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Calculation of intervalley scattering rates in Al„Ga, „As:Effects of alloy and phonon scattering
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The lifetime broadening of an electron at the bottom of the I conduction-band valley in Al Ga& As
is calculated for 0 ~ x & 1. The parameter-free calculations take into account both electron-alloy scatter-
ing and electron-phonon scattering, with realistic models for the electronic band structures and phonon
spectra. Second-order perturbation theory and the coherent-potential approximation are employed to
evaluate the broadening. Intervalley scattering dominates the contributions to the lifetime in indirect-
gap Al„Ga& „As{x~0.45). The calculations give a fastest intervalley scattering time at temperature 10
K of 16 fs at x=0.81, with approximately twice as many transfers going to the L valleys as to the X val-
leys. Results are compared with lifetime broadenings obtained from spectroscopic ellipsometry, time-
resolved photoluminescence, and Raman measurements.

I. INTRODUCTION

Intervalley scattering of conduction-band electrons in
semiconductors is one of the most important scattering
processes from the point of view of device technology.
With the application of high electric fields, electrons in
ordered or alloy semiconductors may scatter from the
lowest point in the conduction band to higher-lying val-
leys. In general this transfer involves a change in the
effective mass of the electron and thus in device perfor-
mance. Resultant negative differential resistance in some
semiconductors may be exploited to build Gunn diodes. '

On the negative side, scattering to higher-effective-mass
valleys will degrade the speed of ultrafast semiconductor
devices, or prevent the scattered electrons from contrib-
uting to lasing processes in semiconductor lasers.

Much effort has been invested in the study of interval-
ley scattering by phonons in ordered semiconductors;
however, few detailed calculations in the technologically
important ternary alloy Al Ga& As have been per-
formed. Most work on electronic transport in semicon-
ductor alloys has been performed using Monte Carlo
simulations that employ only second-order perturbation
theory in the electron-alloy and electron-phonon cou-
pling strengths and may involve poor simplifying as-
sumptions in the calculation of matrix elements and band
structures in order to reduce computation time. We re-
port here calculations that relax some of the usual as-
sumptions and show where they are inadequate. Our re-
sults should serve as useful input parameters for future
Monte Carlo simulations. Al Gal „Ashas been particu-
larly intensively studied in the past decade for use in op-
toelectronic and fast electronic devices. In contrast with
ordered crystals, alloy scattering inhibits electronic trans-
port and is a significant mechanism for inducing interval-
ley transfers. Here, we calculate the scattering rates for
I —+X, L valley transfers as a function of Al concentra-
tion x. Our calculations are parameter-free in the sense
that no parameters exist that are adjusted to match ob-
served scattering rates (the electronic band structure and

the phonon spectra of GaAs and AlAs are, though, ob-
tained from parameter-containing models). In Sec. II
several methods are discussed for evaluating the
electron-alloy disorder and electron-phonon scattering
contributions to the scattering rate, including second-
order perturbation theory and the coherent-potential ap-
proximation. In Sec. III, a comparison is made with ex-
perimental data for the lifetime broadenings of Eo exci-
tons in Al Ga& As.

II. THEORY AND CALCULATIONS

The general problem of the transport of a nonequilibri-
um and dense electron gas in a finite temperature alloy is
very difficult to treat; however, the consideration of only
intervalley scattering is a significant simplification. In
this section we discuss many-body effects and several ap-
proaches for calculating the scattering rate.

An important point that must be considered is the
question of whether weak-scattering or strong-scattering
methods should be employed to treat the electron-alloy
disorder and electron-phonon scattering. It has been ar-
gued that the comparatively high mobility of electrons
in Al Ga& „Asis an indication that only weak-scattering
takes place (this is mainly a probe of intravalley-
scattering strengths). Moreover, studies of nonequilibri-
um LO phonon distributions generated by means of hot-
electron relaxation indicate that the Raman-active
(zone-center) LO phonons in Al Ga& As are not local-
ized and have well-defined wave vectors. Thus we adopt
a weak-scattering formalism, and for electron-alloy disor-
der scattering compare results obtained from second-
order perturbation theory with higher-order perturbation
effects and the coherent-potential approximation in order
to determine the strength of multiple-scattering correc-
tions. In fact, the concept of intervalley scattering would
be ill defined in the strong-scattering case because the
Bloch electron index k would no longer be a quantum
number. For electron-phonon scattering, only lowest-
order perturbation theory is considered due to the com-
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paratively weak deformation-potential electron-phonon
coupling. Raman spectra ' reveal no structure beyond
the allowed optical phonon modes and the disorder-
activated acoustic and optical modes. We interpret this
as an indication that clustering effects are weak in
Al GaI As, and thus assume a random distribution of
Al and Ga atoms on the cation sites in an otherwise per-
fect crystal.

