materials, which is only a bit larger (in magni-
tude) than the comparable effect for linear response.

We predict values for the changes in linear and
second-harmonic response with respect to changes in lat-
tice constant (i.e., pressure). For linear response, the
values are in reasonable agreement with experiment, con-
sidering that the experiments themselves are not in agree-
ment with each other within their stated uncertainties.
The pressure derivative of the susceptibility for second-
harmonic generation is far larger than had been suspect-
ed previously. We held the self-energy parameter 5k con-
stant while varying the lattice constant a. Such a pro-
cedure is supported by the results of a GR'calculation in
the case of silicon, , but this does represent an assump-
tion on our part.

In Table V, we analyze the various terms which con-
tribute to the nonlinear susceptibility for second-
harmonic generation as a function of the power of the lo-
cal field and the number of spectral sums (1 for cv, 2 for
ccv and vvc). To our knowledge, all previous studies of
the nonlinear optical susceptibility neglect the local-field
corrections given in the columns marked P' and P, al-
though an awareness of the local-field corrections goes
back to the early days of the field. ' These local-field
corrections are the second-order analogues of the well-
known local-field corrections of linear-response
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TABLE I. The static dielectric constant of various III-V semiconductors. When the scissors opera-
tor is applied, 5=0.9 eV for AlP, AlAs, and GaP, and 6=0.8 eV for GaAs. The values of these lattice
constants are given in Table II of Ref. 1. The experimental values are from the static limit of Fig. 1 in
Ref. 24. An energy cutoff E,„, of 12 hartrees was used; for the integration over the irreducible Brillouin
zone, we chose the 28-special-points (Ref. 19) scheme. Four hundred bands were retained, correspond-
ing to an energy cutoff of the spectral sum, E,'„t' =9.2 hartrees.

Lattice
constant AlP AlAs GaAs

With scissors operators,
no vel. renorm. (Ref. 16)

Theory (Ref. 25)
LDA (Ref. 26)
LDA
LDA
With scissors operators
With scissors operators
Expt. (Ref. 24)

Expt.

LDA min.
LDA min.
Expt.
LDA min.
Expt.
Expt.

8.4
8.3
8.3
7.2
7.2
7.4

10.2
9.3
9.5
9.5
8.0
8.1

8.2

9.7
9.8

10.4
8.4
8.8
9.0

11.3

13.0
12.0
12.0
13.7
10.1
11.2
10.8

TABLE II. The nonlinear susceptibility for optical SHG, d = —'y' ', in the static limit for various

III-V semiconductors. d»3 suffices to specify the entire tensor in the zinc-blende system. We use the

standard coordinates for the III-V semiconductors, i.e., the origin is placed at a bond center and the

cation is in the positive octant. Both measurements used the 10.6-pm line; Miller's rule (Ref. 27) sug-

gests a correction of less than 1% to extrapolate to zero frequency for GaP and GaAs which is not in-

cluded here. Parameters of the calculation and the meaning of the lattice constants as in Table I. As

indicated in Fig. 2 and Table VII, increasing these values is likely to increase the value of g' ' by a few

percent.

Lattice
constant AlP

d = —,
'yI2' (pm/V)

AlAs GaP

Bond-charge model (Ref. 2)
Two-band model (Ref. 23)
Semiempirical pseudopotential (Ref. 28)
Semiempirical tight binding (Ref. 29)
With scissors operators,

no vel. renorm. (Ref. 16)
LDA
LDA
With scissors operators
With scissors operators
Expt. (Ref. 9)
Expt. (Ref. 30)
Linear combination of Gaussian
orbitals, adjusted gap (Ref. 40)

Expt.

LDA min.
Expt.
LDA min.
Expt.
Expt.
Expt.
Expt.

38
133

21
23
13
15

10

58
184

34
39
21
24

15

58
157

80

33
60
21
35

41+2
58+9

22

96
226
+17
201
120

80
174
47
86

90+5
151+24

52

TABLE III. The effect of local fields on the linear response and SHG in our calculation. The desig-

nation "long wave" indicates the local-field corrections are ignored. The "total" designation indicates

they are included. d = —'g' '. The results are given for the experimental lattice constant, with the scis-

sors (and all other) parameters chosen as in Table I.

