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Solitary surface transverse waves on an elastic substrate coated with a thin film
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A proof is given of the existence of stable guided solitary surface acoustic waves propagating in the
form of envelope solitons on a structure made of a nonlinear substrate and a superimposed linear elastic
thermodynamical interface {avery thin film) of mathematically vanishing thickness. A thin gold film on

top of a lithium niobate substrate is such a system. The mathematical analysis starting with the theory
of material interfaces is carried by using the Whitham-Newell technique of treatment of nonlinear,

dispersive, small-amplitude, almost monochromatic waves. In the process, "wave-action" conservation
equations and "dispersive" nonlinear dispersion relations are established for this type of surface waves

that could also be approached by using Whitham's averaged-Lagrangian technique as modified by Hayes
to account for the transverse-modal behavior. It is shown that the whole problem is reduced to studying
a single nonlinear Schrodinger equation at the interface, thus providing solutions which are the mechani-
cal analogs of optical solitons known to propagate in nonlinear optical fibers,

I. INTRODUCTION

A recent but already nourishing subject of investiga-
tion, the treatment of wauefovm euolution for nonlineav,
elastic surface acoustic waves (for short SAW's) of the
Rayleigh type has developed through works by various
authors (e.g. , Kalyanasundaram, ' Lardner, ' David,
Planat, Maugin, and Lardner and Tupholme ) with a
special interest in anisotropic crystals. These works used
variants of the multiple-scale technique in order to study
the long-time (or large traveled distance) evolution of
SAW signals propagating along a nonlinear elastic sub-
strate while avoiding the appearance of undesirable secu-
lar terms in the small-parameter expansion of the solu-
tions. Extensions of these techniques to non linear
piezoelectric SAW's have been presented by Tupholme
and Harvey, Craine, and Syngellakis and to nonlinear
magnetoelastic SAW's propagating along a magnetostric-
tive substrate by Abd-Alla and Maugin. ' Kalyanasun-
daram" has also studied the evolution of Bleustein-
Gulyaev (piezoelectric) SAW's on an elastically and elec-
trically nonlinear substrate (these waves have the shear
horizontal nature; see below). The proceedings edited by
Parker and Maugin' contain the most relevant contribu-
tions to that matter in concise form. The above studies
concern the evolution of initially sinusoidal signals. Park-
er' and David and Parker, ' following earlier works by
Parker' and Parker and Talbot, ' envisage SAW's of gr-
bitrary form propagating on a weakly nonlinear elastic or
piezoelectric substrate. A11 these studies account for elas-
tic or mixed, electroelastic or magnetoelastic, nonlineari-
ties, and they all yield an eventual distortion of propaga-
ting signals, typically materialized by a steepening and a
tendency to wave breaking (but for some exceptional
cases in the last quoted studies) since there is no mecha-
nism (such as dispersion) present to prevent this effect.

For bulk elastic waves in crystals, we already know
that physical dispersion (due to long-range, or nonlocal,

interactions) combined to anharmonicity (i.e., nonlineari-
ty) yields the celebrated Boussinesq equation (BE) for
anharmonic crystals, and this can be shown to admit
solitary-wave solutions either directly or through the ap-
plication of a reductive perturbation method yielding a
Korteweg —de Vries (KdV) equation as a secularity condi-
tion (see Maugin, Ref. 6, pp. 89—96 for a nonmathemati-
cal approach to this). As is now well known, solitary
waves are those localized nonlinear waves of permanent
profile which travel without distortion as a result of exact
compensation, or balance, between nonlinearity and
dispersion. In addition, these strange waves are called
solitons if they actually behave like particles during col-
lision, i.e., they come out unaltered from a collision, but
for a phase shift. Together with the BE, the KdV equa-
tion and the sine-Gordon equation, we note for further
use that the nonlinear Schrodinger (NLS)—cubic—
equation exhibits such dynamical solutions. '

An inevitable question then arises: it is possible to ex-
hibit surface acoustic soh tary waves pr'opagating along an
elastic structure7 These "elementary" waves would fulfill
the dream of many signal-processing engineers since, if
they can be generated at all to start with, they could
propagate over very long distances (compared to a typical
wavelength of elastic waves) without any appreciable dis-
tortion and, on the way, they could, for instance, meet an
oppositely moving wave without loosing their individuali-
ty (while nonlinearity without noticeable dispersion for
SAW's is nowadays used for producing convolution and
correlation; see Ref. 6 for these aspects). As emphasized
before, nonlinearity and dispersion are two prerequisites
for the existence of such signals. Another one, of a more
technical aspect, is that amplitude and velocity of such
signals are strongly correlated and one must enter in the
system an initial signal which is exactly of, or at least
very close to (then we expect a rapid adaptation), the
ideal profile allowed by the theory.