Strong electric fields or optical excitation by means of a
laser may result in the creation of a nonequilibrium popu-
lation of carriers. If the time scale for the internal carrier
equilibration due to electron-electron and electron-hole
scattering is shorter than the time scale for alloy- and
phonon-induced intervalley scattering, one can assume
that the carriers are in internal equilibrium although they
are not necessarily in equilibrium with the lattice. Under
such circumstances one can employ the "temperature
model" by assigning the electronic distribution an
effective temperature T* and the lattice a temperature T.
The calculations presented here can be used to establish
the validity of the temperature model for various compo-
sition ratios x by comparing the intervalley-scattering
times to the internal carrier equilibration times.

The presence of a dense electron gas will produce a
many-body renormalization of the phonons, which may
result in the phonon spectra1 function displaying addi-
tional branches. However, in semiconductors, this re-
normalization is typically only significant for phonons
with wave vectors extending over less than —,', ——,

' of the
Brillouin zone. Thus, for electron-scattering from the I
to the X or I. valleys involving only a single phonon, this
phonon wi11 be essentially unrenormalized. For large Al
concentration, the I valley lies quite high and some
single-scattering events may involve smaller wave-
vector-renormalized phonons, but the dominant contri-
butions continue to involve only large crystal momentum
changes. Scattering paths involving several sma11 wave-
vector phonons are less probable due to the weak
electron-phonon coupling, and will be further weakened
by free carrier screening of the deformation potential.
Since we treat phonon-induced intervalley scattering by
means of lowest-order perturbation theory, we do not
consider the effects of screening of the phonons. Only the
deformation-potential electron-phonon coupling needs to
be considered, since the long-range Frohlich and pi-
ezoelectric interactions are negligible for the large wave
vectors needed for intervalley transfers.

Electron-electron and electron-hole scattering are un-
likely to provide the large wave vectors necessary to in-
duce intervalley transfers, but the presence of an electron
gas does lead to band-gap renormalization and may limit
the available phase space of final states. The relative re-
norrnalization of the I -L and I -X valley minima is of the
order of 10 meV in highly excited (10' —10' electrons
cm ) Al Gai As, ' quite small, and below the accura-
cy of our calculated band structures; thus it is not incor-
porated into the calculations. Moreover, we restrict the
calculations to experimental situations where negligible
filling takes place in the X or I. valleys (such as with weak
laser pulse methods) so that the final-state phase space is
not limited by band filling.

Our calculation concentrates on a treatment of the
electron-alloy disorder and electron-phonon scattering as
the mechanisms for inducing intervalley transfers. We
first calculate the scattering rate by means of second-
order perturbation theory and later discuss multiple-
scattering corrections. A good approach in an alloy is to
treat scattering with respect to the virtual crystal (VC).
Denoting the VC potential on the cation sites as
Vvc=xV/, i+(1—x)Va„where V/„(r) and Vo, (r) are
the electronic potentials of Al and Ga, respectively, gives
the scattering potentials of the Al- or Ga-occupied sites
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FIG. 1. Electronic self-energies with respect to the virtual-
crystal energies due to alloy scattering in Al Ga& As in (a)
first- and second-order perturbation theory (first-order contribu-
tions cancel); (b) T matrix approximation as discussed in text
(no multiple-occupancy corrections); and (c) coherent-potential
approximation. The solid lines represent the unperturbed Bloch
electron propagators; in (a) and (b) a X above a propagator
represents x times the diA'erence between the Al and virtual
crystal potentials, a X below a propagator represents 1 —x
times the difterence between the Ga and virtual-crystal poten-
tials; in (c) the X's are weighted by P, (x) rather than x above
the propagator and P, (1—x) rather than 1 —x below the propa-
gator, where s is the number of interaction lines entering the X
(P, is defined in Ref. 61); the double solid lines represent self-
consistent insertions of the full electron propagators; and the
dashed lines represent elastic scattering events. The final set of
terms in (c) represents further multiple-occupancy corrections
in the notation of Ref. 62. (d) is Dyson's equation for the full
electron propagator. (e) is an example of low-order diagram not
included in the coherent-potential approximation. The lifetime
broadening is given by 1 „d;,= —Irn g.
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2 (2.2)