A1P AlAs GaP GaAs

Long wave
Total
Local field (total)

7.80
7.22

—0.08

8.65
8.08

—0.07

9.30
8.78

—0.06

11.70
11.16

—0.05

Long wave
Total
Local field (total)

16.6
14.9

—0.12

25.5
23.6

—0.08

d (pm/V)
39.5
35.1

—0.13

93.4
86.4

—0.08
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TABLE IV. The derivative of the static dielectric constant e„and nonlinear susceptibility for opti-
cal SHG in the static limit y' ' with respect to the lattice constant a for various III-V semiconductors,
calculated at the experimental lattice constant. Convergence uncertainties in the case of GaAs are dis-
cussed in Table VIII. Values of b and other parameters used are given in Table I. Results for other
models were calculated by the present authors taking d lny"'/d lna from our calculation with the scis-
sors operator.

A1P AlAs GaP

Theory (Ref. 25)
LDA
With scissors operators
Ref. 31
Ref. 32
Ref. 33

0.69
0.37

1.97
1.36

d 1ne /d lna

2.68
1.91

1.89+0.24

1.59+0.05

6.1

5.94
4.19

2. 19+0.12
3.13+0.09

LDA
With scissors operators
Miller's rule (Ref. 27)
Two-band model (Ref. 23)
Bond-charge model (Ref. 34)

11.3
10.5
1.6
3.2
2.9

15.0
12.9
4.6
49
2.8

d lng' '/d lna
20.4
17.5
6.6
6.1

2.9

29.9
22.9
13.6
10.2
2.9

theory' ' which were presented recently by one of us.
The dominant term is the long-wave (or P ) ccu term

In agreement with the estimate of Aspnes, ' this term is
about one order of magnitude larger than its vvc counter-
part. The dominance of the long-wave term is seen to
arise from a cancellation of the ccv and vvc terms which
are first order in the local field (t. The extent of this can-
cellation varies from system to system; the magnitude of

the uuc term is 60%, 66%, 41%, and 39% in A1P, A1As,
GaP, and GaAs, respectively, indicating a rough inverse
correlation with the band gap. The cv terms arise purely
from the nonlocality of the pseudopotential; hence it is
not surprising that these are quite small. They do play a
role in obtaining the numerical agreement of the sum rule
for second-harmonic generation, as seen in the final
column of Table V. %'e expect the local-field correction

TABLE V. The terms contributing to the nonlinear susceptibility for second-harmonic generation
(in pm/V) of Eqs. (2) and (5) are analyzed in terms of the contributing power of the local field P and the
type of states contributing to the spectral sum. The experimental lattice constant is used; parameters of
the calculation are given in Table I. See the text for the definitions of cv, ccU, and Uvc. The terms con-
tributing to X~, the sum rule for second-harmonic generation, without the division by the normalizing
denominator of Eq. (13) or the factor of 2; i.e., X' =X,„+X„,+X„„,are given.

A1P
CCU

UUC

total

terms

0.02
15.10
1.48

16.60

P' terms

—0.00
—4 94

2.96
—1.98

terms

0
0.08
0.16
0.25

d —1. ~(2)
2

0.02
10.24
4.60

14.87

—0.03
1.16

—1.13
0.01

A1As cv
CCU

total

0.35
24.18
0.99

25.51

0.00
—6.47

4.30
—2.17

0
0.12
0.16
0.28

0.35
17.83
5.44

23.62

—0.01
1.30

—1.25
0.04

GaP CU

ccv
UUC

total

0.33
36.32
2.88

39.54

0.01
—7.91

3.25
—4.64

0
0.02
0.20
0.22

0.35
28.44
6.33

35.12

—0.20
2.04

—1.89
—0.05

CCU

VUC

total

0.78
89.11
3.56

93.45

0.01
—12.17

4.79
—7.36

0
0.08
0.21
0.28

0.79
77.02

8.55
86.37

—0.15
1.91

—1.68
0.09
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TABLE VI. Illustration of the importance of the velocity renormalization operator. In the "naive"
method, all energy denominators are shifted by the scissors operators —not just the ones that we have
argued should be shifted. The result of this shift is to lead to an underestimate of the dielectric function
and the nonlinear susceptibility for second-harmonic generation as well as violations of the sum rules
for linear (X&) and second-order (X ) response. The experimental references are Ref. 24 for linear
response and Ref. 9 for the second-harmonic response. All calculations are performed as in Table I, us-

ing the experimental lattice constant and the "scissors" parameter. The values of X& for the LDA and
scissors-operator cases are exactly equal.

d (pm/V)

GaP
LDA
With scissors operators
"Naive"
Expt. or ideal

10.4
8.8
6.3
9.0

60
35
20
41

0.9996
0.9996
0.8646
1

—0.022
—0.022
—0.263

0

LDA
With scissors operators
"Naive"
Expt. or ideal

13.7
11.2
7.6

10.8

174
86
42
90

GaAs
0.9985
0.9985
0.8663
1

0.049
0.048

—0.255
0

to be more important for systems with larger unit cells.
Such unit cells support longer-wavelength local fields,
which are easier to excite. The near equality between the
long-wave ccv term and the total answer is, we believe, a
coincidence which will not hold true in other materials.