For SAW's, if we do not introduce long-range interac-
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tions causing physical dispersion, an easy way to produce
geometrical dispersion is, following Love, ' to super-
impose a layer of "slower" material, with complete
adhesion, on the substrate. Not only does this produce
dispersion since a characteristic length (the thickness of
the superimposed layer) is involved, but (i) the solution
becomes multimode since the superimposed layer acts as
a wave guided and (ii) it allows, on an isotropic substrate,
for the (otherwise prohibited) propagation of so-called
Love waves, i.e., SAW's carrying an elastic displacement
in shear which is polarized parallel to the limiting sur-
face, hence is "horizontal, " whence the naming of SH
(shear horizontal) SAW's. The combination of this super-
imposed layer (and its associated dispersion) and non-
linearity has, indeed, attracted the attention of several
researchers, among them Bataille and Lund, '

Kalyanasundaram, ' Teymur, and Maradudin. Of
these, however, only the last quoted indeed foresaw the
propagation of a solitary wave on clearly physically based
equations for crystals. The second author obtains
coupled-amplitude equations in the manner of nonlinear
optics, from which he obtains bounded periodic solutions
involving Jacobian elliptic functions. The third author
indeed arrives at a possible solitary-wave solution by
studying the nonlinear modulation of waves by means of
a singular perturbation technique, but for materials
which are not crystals. The first authors in fact use an ad
hoc wave equation [their equation (24) in Ref. 21] which
is inspired by the above-mentioned Boussinesq model.
Their governing equation really is a modified Boussinesq
equation (MBE; with higher-order nonlinearity than the
usual BE) which is also obtained in other situations such
as for waves propagating down nonlinear elastic rods of
finite cross section. We shall, therefore, follow Maradu-
din. However, we present an alternative to his starting
point and this allows us to precisely specify the condi-
tions in which SH-SAW solitary wave will propagate
along an anisotropic elastic substrate covered by a very
thin layer of soft material. Numerical values are given
for such a possible structure showing the reality of the
phenomenon.

As a starting point we consider that the superimposed
layer is so thin that mathematically it can be viewed as an
elastic interface (membrane) of vanishing thickness. The
corresponding formalism has recently been developed in
several works, particularly noteworthy are those of
Bedeaux, Albano, and Mazur and Daher and Maugin,
and Murdoch who has more particularly studied the
case of such an interface superimposed on a linear elastic
substrate. Interestingly enough, such an elastic structure
that one may think of as produced by epitaxial growth
(for our forthcoming study of solitons, this could use a
nonlinear elastic semiconductor substrate such as GaAs
on which would grow a soft layer of about 1 pm in thick-
ness) becomes a monomode guide while keeping the re-
quested dispersion, and it still allows for the existence of
SH saws which are identical to the lowest Love mode in
the linear approximation. This is examined in Secs. II
and III.

The nonlinear analysis is performed in three steps in
Sec. IV. First an evaluation is made of the non!inear con-

tributions in terms of harmonic production. This allows
one to look for a nonlinear generalization of dispersion
relations in a sensible form. Then an asymptotic expan-
sion is performed which provides the missing perturba-
tion terms in the nonlinear dispersion relations. These, in
fact, are dispersive nonlinear dispersion relations or,
more appropriately, equations determining the wave am-
plitude, and they are obtained simultaneously with "con-
servation of wave action" equations (in the manner of
Whitham and Hayes) both in the substrate and at the in-
terface. Finally, in a small-amplitude, almost mono-
chromatic limit, it is shown that the whole problem is
governed by a single nonlinear Schrodinger (NLS) equa-
tion at the interface. A brief study of the stability of the
envelope-soliton solutions of this equation in terms of the
working point of the carrier wave (frequency, wave num-
ber), the nonlinearity parameter, and the linear dispersion
characteristics, then allows us to specify the stable solu-
tions ("dark" and "bright" solitons) which propagate de-
pending on the sign of the nonlinearity parameter
(effective fourth-order elasticity coefficient) and the ratio
of linear shear-wave velocities in the substrate and the su-
perimposed film. This, in turn, provides a criterion for
selecting the material of the thin soft film once the non-
linear substrate has been chosen (Sec. V). Appendixes A
and 8 give details of the obtention of basic equations and
of the NLS equation through an alternate method, re-
spectively. The paper is self-contained.