The average of the squared scattering potential is there-
fore

where N is the number of lattice sites in the VC, and thus
the first Born approximation for the elastic-scattering
rate of an electron gas may be written as

2I
g e ' ' ~(n;k; ~ VA1(r) —VG, (r)~nfkf )

~
x(1 x)5—(E; Ef )/—Z,Al Ga f f (2.3)

P (E&' Ep )
where Z=g, .e ' '; p*= I/k iTi*; T* is the tem-
perature of the electron gas; E;,Ef are the energies of ini-
tial occupied and final unoccupied Bloch states ~n;k, )
and

~ nf kf ); Eo is the electronic energy at the bottom of
the I valley; and I,& d;, is the lifetime broadening. This
expression incorporates a thermal distribution for elec-
trons, but any appropriate distribution may be used. A
diagrammatic representation of Eq. (2.3) is shown in Fig.
1(a). In GaAs and A1As the recombination lifetime is
much longer than the intervalley-scattering time; thus the
dominant contributions to the lifetime broadening come
from intra- and intervalley scattering. In the absence of
final-state damping" one may compare I,l d;, (plus the
smaller contributions of electron-phonon scattering)
directly with measured linewidths. Thus the main as-
sumptions of our calculations that limit the measured
linewidths to which they can be directly compared are
the absence of final-state filling and damping, and inho-
mogeneous broadening effects (see Sec. III).

We have evaluated Eq. (2.3) for the special case of a
single initial state consisting Of an electron at the bottom
of the I valley; thus contributions to the scattering rate

~nk) = —g c„k(G)exp[i(k+G) r),1

v V
(2.4a)

where V is the volume of the VC,

will arise only from intervalley-scattering processes. The
band structure and wave vectors were obtained in the VC
approximation from local empirical pseudopotentials,
with a basis of 89 plane waves (see also Refs. 12—16).
The scattering potential VA1(r) —VG, (r) was taken to be
the diff'erence between the pseudopotentials of the Al and
Cxa atoms. In earlier calculations, the simplifying as-
sumptions of 5-function' ' or square-well' ' scattering
potentials have been made, but we employ the physically
more realistic pseudopotential scattering potential.
Moreover, most earlier approaches assume a

20-21momentum-transfer independent matrix element,
valid for small momentum transfers, and thus limit their
applicability to intravalley scattering. Here, we evaluate
the matrix elements in Eq. (2.3) exactly.

In terms of the plane-wave expansion of the Bloch
function

( kn, ~ VA, (r) —VG, (r)~nfkf )

g c„*l,(G)[ VA1(k; —kf+G —G') —VG, (k; —kf+G —G')]c„1, (G')e
G, G f f (2.4b)

where y =a (1, 1, 1)/8 is a cation site in a bond-centered
coordinate system, and a is the lattice constant. Several
sets of pseudopotential form factors have been developed
for GaAs and A1As. We employ those of Caruthers
and Lin-Chung since they give good band structures for
GaAs and A1As (see Table I) compared with experiment,
provide a direct-indirect gap crossover of Al Ga, As at
x =0.45 in the VC band structure in agreement with ex-
periment, and have the same form factors for the As
atom in GaAs and A1As. These pseudopotentials extra-
polate to V(0) = —2E~/3, where EF is the Fermi energy
of an electron gas of the same density as the valence elec-

trons; calculations indicate that results are insensitive to
this choice of the lower limit of the form factors versus
V(0)=0. The data in Table I are given so that a
correspondence can be made between the lifetime
broadenings expressed in Fig. 2 as a function of x and the
broadenings as a function of the relative positions of the
I, X, and L valley minima. It also shows that elastic
scattering from the lowest point in the I valley is only
possible to other states in the lowest conduction band,
since the next higher band remains above I &, for all x.
The sum over final states in Eqs. (2.3) was evaluated by
means of the tetrahedron method with a raster of 505
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Valley

I),
L),
Xi,
X3,

1.487 (1.52}
1.776 (1.82}
1.931 (1.98)
2.382 (2.38)

A1As

2.807 (2.90)
2.488 (2.48)
2.224 (2.24)
2.942 (2.89)

kf points in an irreducible 4, wedge of the Brillouin zone.
The calculated alloy-disorder contribution to the
intervalley-scattering rate is presented in Fig. 2 and
marked with "alloy. " The figure shows that the contribu-
tions of intervalley-alloy scattering only occur when
Al Ga, As is indirect (x 0.45); small contributions
due to band tailing for x ~0.45 will be discussed later.