We illustrate the importance of the renormalization of
the velocity operator [i.e., the inclusion of the term
Vl,(6|,P,|,)] on the calculation in Table VI. Earlier, we
demonstrated that the "naive" use of the scissors opera-
tor (i.e., simply adjusting the every energy denominator
in the perturbation theory expression) leads to a serious
underestimate of the static dielectric constant in the cases
of silicon and germanium overcorrecting the overestimate
of the LDA; moreover, oscillator strength was lost. '

The same effect is seen in Table VI in the cases of Gap
and GaAs: the LDA overestimates e, and the "naive"
scissors operator underestimates it. The "naive" scissors

operator leads to a loss of oscillator strength. The same
effects exist in the second-order coeKcients: the LDA
overestimates g' ', and the "naive" method underesti-
mates it, compared to experiment. The second-harmonic
sum rule is violated by the "naive" use of the scissors
operator.

Huang and Ching' do not include velocity renormal-
ization. Their results for e and y' ' are given in Tables I
and II, respectively. Our results suggest that our suggest-
ed modification of the velocity operator in their calcula-
tion would lead to a much larger reported value for both
E and g' '. As noted in Table VI, we find that e is in-
creased by 50% and y' ' is doubled when velocity renor-
rnalization is restored to the scissors operator. While we
do not fully understand the origin of the difference be-
tween our plane-wave calculation and their orthogonal-
ized linear combination of atomic-orbitals approach, we

TABLE VII. Direct gap (eigenvalues differences) at the I point for GaAs, calculated as in Fig. 1.
The plane-wave cutoff is not stated directly for Ref. 35, but the Hamiltonian matrix is stated to be "of
order 200X200;" using Eq. (14), X~ =200 works out to 5.7 hartrees. Reference 7 has E,„,=6.25 har-
trees. We choose to present the version of the calculations of Refs. 36 and 17, which are closest to our
own: scalar relativistic (i.e., without spin-orbit coupling) and without relaxation of the 3d gallium core.
(More sophisticated versions of the calculation are presented in both of these references. ) Reference 36
performed both a pseudopotential, plane-wave calculation and an LMTO (linear mu5n-tin orbital) cal-
culation. Reference 17 is the FLAPW calculation; the value given is their stated value of 0.31 eV in-

cluding spin orbit plus their stated 0.11-eV gap reduction due to spin-orbit effects. E,„, is given in har-

trees.

E

Present
Ref. 35
Ref. 7
Ref. 36
Ref. 37
Ref. 16
Ref. 18
Ref. 17

1.38

4.32 1.15
0.93
0.67

7.3

0.64
0.48

12

0.485

0.59 (LMTO)

0.42 (FLAPW)

LCAO

1.04
1.21
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TABLE VIII. Numerical test of sum rules and their derivatives with respect to lattice constant. The
values are given for each semiconductor calculated at the experimental lattice constant. The scissors
parameter is chosen as in Table I; other parameters of the calculation are given there as well. Ideally,

Xf is 1 and the other quantities vanish. The compounds are ordered with decreasing energy gap; the
quality of the calculation degrades somewhat as the energy gap is reduced. The eAect of varying the
number of special points is illustrated in Tables VII and VIII for GaAs. A1P, A1As, and GaP are ex-
pected to be less sensitive to variations in the number of special points.

Alp A1As GaP GaAs

Xf
d 1nXf/d lna

Xp
d lnX /d lna

1.0004
—0.001

0.006
0.028

0.9976
—0.001

0.031
—0.003

0.9996
0.005

—0.022
—0.66

0.9985
0.033
0.048
1.56

believe that physical completeness may not have been
achieved in their basis. In Table VII, we illustrate that
our converged value for the energy gap is in agreement
with many other calculations, particularly when the
plane-wave energy cutoff is taken into account. Agree-
ment with the all-electron full-potential linearized-
augmented-plane-wave (FLAPW) calculation' is espe-
cially encouraging. In contrast, two LCAO calculations,
those of Huang and Ching' and Wang and Klein, ' are
close to each other, but over 0.5 eV from the consensus
value for the direct band gap in GaAs.