II. EQUATIONS OF ELASTIC INTERFACES

A. General equations

We assume that, within a continuous material region D
of Euclidean physical space K, there exists a moving reg-
ular surface X which splits D into two subregions D+
and D, the unit oriented normal to X pointing toward
the D+ region. There are material fields A attached to,
or defined at, all regular points of D+ and D; such
fields may suffer a finite jump at X, defined by
[& ]=A —A, where A are uniform limits of A in
approaching X on its two faces along its normal. In addi-
tion, the surface X itself is considered as a material body,
of vanishingly small thickness, which is endowed with its
own mass density and thermodynamical properties. One
may think of such a "thermodynamical interface" as an
extremely thin layer of which the material differs from
that on both sides D+ and D, or a region of D where
the material suffers a drastic change in its properties on a
very small length scale (e.g. , its characteristic parameters
may have much steeper gradients than in the remainder
of D ). Quantities attached and properties pertaining to X
are distinguished from others by a superimposed caret.

At time t, in the so-called current configuration K, of
continuum mechanics, ' only a three-dimensional
Cartesian tensor notation is used (even for tensor-valued
quantities defined on X, which are essentially two-
dimensional geometric objects). Thus x;, i = 1,2, 3,
denotes Cartesian coordinates at time t, V, A = 8, is the
three-dimensional gradient. Let n; be the components of
the unit oriented normal to X. Then the local projector
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onto X, P,", is the symmetric idempotent tensor defined
by

/J /J 7 J

and the tangential gradient on X is noted

V;3 =PjV. A, n;V; =0 .

(2.1)

(2.2)

The Einstein summation convention on repeated indices
is understood.

It can be shown by various means (one of which is an
elegant application of the principle of virtual power
see Ref. 27 for another point of view providing identical
equations) that the fundamental laws of motion in contin-
uum mechanics (local balance laws of linear and angular
momenta) take on the following component form: at
points x&D+ and D

dU/

p =V t,, +f, , (2.3)
dt

and at points xEX

p =V, t, +[p(u, —v, )(v. —v )+t, ]n +2QR, +f,
dt

(2.4)

t t, t n 0 R;n;=0 . (2.5)

In the first equation, (2.3), which is standard in continu-
um mechanics, p is the mass density, U, are the com-
ponents of the velocity field, t," those of the symmetric
Cauchy stress tensor, and f; those of a body force per
unit volume. t/!dt is the usual material time derivative
such as

=—+v.V
dt at

(2.6)

+v.V' .
Bt

(2.7)

In Eq. (2.4) v,. is the velocity of material particles that be-
long to X (these cannot leave X so that v;n; =0), v is the
absolute velocity of X itself in K, p is the mass density
(per unit area) of the matter of which X is built, t; is the
essentially two-dimensional surface stress tensor on X, f;
is a force per unit surface acting on points on X (this is a
traction in usual mechanics), R, are the components of a
so-called double normal force (this occurs in theories of
membranes ), 0= —

( —,
' )V'; n; is the mean curvature of X,

and dldt is the material derivative in following the
motion defined by U, , thus [compare to Eq. (2.6)]

dU;
p =Vt, +f, ,dt

(2.9)

p =V, t)+[t,, ]n, +f, .
dt

(2.10)

It remains to specify the mechanical behavior. The re-
gion D+ is considered to be a vacuum (tz+ =0) while D
is made of a nonlinear elastic solid (such as lithium
niobate LiNb03), and X is elastic. A linear elastic behav-
ior is sufhcient for the latter. Accounting for some non-
linear elastic properties in D and having in view non-
linear dynamical effects during which X will deform, we
should, as in all nonlinear elasticity problems, reformu-
late Eqs. (2.9) and (2.10) so that the problem is prescribed
on a fixed domain. In other words Eqs. (2.9) and (2.10)
need to be rewritten in a so-called Lagrangian representa-
tion in a reference configuration KR. This representation
is obtained as

(2.1 1)

at points in Do in Kz, and

)2A,

Po
&

q
(2.12)

at Xo, the fixed image of X back in Kz, with the unit
oriented outward normal of components X . The objects
T; and T; are so-called (nonsymmetric) Piola-Kirchoff
stress tensors defined by

where

BXj
j g k 'j jk k

BXk
(2.13)

()X;J=det
BXk

(2.14)

(2.15)

X and the jump of fields, defined in D+ and D, across X
provides a source term in tha, t equation (of which
Laplace's equation for capillarity is none but a special
case). Typically, equations such as (2.3) and (2.4) are used
for treating liquid-vapor interfaces and, in the case of
elastic solids, after inclusion of the relevant electromag-
netic terms, for studying the acoustoelectronics of semi-
conductor junctions.