30

total

CA

"a
10—

bond tail
x205—

Schu

TABLE I. Calculated electronic energies in eV (relative to
valence-band maximum) at the minima of the I, X, and L
conduction-band valleys and at X3, (next higher band at X) in
GaAs and AlAs, employing the empirical pseudopotentials of
Ref. 18. The valley energies in the virtual-crystal band struc-
ture of Al Ga& As for any x may be obtained by means of
linear interpolation. Values in parentheses are the best com-
bined theoretical and experimental values (at 0 K) adopted in
Ref. 40.

For 0.45 ~x ~0.51 only scattering to the X valleys is en-
ergetically allowed, but contributions from scattering
paths to the L valleys are permitted for large x. For
0.45 ~x ~0.8, the increasing density of final states dom-
inates the increasing broadening, but for even larger x the
decreasing alloy disorder dominates and leads to the van-
ishing of the broadening at x =1. In Fig. 3 the contribu-
tions of I ~X and I —+L alloy-disorder scatterings are
separated in order to establish the relative scattering
strengths to the two valleys. The stronger contributions
to the L valley relative to the X valley for x ~0.8 arise
mainly from larger matrix elements, although they are
also partially due to a greater density of final states.

Figure 3 also shows the alloy-disorder-induced scatter-
ing rate calculated by means of the commonly employed
expression given in Refs. 20 and 21. To apply this ex-
pression to the present problem, two simplifying assump-
tions must be made. The X and L valleys are assumed to
be parabolic, and the momentum transfer dependence of
the matrix elements is neglected. Here, all input parame-
ters were assumed to take their virtual crystal values.
As can be seen in Fig. 3, the simplified expression agrees
well with our calculation for the peak scattering rate.
However, due to neglect of the momentum transfer
dependence of the matrix elements and the approximate
nature of representation of the band structure, it in-
correctly weights the relative I ~X to I ~L transfer
rates, predicting for all x stronger scattering to the X val-
leys (this can be seen in Fig. 3 by the overall shift of the
curve to lower x values with respect to the curve marked
"sum").

In a manner analogous to the treatment of the
electron-alloy-disorder scattering, the electron-phonon
scattering contribution to the intervalley-scattering rate
may be calculated in the first Born approximation. Most
earlier approaches assume a momentum-independent
deformation-potential interaction and parabolic valleys
by employing Conwell's formula; however, the need to
take the momentum dependence into account has been

0'
0 0.2 0.4 0.6 0.8

Composition Ratio x

1.0

FIG. 2. Broadening of electronic states at the bottom of the
I valley as a function of Al concentration in Al Ga, „As.The
intervalley scattering rate for x ~ 0.45 is given by
~=A/(2 Xbroadening). The solid line marked "alloy" gives the
second-order perturbation-theory result for the broadening due
to intervalley scattering induced by random, spatially extended
alloy potentials. The dashed line marked "CPA" is an estimate
of the same but employing the coherent-potential approxima-
tion with diagonal disorder only. The dashed lines marked "10
K" and "300 K" give the phonon-scattering contributions to
the broadening at temperatures 10 and 300 K. The line marked
"band tail" gives the alloy disorder contributions due to band
tailing of the density of states. The line marked "total" is the
sum of the "alloy, " "band tail, " and "10 K" lines. Individual
points are values from photolurninescence (Ref. 59) (L.) at 4.8
K, spectroscopic ellipsometry (Ref. 59) (R) at 15 K, Raman
(Ref. 60) (} at 100 K measurements, and picosecond lumines-
cence (Ref. 57} (~) at 50 K. The dotted line marked "Schu-
bert" is the calculated curve from Ref. 58.
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FIG. 3. Calculated lifetime broadenings due to electron-alloy
disorder scattering in Al Ga& „As,showing separately the con-
tributions of I ~L and I ~X valley transfers and their sum,
marked "sum. " The dotted line is the broadening calculated us-

ing the expression given in Ref. 20.
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emphasized in Ref. 28. Thus we employ a method similar
to that used in Ref. 28 for intervalley scattering in or-
dered III-V semiconductors, and only discuss here the
differences due to the consideration of an alloy.