In Table VIII, we illustrate that the f-sum rule Xf and
its derivatives with respect to the lattice constant are well
satisfied for the four materials of this study. For the
smaller band-gap materials, the lattice-constant deriva-
tive is somewhat more important. The second-harmonic
analogue X is also satisfied, though not as well as Xf.
Table IX illustrates that, in the case of GaAs —the most
troublesome material studied —increasing the number of
special integration points' from 28 to 60 improves the
convergence of the X . (In a study of linear optical
response, Hybertsen and Louie also found an inverse re-
lationship between the size of the band gap and the num-
ber of special integration points required in the series C,
Si, and Ge.) The violation of Xf actually increases, but at
a rather tiny level. The dielectric constant and the non-
linear susceptibility d are apparently within a few percent

of their fully converged values with 28 special points.
Table X tells a similar story about the effect on a varia-
tion in lattice constant: increasing the number of special
points to 60 has a beneficial effect on the sum rules. The
derivative d In@ /d lna is apparently within a few per-
cent of its fully converged value. The second-harmonic
analogue d Ing' '/d lna is a bit more uncertain. If the
improvement of dX /d lna is taken as a guide, the varia-
tion from 28 to 60 special points is probably comparable
to the variation from 60 special points to the converged
limit; hence we guess that the converged value for
d Iny' '/d lna is about 26.

While Tables VII—X illustrate the degree of conver-
gence of our program, they also argue for its correctness
as well. The elementary operations (such as the applica-
tion of the spectral sums or the H& and H2 operators) are
very similar to obtain the sum rules Xf and X as are re-
quired to obtain the final results e and y' '. Given the
long history of poor results in the area of the ab initio cal-
culation of nonlinear optical susceptibilities, we find it
reassuring to have a powerful (though not foolproof)
check on our program's correctness which is completely
mathematical, i.e., independent of appeal to experiment.

As a preliminary, we assessed the convergence of the
total energy and the LDA energy gap (the eigenvalue
diff'erence at I ) for GaAs, as shown in Fig. 1. While a
basis-set energy cutoff, E,„„of6 hartrees may be ade-

TABLE IX. A convergence study of various parameters for GaAs as a function of the plane-wave energy cuto6'E, „, and the num-

ber of special points for the irreducible zone integration. A scissors parameter of 5k=0. 8 eV is chosen and the experimental lattice
constant is used. The convergence of the parameters in GaAs is the slowest of the four semiconductors in this study, owing to its rel-
atively small band gap. Convergence in the number of integration points in the LDA is somewhat worse than the data presented
here. The ideal values for Xf and X~ are 1 and 0, respectively. The reasonably close agreement between the 10 and 28 special points
values of y' ' is partially fortuitous: individual terms which are summed to form g' ' are in worse agreement, but sign cancellations
occur. A 20%%uo uncertainty is a more realistic estimate. E,„, is given in hartrees.

9
12

10 points

12.13
11.93

28 points

11.08
11.16

60 points

10.92

10 points

87.9
84.0

28 points

d = —'y' ' (pm/V)
83 ~ 3
86.4

60 points

84.5

9
12

1.022
1.022

Xf
1.002
0.998

0.993 9
12

0.331
0.335

X
0.075
0.048
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TABLE X. Continuation of convergence study for the derivatives of the parameters for GaAs given
in Table VII with respect to the lattice constant a. The derivatives were calculated using two-point
finite differences at +0.4%%uo of the experimental lattice constant. Ideally, deaf/d 1na and dX~/d lna
vanish. E,„t is given in hartrees.

28 points 60 points 28 points 60 points

9
12

4.10
4.19

d in@ /d lna
4.18 9

12

d lny(2)/d lna
22.8 24.4
22.9

9
12

0.029
0.033

deaf /d lna
0.004 1.33

1.56

d X~/d lna
0.70

quate for convergence of the total energy, at least 9 har-
trees is required for convergence of the direct gap, which
is a prototype for the optical properties. We performed a
more comprehensive convergence study, illustrated in
Figs. 2 and 3. In addition to E,„„we introduce E,'„,', the
eigenvalue cutoff of the spectral sums. (These eigenvalues
are absolute values from the Hamiltonian; the valence-
band maximum eigenvalue is 0.314 hartrees in GaAs with
28 special points and E,„,= 12 hartrees. ) In Fig. 2, we in-
crease E,„„keeping all the bands in the spectral sums. In
Fig. 3 we choose one high value, E,„,=12 hartrees, and
vary the energy cutoff E,„, for the spectral sum. The
number of plane waves used may be approximated by an
elementary argument of counting states in the free-
electron gas. ' The result is

x=, vz,'/,', (14)
37r2

hartrees. V=305ao for GaAs at the experimental lattice
constant. The same formula gives the number of states
retained in the spectral sum as a function of E,'„,'.
Whereas a high value for the energy cutoff' (perhaps 9
hartrees) is required to get good convergence in the
values of e and y' ', a much lower value, as little as 1

hartree, suKces for E,'„,'. Indeed, for the dielectric con-
stant, almost the whole contribution comes from the first
state or two included in the spectral sum. Our suggested
value of E,'„,' of 1—2 hartrees is in agreement with the
findings of the convergence study of Huang and Ching
in the end, Huang and Ching' suggest 28 eV or 1.03 har-
trees for a reasonably converged value of what we call