We shall apply Eqs. (2.3) and (2.4) in the rather simple
context where X is fiat (0=0), and it is considered a ma-
terial surface (U =v ), thus reducing the set (2.3) and
(2.4) to

If R; =f, =0, X possesses neither inertia (p =0) nor stress
properties (t, =0), and it reduc"es to a so-called material
surface for which U,

=v. at X, then Eq. (2.4) reduces to

(2.8)

which is the usual stress boundary condition at the ma-
terial surface X=BD bounding D . That is, the gen-
eral equation (2.4) is the balance of linear momentum for and

BXk BX(
Ckl

Bx; Bx;

axjXk= „- Pk,
UX/

(2.16)

(2.17)
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Po PJ~ Po PJ . (2.18)

aT. .

axj

a aT
kj (2.19)

Equations (2.11) and (2.12) can be deduced from (2.9) and
(2.10) because the following identities hold true (see
Daher and Maugin for these transformations)

axjJ ' =0,a
axj

and we have

axj

P

(2.20)

dU; a a2
U, (X,t)= u;(X, , t),

dt at ' (2.21)

where u; =x, —X, is the displacement, a similar formula
holding for du, /dt.

For a volume nonlinear elastic behavior we have

ax,-

aE„ax,
u.

aE„'& ax,5, + (2.22)

while for the surface linear elastic behavior we shall have

aw
aE,,

' (2.23)

The last two equations are the equations of mass conser-
vation, in integrated form, between the reference
configuration K~ (densities po and po) and the current
configuration K„ in the bulk and on 2, respectively. J is
the Jacobian of the motion for points in the bulk (change
in volume) and J is the corresponding quantity for points
on 2 (change in area); x;(X,t) is the direct motion and
X (x;, t ) is the inverse motion, if X are the so-called La-
grangian coordinates. The abbreviation a/ax- means

der in ~E~~ ~

is envisaged. Generalizing thus the expres-
sion of Murnaghan and following Kalyanasundaram
[see also Bland, Eq. (3.59), p. 49] we write thus

I,—+pI~ +aI, +PI, I2 +y I3 +gI, + rtI, I2
2

where

+vI )I3+6I2, (2.27)

I, =trK, Iz =trK, I3 =trK (2.28)

a u;
Poa2

aT. .

axj '

aTk

axj

(2.29)

B. Wave equations

We now specialize the problem to the SH-SAW
configuration. Do is the half-space X2 & 0 while X2 & 0 is
a vacuum. X is none other than the plane-limiting sur-
face Xz=0 in the reference configuration Kz. Thus
N=(0, —1,0). We consider dynamic solutions such as
(Fig. 1)

where k and p and A. and p, are elasticity coe%cients of
the second order (SOEC's), respectively, in the bulk and
on X; a, P, and y are elasticity coefficients of the third
order (TOEC's) in the bulk, and g, i), v, and 5 are elasti-
city coefficients of the fourth order (FOEC's) in the bulk.

We have at hand all ingredients to study dynamical
problems in Do and on Xo. We shall consider the case
where f, =f, =0 an. d T;+=0, and Eqs. (2.11) and (2.12)
are reduced to

with

au, auj au. au.
E =— + +» 2 axj ax, axj ax,

(2.24)

u=(0, 0, u3(X„X2,t) for X2)0,
u=(0, 0, u3(X„t)) for X&=0 .

Obviously, we must check the matching condition

(2.30a)

(2.30b)

- —P P '"'+ '"'
Ij —

q tk jl
1 Xk

(2.25)

where Epj are the components of the Lagrange finite-

strain tensor and E," are the components of the two-
dimensional small-strain tensor on X. W and 8'are den-
sities of elastic energy per unit volume and area, in Do
and on Xo, respectively, in the reference configuration.
For isotropic behaviors 8 and 8'depend only on the ele-
mentary invariants of E . and E,", respectively. Let
f=O(~Bu;/BXJ~) and e=0(~E&J~). For W a quadratic
expression [i.e., O(e ) or O(f )] is sufficient (tr = trace)

8'= —I ) +pI2,

I] =trK, (2.26)

I~ =trK 2,

while for 8'an expansion up to, and including, fourth or-

u (3X„t)=u (3X„X~=,Ot) . (2.31)

u3 a aPo, — T»+ T», X &0
ax, ax2

(2.32)
u3 a

Po 2 ax T3) + T32,x X2=0 .