The phonon dispersion of Al Ga, As displays two-
mode behavior, ' and has been calculated by a number
of means including the coherent-potential approximation
(CPA). ' We have employed the CPA (Refs. 33, 34) to
calculate the alloy-disorder-induced corrections to the
phonon frequencies of GaAs and A1As, which were ob-
tained from a shell model. Our CPA method is the
same as in Ref. 36, except that the analytic continuation
scheme of Ref. 37 was employed to improve the conver-
gence of the Green's function. The 14-shell-model pa-
rameters for GaAs were obtained from Ref. 38 and the
same parameters, except for the replacement of the cat-
ion atomic mass, were used for A1As. Recent density-
functional calculations and Raman measurements
support this "mass approximation" in obtaining the
shell-model parameters of A1As from those of GaAs.
Large-wave-vector phonons are mainly responsible for in-
tervalley transfers; however, extensive measurements of
the composition dependence of phonon frequencies are
only available for phonons near I; thus, as a check, our
calculations (CPA and shell model) are compared with
phonon frequencies at I in Fig. 4. The figure also shows
that the broadening (hatched area) of TO(1 ) phonons is
greater than that of LO(1 ) phonons, a consequence of the
greater density of states at energies near that of the
TO(I ) branches. This is in agreement with recent super-
cell calculations; ' experimentally, ' LO(l ) phonons
show broadenings of approximately 2 cm ' for various
alloy compositions. %'e have not found published mea-
surements of the TO(I ) phonon broadenings. The CPA
method cannot describe local phonon modes; thus the
calculations for A1As-like phonons for x =0 are poor;
also the CPA results may be poor for the strongly reso-

400—

r„„(T)=—f dQg 8(A)[%(Q)+—,'], (2.5)

where N(Q)=1/[e xp(Q/k~T) 1] is th—e Bose function
for the lattice temperature T, and g 8(0) is the
electron-phonon spectral function. This expression takes
into account both phonon emission and absorption pro-
cesses. As can be seen from Eq. (2.5), at zero temperature
the area under the spectral function is proportional to the
scattering rate. Thus one can determine the relative con-
tributions of the various phonon branches by examining
the spectral function. At finite temperatures the Bose
function will give the lower-energy modes more weight.
The spectral function for several different alloy composi-
tions is presented in Fig. 5.

As a check on our phonon-induced scattering rate, we
fit Conwell's formula to our 300-K scattering rate for

x =0.5
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nant GaAs-like modes near x =1. The scattering rate
was evaluated in the Born approximation in the VC elec-
tronic band structure, including CPA corrections to all
phonon frequencies on a raster of 505 q points in an irre-
ducible 4, wedge in the Brillouin zone, and is shown in

Fig. 2 for temperatures of 10 and 300 K. Due to the in-
elastic nature of electron-phonon-scattering events, their
contributions to the scattering rate become significant
only for larger x than the contributions of elastic-alloy-
disorder scattering events. The inelastic scattering rate
for an electron initially at the bottom of the I valley may
be written as
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FIG. 4. Optical-phonon frequencies at I' in Al Ga& „Asob-
tained (solid lines) from coherent-potential approximation
corrections to shell-model calculations [showing AlAs-like
modes (TO~, LO, ) and CiaAs-like modes (TO2, LO2)], com-
pared with the measured points of Ref. 30. The width of the
calculated lines give the alloy-disorder-induced broadening.
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FIG. 5. Electron-phonon spectral function for various Al
concentrations in Al„Ga& As, including coherent-potential
approximation corrections to phonon frequencies. The GaAs-
like mode contributions are shown with dashed lines and the
AlAs-like mode contributions with solid lines.
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x =1 (pure A1As), and obtain the physically reasonable
value of 10 eV/A for the intervalley deformation poten-
tial. This shows that our results are consistent with ear-
lier, more approximate, methods for ordered semiconduc-
tors.