(sp)

Increasing the energy cutoff E,„, has two roles: it in-
creases the number of eigenstates, and it leads to an im-

where V is the unit-cell volume in ao and E,„, is given in 10o E t=12,'hartrees

10o e = G~p

10 ~

O4
e 103
Q

& ao-~

10-5

10 7

10-5
I

6
E,„q (hartree)

FIG. 1. The relative error in the energy gap and total energy
for GaAs calculated at the experimental lattice constant for
various values of the energy cutoff' for the plane-wave basis E,„,.
The self-consistent potential is found using the 28-special-points
quadrature {Ref. 19). We extrapolate to infinite energy cutoff by
applying the Shanks procedure {Refs. 38 and 39) to the three
data points with largest values of E,„,.

~,~t. (hartre e)A~)

Flax. 2. Values of e„(E,„,)/[e„j —1 (solid line),
Xf(E,„,)/[X&I —1 (dotted line), y' '(E,„,)/[y"'J —1 (dashed
line), and [1+X (E,„,) j/[I+X I

—1 (dash-dotted line) for the
case of GaAs with the 28-special-points integration scheme.
The asymptotic value was estimated by applying the Shanks ex-
trapolation procedure {Refs. 38 and 39) to the final three data
points; the notation [ I represents this extrapolated value. We
extrapolate only on E,„,; to find the converged value within the
theory, it would be necessary to make an extrapolation on the
number of integration points as well.
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10o

io-4
I

6
E,„t(hartree)

FIG. 3. Values of e„(E,'„",')/[e„ I (solid line),
X/(E,"„,')/[X/I —1 (dotted line), y' '(EI'„t')/[g' ') —1 (dashed
line), and [1+2 (E,'n, ')]/[1+2 I

—1 (dash-dotted line) for the
case of GaAs with the 28-special-points integration scheme.
The asymptotic limit was estimated as in Fig. 2, except here we
extrapolate on the E,'„",' variable; we vary E,'„,' at fixed E,„, and
a fixed number of integration points.

proved description of the low-lying eigenstates. The
latter eFect is more important: the calculation is best per-
formed with a relatively limited number of well-
converged eigenstates. Symbolically, it is sensible to con-
sider both E,„, and E,'„P' because in practice it is reason-
able to compute under the condition E,'„P' «E,„,.

Notice that we are not able to converge the value of
y' ' as a function of E,"„",' to better than a few parts in
10 . Our extrapolation procedure does not give an ob-
viously improved result on the data at hand for y' '. The
terms contributing to y' ' have a somewhat complicated
structure, being the sum of eight di6'erent terms of vari-
ous signs; these are illustrated in Table V. Moreover,
each term may be composed of terms of varying sign, in
contrast to the simpler situation for e . For example, the
largest term (which is of the type P and ccu) itself comes
to a maximum near E,„,=E,'„",' and then comes down by
a fraction of a percent for the study shown in Fig. 3, as
well as corresponding studies we carried out at E,„,=6
and 9 hartrees.

renormalization of the velocity operator.
We demonstrate computationally preferred forms for

the nonlinear susceptibility for second-harmonic genera-
tion in the static limit. Specifically, the so-called "vvc" or
virtual-hole terms are combined into formulas which
avoid numerical cancellations which might otherwise be
present. The formalism required to apply a self-energy
correction in the form of a "scissors" operator in
second-harmonic generation is presented in detail.

We numerically verified the f-sum rule and a second-
harmonic analogue derived recently by one of us. In
verifying these sum rules, we help verify the overall
correctness of our computer program and help to esti-
mate the errors in the computation associated with, for
example, the number of integration points chosen. We
find that 28 special points are usually adequate, but that
materials with small band gaps tend to require more
points.

We tested the result as a function of various conver-
gence parameters. We find that having a couple dozen
very-well-resolved states at each k point is su5cient to
converge the second-order susceptibility y' '. A few
states is sufhcient for e, but states of energies up to
perhaps 1 or 2 hartrees are required for y' '. We find that
the total energy converges more quickly than the direct
gap; underconverged calculations will tend to have ener-

gy gaps which are too large compared to the fully con-
verged LDA results.