Accounting for Eqs. (2.22)—(2.28) and for the assumptions
(2.30) and (2.31), we show with some algebraic manipula-
tions (see Appendix A) that Eqs. (2.32) provide the fol-

We shall consider a propagation along X&. A dynamical
solution such as (2.30) is then said to be transversely hor-
izontally polarized. It is also called a SH (for shear hor-
izontal) wave motion, ' ' as often contrasted to the Ray-
leigh wave motion whose elastic displacement is polar-
ized orthogonally to the X3 direction, hence parallel to
the sagittal plane. With the special choice (2.30), the only
surviving components of Eqs. (2.29) read (J /J = 1)
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e.g&Atj

-X =X
1

FIG. 1. Surface-wave problem.

lowing two equations [keeping terms which are O(f ) at
most]: for Xz )0

(so/I )3tt j 31[ +~eff( 31+ 32 ]]
1

for X2 =0

[ 3,z[1+~ed&3, i+&3,~)]]
2

(2.33)

wherein

and we have set

~.~=~.a~V

and

(2.35)

5,s=6+(/3+ —,'y)+ —+P (2.36)

Equations (2.33) through (2.36) are the basic equations in
the further developments. They call for the following
comments.

(i) There are no nonlinear terms which are O(f ) in
Eqs. (2.33) and (2.34). This results from the peculiar set-
ting (2.30) and the isotropy assumed for the material.
Then one understands now why the expansion (2.27) had
to be carried up to terms of order four in e=0(~E; ~).
The same situation occurs in other problems in nonlinear
electroacoustics, for instance when studying the so-called
frequency-amplitude effect (also called anisochronism )

for certain crystal cuts in elastic resonators, or when ex-
amining intermodulation through nonlinear thickness-
shear vibrations in electroelastic resonators. ' As a
matter of fact, these two situations afford one possible
means for determining the effective fourth-order elastici-

(pz/P)&3 „= +(p/p)u, 2[1+6,,gu, , +u, 2)],
1

(2.34)

ty coe%cient 6,ff pA, g of the order of 10' —10' N/m in
materials such as quartz or lithium tantalate. In pass-
ing, but this may be quite relevant to the difficulty of
placing in evidence the effects to be studied in forthcom-
ing sections, we note the difficulty of determining experi-
mentally FOEC's (one usual technique for this being the
shock-compression technique where FOE's are deter-
mined through the second variation of the velocity of
propagation of shock waves, in an initially stressed ma-
terial, with respect to the initial pressure).

Still another phenomenon where FOEC's show up is
that of dynamical (phonon) echoes in powders of
piezoelectric grains. All this to emphasize that, while
fourth-order elasticity a priori seems to be of too high a
degree to be relevant because of the smallness of strains
appearing during many experiments e =O(10 ) in crys-
tals, it does, in practice, yield many interesting nonlinear
effects. The developments below still add another such
effect.

(ii) The FOEC defined in Eq. (2.36) is an effective one
which includes contributions from SOEC's p and A, (the
classical Lame coe%cients in linear isotropic elasticity)
and from TOEC's P and y. Notice that all contributions
in (2.36) are more or less of the same order, and this, ob-
viously, increases the difficulty in the determination of
the "thermodynamic" FOEC 6.

(iii) Equations (2.33) and (2.34) present themselves as
two wave equations with highly nonlinear contributions,
but, in truth, Eq. (2.34) is none other than a generalized
boundary condition associated with the field equation
(2.33). The presence of a wave operator in this boundary
condition makes the whole system [(2.33) and (2.34)]
dispersive and it is the possible compensation between
this dispersion and the already noted nonlinearity which
favors the existence of interesting phenomena. Such sys-
tems have been obtained in linear frameworks by various
authors using different methods. For instance, Mur-
doch obtained such equations by a theory very much
like that of thermodynamical interfaces. More interest-
ingly perhaps is the approach of Tiersten, ' ' following
along the line of previous works by Mindlin, to deduce
the "boundary condition" (2.34)—in the fully linear
case—by applying a limit argument where the three-
dimensional region D o is covered with a layer of
infinitesimally small thickness in which a true equation of
motion is verified; but this is brought back at, or squeezed
to, X2 =0 by a limit procedure to first order in the thick-
ness, then producing an equation of the type of (2.34) at
X2 =0 (this is also dealt with by Maradudin ).