So far, only scattering within the VC electronic band
structure has been considered. However, disorder
modifies band structures beyond the virtual-crystal ap-
proximation. In a disordered material, the electronic
wave vectors k for extended states are no longer exact
quantum numbers, the lack of exactness depending on
the strength and density of the scattering potentials.
Moreover, the density of extended states may be less than
in the corresponding ordered crystal, with the missing
states contributing to the formation of band tails of local-
ized states within the gap. Thus the density of states
does not vanish at the mobility edge, which will be
rejected in small contributions to the broadening. Pre-
cise calculations of this broadening are dificult to per-
form; but they may be simply estimated by means of the
self-consistent Born approximation:

I„„,=~l(1, 8„„,I, ) I'Rep( —il„„,), (2.6)

where H„,« is the scattering Hamiltonian, I, refers to
the lowest VC conduction-band state at I, and p(E) is
the electronic density of states near the band edge. A di-
agrammatic representation of the self-consistent Born ap-
proximation is obtained from Fig. 1(a) by replacing the
free-electron propagator with the full electron propaga-
tor. H„,«may be estimated from Eq. (2.2), neglecting
the smaller phonon contributions. By letting

I V« —Vo, I

be the difference between the average A1As and GaAs an-
tibonding energies,

1(1',IH... II, &I'=x(1 —x)lo »I' e&'.

The density of states may be estimated by the free-
clcctron expl esslon

p(Z) = V(2m *)'"E'"yI(2~)'r'],

where the effective mass is m*=l0. 067(1—x)
+0.150x ]mo, the free-electron mass is mo, the volume of
a unit cell is V=a /4, and the lattice constant approxi-
mated by the linear interpolation is a =[(1—x)5.639
+x(5.669)] A. The broadenings obtained from Eq. (2.6)
are displayed in Fig. 2 and are marked as "band tail. "
Equation (2.6) describes a Lorentzian decay of the band-
tail density of states, which is an overestimate of the actu-
al exponential decay. In Fig. 2 the band-tail broadening
is plotted for x 0.45; it indicates that this contribution
to the total broadening is negligible.

We next discuss multiple-scattering contributions to
the intervalley scattering rate within the VC approxima-
tion as a check on the accuracy of the second-order
perturbation-theory results. The electron-phonon and
electron-alloy-disorder interactions are only completely
separable in second-order perturbation theory, however;

for simplicity we only consider the electron-alloy disorder
terms to higher orders. For a given type of scattering
center, the T matrix defined by

I/i Il T II/I I II I

nkn, 'k' nk, n'k
n "k" nk n "k"

(2.7)

where V„k„,k, =(nkl Vvcln'k'), describes all multiple-
scattering contributions from a single scattering center.
In order to estimate multiple-scattering corrections to the
intervalley scattering rate, Eq. (2.7) was evaluated for
(n, k) being the lowest VC conduction-band state at I,
(n'k') belonging to the lowest bands in the X and I. val-
leys, and the pseudopotentials Vvc(r) = V«vc(r) or
Vvc(r) Vaa, vc(r) Th br ade ing s given by

d d;,
= —ImlxT«vc+(1 —x)To, vc], and is shown di-

agrammatically in Fig. 1(b). Extensions to this formal-
ism, such as the addition of multiple-occupancy correc-
tions (so that contributions due to, for example, Al and
Ga atoms occupying the same site are eliminated) to ob-
tain the well-known average T matrix approximation, are
discussed in Ref. 48. We find that the magnitude of some
of the T matrix elements may be as much as 7% larger
than the magnitude of the corresponding lowest-order
term elements (V„k„k). This indicates that the second
order in perturbation theory accounts for the bulk of the
single-scattering-center contributions to the transition
amplitude. Unfortunately, computational resources
prevent us from evaluating Eq. (2.7) on a sufficiently
dense grid of k points in order to obtain accurate esti-
mates of scattering rates, but we do obtain this approxi-
mation to the extent that Eq. (2.3) underestimates the
scattering rate. A comparison of the virtual-crystal,
second-order perturbation-theory —corrected, and CPA-
corrected band structures of several other materials is
made in Ref. 49.