The most physically striking prediction we make is
that g' should change by about 25% for each 1%
change in the lattice constant of GaAs. Our prediction is
much larger than that of simple models proposed earlier.
We hope that a measurement of this quantity will be
forthcoming.
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V. CONCLUSIONS

We have performed a series of highly accurate calcula-
tions for the linear optical susceptibility and nonlinear
susceptibilities for second-harmonic generation in a series
of III-V semiconductors. A preliminary report of this
work has appeared. ' We find that correcting the Kohn-
Sham local-density approximation by a self-energy term
in the form of a "scissors operator" is an accurate and
effective way to describe both linear and nonlinear
response. This extends our earlier work ' on linear opti-
cal response to nonlinear properties. The present numer-
ical work confirms our thesis that the introduction of a
self-energy term in the Hamiltonian leads to a required

APPENDIX A: SCISSORS FORMALISM FOR SHG

In this appendix, the formulas needed in this calcula-
tion which are specific to the "scissors" Hamiltonian of
Eq. (1) are derived and presented. We may write

H, =H, +q V'k(bkP, k)

Hl +(q ~k~k)Pck ~k X nkH1Pnk+ nkH1 nk &

(A 1)

where P„k=
~

nk ) ( nk~ is a projection operator. Consider
the restriction of H i to the valence bands:
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Puk l uk g ukgnk ] nk+ nkH]gnk uk

PukH] Puk g mkgnkH] nk+ mkH] mk mk

Equation (A6) is written in terms of known LDA opera-
tors and hk and so is computationally tractable.

When Hl appears in the "middle position" of a matrix
element, it is useful to make the decomposition

H, =P«H, P,„+P.kH, P«+P, kH, P,k+P', kH, P,k .

vk 1 vk &
=P, H'DAP, ,

using the relation

(mklg„kH] Ink) = —(mklH]g kl«& .

(A2)

(A3)

(A7)

The terms in P,kH, P,k form parts of the Uuv terms which
all vanish; this is a generalization of a result due to
Aspnes. ' Clearly,

The final cancellation involves swapping the dummy in-
dices m and n. Also, P«Pvk =0, P«P, k

=P«, and
G„KP„k=0 are used. Equation (2.27) of Ref. 5 demon-
strated

P,„G„„H,Ink)=p G' "H' "Ink) . (A4)

S]nce P,kg„k=p, kg„"k, and P„kG„„=G„„P,„, Eq. (18)
may be generalized to

G„,H, Ink & =P,„G„„H,Ink &+P,„G„„H,Ink)
—p g LDAHLDA

I
n k ) +g LDAp HLDA

I
n k )

p.kH P,k=p, k(H' "+q Vk~k)p, k .

Less clearly, but equally truthfully,

p H p —y p (HLDA g HLDAgLDA )p

—y p HLDAgLDA( H )p

(A8)

(A9)

gLDAHLDA
I

k) (A5)

Equation (A5) was stated, but not proved, in Eq. (2.28b)
of Ref. 5. Equation (A5) may be applied to Eq. (Al) to
arrive at ihe relation

with a similar relation for P,kH, P„k. Equation (Al) is
used to write Eqs. (A8) and (A9).

H2 terms. The projection operator Pnk+q 71 k
+q)(nk+qI may be expanded as P„k+q=P„„
+P k'n+P k'n+O(q ), where

HLDA+( V g )p 2] y gLDAHLDAp

+P H LDAG LDA
nk 1 nk and

P„'k' =q VkP„k =G„kH1P„k+P„kH 1 G„k (A10)

p k 'q Vk(q Vkp k) G kH2P k+p kH2G k+G kH]p kH]g k+G kH]g kH]p k+P kH]g kH]g k

PnkH1GnkH1 nk nkHl nkHl Gnk GnkHlPnkHl nk &
(A 1 1)

are the terms which are first and second order in q, re-
spectively. In writing Eq. (All), we use the expansion of
the wave function given in Eq. (8). The expression

only the combination H2 Ink) is required. Applying the
terms in the expansion of the projection operator to

Ink�)

leads to

H2 =—'q Vk(q V„Hk ) =H2 + —,'q. Vk(q. VkXk) P,„Ink) =0, (A14)

for the scissors form of the self-energy operator
Xk=hkP, k leads us to consider the three terms in

P,'k'Ink) = —g (G „H,P k+P kH] G k)Ink)

gLDAHLDA
I

k)

+(q.Vk~k», 'k" +~kp'k . (A13) p HLDAgLDA
I

k) (A15)

Inspection of the equations for the charge density in-
duced at the second-harmonic frequency indicates that

I

m&n

making use of Eqs. (A5) and (A10), and

P,'k'I«& =( —G„kH2 —G.kH]g kH]+P kH]g kH]+G kH]P kH])I«&

+ X PnkH2 GmkH] mkH] PnkH] mkH]+PnkH]PnkH]gmk) mkInk &

mWn

making use of Eq. (All). The relation P,'k] = —g„' P„'k', a=1,2, is used here.
The vanishing of the vv terms implies that we may further restrict our discussion to terms of the form P,„H2 I

n k ):
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P„H2I«& =P„H,""
ink &

—(q ~,~,)P„G.,HI Ink)

+bi,p, k(
—G„I,H2 G„—kHIG„kHI+G, kHIP, I,HI)Ink& bkp, k g G kHIP kHIG kink&, (A17)

mWn

making use of Eqs. (A12)—(A16). Since the wave functions are not changed by the introduction of the scissors operator,
it is permissible to replace the projection operators by their LDA counterparts. If this substitution is made, and, more-
over, the relation

P.k(1 —~IG'k")=P, kg'I "( .I,
—HI )

is used, Eq. (A17) may be written as

P IH ~nk) =P I,G"I, (s k
—H )H ~nk) —(q VI,b, )P kg H, ~nk)

g p gLDAHLDAgLDAHLDA
~

k) +g p (gLDA )2HLDAp HLDA
~

k)

(A18)

+a„P„y G'„"H', P „G„"„"H', "~nk) .
mWn

(A19)

The third term of Eq. (A19) may be divided into two parts, as follows:

p g LDAHLDAg LDAHLDA
~

k ) g p g LDAHLDAp gLDAHLDA
~

k ) g p g LDAHLDAp g LDAHLDA
~

k )

(A20)

The final term of Eq. (A20) and the final two terms in Eq. (A19) may be combined into a simple expression, namely

g p gLDAHLDAp gLDAHLDA
~

k )

+g p (gLDA )2HLDAp HLDA ~nk) +g p y gLDAHLDAp gLDAHLDA
~

k )
mWn

p y (gLDA gLDA )HLDAp ( )
—IHLDA ~nk ) +g p (gLDA )2HLDAp HLDA.

~
k )

p gi DA y gLDAHLDAp HLDA
~

k) (A21)

exploiting the relation (G k
—G„k)(E„I,—E I, ) =G„I,G k. Equation (A21) may be used to simplify Eq. (A19) to

P H ~nk) =P, G„(s H)H ~nk) ——(q V'„b, )P, G" H ~nk)

p gLDAHLDAp gLDAHLDA ~nk) +Q p gLDA g gLDAHLDAp HLDA ~nk) (A22)

This version is more robust computationally than Eq.
(A19); it is quite desirable to have the same analytic for-
mula whether or not eigenstates are degenerate. We re-
gard the first two terms of Eq. (A22) as cu, the third as
ccv, and the final term as vvc. To date, our numerical
work has considered only the k-independent scissors
operator, i.e., Vkhk=0.

2M G~~ =G 6~~~
c

the "forced-wave" solution may be written as

4mEG=, XMGGPG .

(B2)

(B3)

APPENDIX 8: NEGLECT (3F SHQRT-WAVE
INDUCED CHARGE IN SECOND-HARMONIC

GENERATION

—7' E(r; A) — eE(r;0) = P(r;Q) .0 4~
C C

Defining the matrix

(B1)

In the presence of a nonlinear polarization P(r;0), the
electric field E(r;0) is given by

The electric field may also have a "free-wave" solution
depending upon the boundary conditions.

Measurements of the second-harmonic-gen-
eration coefficient, defined schematically by P(2')
=y' ':E(co)E(co), involves measuring macroscopic elec-
tric fields at 0=2', which are generated by interference
between the free- and forced-wave solutions of Eq. (Bl).
In principle, there is no distinction between the electric
field at the second-harmonic frequency generated from
long-wave (or macroscopic) polarization field or its
short-wave (or local-field) components. Here, we ask the
question: do the short-wave components of the polariza-



OPTICAL SECOND-HARMONIC GENERATION IN III-V. . . 12 793

tion at the second-harmonic frequency affect the macro-
scopic electric fields to a significant degree? Inspection of
Eq. (B3) indicates that this is equivalent to asking: how
large is the off-diagonal coupling of the matrix M?