We have exhausted our computational abilities to ex-
amine multiple scattering from spatially extended pseu-
dopotentials. However, by considering only diagonal dis-
order a significantly higher number of multiple-
scattering contributions can be taken into account. One
such approach is to evaluate the electronic-state broaden-
ing by means of the CPA. The imaginary part of the
self-energy evaluated at the bottom of the I conduction-
band valley gives an estimate of the lifetime broadening
due to intervalley scattering. This method is impracticai
to apply for scattering from spatially extended pseudopo-
tentials, although off-diagonal disorder can be partially
incorporated by means of the molecular CPA, and mul-
tiplicative off-diagonal disorder as discussed in Refs. 51
and 52. A simple form of the CPA by Chen and Sher
describes scattering from 5-function potentials (no off-
diagonal disorder) equal to the average antibonding ener-
gies of the component compounds (GaAs and A1As). By
averaging over the antibonding states, different chemical
origins of these states (such as s like and p like) and their
different sensitivities to disorder are not taken into ac-
count, but the method does have the advantage of being
very easy to apply. Earlier CPA calculations of the self-
energy of electrons in Al„Ga& As have been reported in
Refs. 46 and 53; however, it is dificult to extract the
broadenings at the bottom of the I valley from these pa-
pers. Therefore, we have employed the method of Ref.
46 to calculate the broadenings, except for using the den-
sity of states obtained by means of pseudopotential calcu-
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lations, to obtain the scattering rates marked in Fig. 2 by
"CPA." The CPA method includes contributions from
the scattering by the full T matrix of each scattering
center as well as some multiple-scattering paths involving
return visits to a given scattering center [see Fig. 1(c)].
IOne can approximately account for the phonon contribu-
tions to the total self-energy by subtracting the phonon
scattering self-energy in the denominator of the free-
electron Green's function, as described in Ref. 54. We
see in Fig. 2 that the CPA estimate of the scattering rate
generally lies somewhat below that obtained by means of
second-order perturbation theory. This may at first seem
surprising, but can be understood to be dUe to the con-
sideration of only diagonal disorder estimated by the
difFerence in the component average antibonding energies
in the CPA method, whereas the second-order
perturbation-theory results include scattering from spa-
tially extended potentials (pseudopotentials).

III. DISCUSSIQN AND SUMMARY

A comparison of the evaluated lifetime broadenings
with measurements (Fig. 2) reveals that the calculation
generally underestimates the broadenings over the entire
composition range of Al„Ga& „As.There is a tendency
for experimental data to overestimate the broadening, as
has been discussed for spectroscopic ellipsometry in Refs.
28 and 55, which may account in part for the discrepan-
cy. The calculated values are also below the upper limits
determined in Ref. 56 from picosecond luminescence
measurements. A simple analysis of these measure-
ments ' suggests that the alloy disorder contributions
are a factor of 2 weaker than the phonon-scattering con-
tributions, although a more thorough analysis of the data
is needed. The lowest-order perturbation-theory results
for the electron-phonon-scattering contributions should
be accurate due to the weakness of the deformation-
potential electron-phonon interaction; however, as dis-
cussed in the preceding section, multiple-scattering
corrections to the electron-alloy disorder contributions
will make up at least part of the difFerence, but it is
difFicult to estimate how much. Elements of the T matrix
are as much as 7%%u~ larger in magnitude than the lowest-
order terms; moreover, there are contributions from

scattering paths involving repeated scatterings from a
given site that are not taken into account in the T matrix.
The coherent-potential approximation calculations do
take into account a large number of multiple-scattering
corrections, but, due to neglect of ofF-diagonal disorder,
give broadenings generally somewhat less than second-
order perturbation theory. The calculated alloy disorder
contributions might be reduced with the choice of
difFerent pseudopotential form factors.

We have considered homogeneous contributions to the
linewidth broadening. An additional mechanism has
been proposed for inhomogeneous disorder contribu-
tions to the broadening. This involves the consideration
of statistical fIuctuations in the Al and Ga density within
an excitonic orbit, with resultant real self-energy shifts
contributing to the linewidth, in contrast with our con-
sideration of a. fixed Al and Ga distribution and only the
imaginary self-energies of the electrons being important.
It is interesting to note that the sum of our calculation
and that of Ref. 58 (Fig. 2) gives a good fit to some of the
observed broadenings; however, the method of Ref. 58 re-
quires a more fundamental treatment of correlated
electron-hole pairs and their broadening in order to be
quantitatively verifiable.

In summary, we have performed detailed calculations
of intervalley scattering rates in Al Ga, As alloys. Our
approach relaxes some of the commonly made assump-
tions concerning the evaluation of transition matrix ele-
ments, involves realistic models of the electronic band
structure and the phonon spectra, and verifies the appli-
cability of the Born approximation in treating alloy
scattering. Our results for the homogeneous lifetime
broadening of an electron at the bottom of the I valley
combined with the inhomogeneous contributions ob-
tained from Ref. 58 agree well with several sets of experi-
mental data.
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