The diagonal element splitting of M c;6—M oo is nearly
(2m/a ) or greater, where a is the lattice constant of the
crystal. The off-diagonal elements are of the order
EGG.(O /c ) =E&G (2m. /A, ) where A, is the free space
wavelength of light at angular frequency A; typically
coo. is of order l or less for Cx&G'. Since M is diagonal-

M OG

M Gc;
—

Moo

Q
OCr

Such a term should be neglected: the long-wave1ength
response formalism is predicated on the neglect of terms
of order a /A, , which is about 10 for simple crystals and
visible light.

ly dominant, the off-diagonal coupling is of the order of
the ratio

Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 66, 41 (1991).
Z. H. Levine, Phys. Rev. B 42, 3567 (1990);44, 3567(E) {1991).
P. Boucaud, F. H. Julien, D. D. Yang, J.-M. Lourtioz, E.

Rosencher, P. Bois, and J. Nagle, Appl. Phys. Lett. 57, 215
(1990); P. Boucaud, F. H. Julien, D. D. Yang, J.-M. Lourtioz,
E. Rosencher, and P. Bois, Opt. Lett. 16, 199 (1991).

4Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).
5Z. H. Levine and D. C. Allan, Phys. Rev. B 43, 4187 (1991).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. B 37,

10 159 {1988).
SX. Zhu, S. Fahy, and S. G. Louie, Phys. Rev. B 39, 7840 (1989),

40, 5821(E) (1989).
B.F. Levine and C. G. Bethea, Appl. Phys. Lett. 20, 272 (1972).
D. E. Aspnes, Phys. Rev. B 6, 4648 (1972).

' We have evaluated Eq. (2) taking into account (a) just vv can-
cellations, (b) vvv and vv cancellations, and (c) vvv and vv can-
cellations, with the ccv, vvc, and cv terms computed separate-
ly. We find that numerical results using method (a) are al-
most always grossly incorrect, and method (b) is an unreliable
method, but does yield the correct answer sometimes.
Method (c) is strongly recommended.

~~See, for example, G. Baym, Lectures on Quantum Mechanics
(Benjamin, Reading, MA, 1969), Chap. 11. Specifically, Eqs.
(11-20), (11-23), and (11-35) give an expansion for the wave
function in second order. Baym's Vis H, +H, here.
N. Bloembergen, Nonlinear Optics (Benjamin, New York,
1965), p. 69.

S. L. Adler, Phys. Rev. 126, 413 (1962).
~5N. Wiser, Phys. Rev. 129, 62 (1963).

M.-Z. Huang and W. Y. Ching (unpublished).
7B. I. Min, S. Massidda, and A. J. Freeman, Phys. Rev. B 38,

1970 (1988).
C. S. Wang and B.M. Klein, Phys. Rev. B 24, 3417 (1981).
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 {1976).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585

(1987).
2 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,

Rinehart and Winston, New York, 1976), Chap. 2.
22Y. R. Shen, The Principles of Non Linea-r Optics (Wiley, New

York, 1984), p. 68.
D. A. Kleinman, Phys. Rev. 128, 1761 (1962).

24B. Monemar, Phys. Scr. 3, 193 (1971).
25M. Alouani, L. Brey, and N. E. Christensen, Phys. Rev. B 37,

1167 (1988).
S. de Gironcoli, S. Baroni, and R. Resta, Phys. Rev. Lett. 62,
2853 (1989);S. de Gironcoli (private communication).
R. C. Miller, Appl. Phys. Lett. 5, 17 {1964).
C. Y. Pong and Y. R. Shen, Phys. Rev. B 12, 2325 (1975).
D. J. Moss, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 36,
9708 (1987).

oM. M. Choy and R. L. Byer, Phys. Rev. B I4, 1693 (1976).
K. Strossner, S. Ves, and M. Cardona, Phys. Rev. B 32, 6614
(1985).
A. R. Gor|i, K. Syassen, K. Strossner, and M. Cardona,
Semicond. Sci. Technol. 4, 246 (1989); A. R. Goni, K.
Syassen, and M. Cardona, Phys. Rev. B 41, 10 104 (1990).
G. A. Samara, Phys. Rev. B 27, 3494 (1983).

34B. F. Levine, Phys. Rev. Lett. 22, 787 {1969);25, 440 (1970).
5R. W. Ransen and O. F. Sankey, Phys. Rev. B 36, 6520 (1987).
G. B. Bachelet and N. E. Christensen, Phys. Rev. 8 31, 879
(1985).
F. Gygi and A. Baldereschi, Phys. Rev. Lett. 62, 2160 (1989).
F. S. Acton, Numerical Methods That Work (Harper 4 Row,
New York, 1970), p. 216. Acton uses the term "Aitken extra-
polation" rather than "Shanks transformation. "
C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New

York, 1978), p. 369.
E. Ghahramani, D. J. Moss, and J. E. Sipe, Phys. Rev. B 43,
8990 (1991);43, 9269 (1991);43, 9700 (1991)~