(iv) A final remark concerns the validity of the system
(2.33) and (2.34) in the nonlinear framework for a pure
SH mode. It is known that in a nonlinear elastic body,
whether anisotropic or isotropic, a pure bulk transverse
mode cannot exist without being accompanied by a longi-
tudinal elastic vibration. However, the latter is at least
second order with respect to the former (cf. Maugin, pp.
36 and 37). Translated to the framework of SAW's, this
means that a pure SH mode, although predominantly ex-
cited by some generating device, will necessarily be ac-
companied by a Rayleigh (sagitally polarized) mode, the
later being second order in magnitude according to the
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above-recalled result. In other words, a "small" sagittal
component will be driven nonresonantly via third-order
elasticity (second harmonics) in both bulk and surface
equations of motion (compare Maradudin and Mayer
In turn, the next order approximation (that is studied in
this paper) for SH waves will be slightly altered by these
couplings (an alteration to be found at the price of very
lengthy algebra). In the present first analytic approach,
we content ourselves with the simplified system (2.33) and
(2.34), bearing in mind the eventual coupling with the
sagittal mode and the resulting complications for further
analytic and numerical works [a phenomenological mod-
eling of this coupling directly on Eq. (4.38) will be
developed elsewhere]. The main effect, however, remains
the one reproduced in this paper as the nonlinear wave
obtained remains predominantly shear-horizontally po-
larized.

C. Nondimensional problem

Let k, and co, be the characteristic wave number and
frequency. We set

T=co, t, X=k,X&, Y=k,X2, U=k, U3

1 p, Po 1 Po

p po 2W pL
(2.44)

if we remember that the thermodynamical interface
Xo= [ Y =X2 =0] of surface mass density po and surface
rigidity p in fact represents a thin three-dimensional layer
of thickness H and mass density pL. Then the system
(2.38)—(2.41) contains, potentially, the possibility to allow
for solitary-wave propagation.

(iii) If the thin film carries neither inertia nor surface
tension (or there is no superimposed thin film), then
(2.38)—(2.41) reduces to

B2

BT2

B2 B2

BX2 BY2

alization. One is the nonlinearity parameter 6, which is
related to the FOEC 6,~. As only third-order terms in
the gradient of U are involved in Tz" and Tz ", Eqs.
(2.38) and (2.39) are third-harmonic generators insofar as
nonlinearities are concerned. However, the second pa-
rameter /3 accounts for dispersion as it is, in fact, the ra-
tio of two lengths [or the ratio of the two (squared)
characteristic velocities of the system]. Indeed,

cz =plpo, c, =Plpo, c =cv-lc, =P (2.37) —b[( U~4)~+( Ui C&)r]=0, Y') 0 (2 45a)

i, U AP T~ (U)=0—, Y)0,
Cl, U —Ui bP T, (U)=0,—Y=O,

U(X, Y=O, T)=U(X, T), Y=O,

U(X, Y~ oo, T)=0,
where we have set

(2.38)

(2.39)

(2.40)

(2.41)

= ~
B'

alii—:p BT2

= B' B'

BT BX

B2 B2

BX BY
(2.42)

Tti ( U) = ( U~N )~+ ( Ui, &b ) r =0( U ),
T (U)=U 4=0(U ),
4= U~+ Uy +0,

(2.43)

where subscripts T, X, and Y denote partial derivatives;
N in fact, is an invariant of strains for isotropic nonlinear
elasticity for SH motion.

Equations (2.38) through (2.41) are the relevant equa-
tions for our surface-wave problems. They deserve the
following comments.

(i) Equation (2.40) is the condition of perfect bonding
of the thin film and the substrate while (2.41) is the radia-
tion condition typical of surface wave motion.

(ii) There remain two parameters in the nondimension-

k, = (/J, IP ) =2ir IA,„ to', =c ik 2, 6=P

That is, c, or p, is the ratio of linear shear-wave veloci-
ties in the bulk and on the interface. On account of Eqs.
(2.37) our problem takes on the following nondimensional
form:

Ui [1+6,4]=0, Y =0,
U(X, Y~ oo, T)=0,

(2.45b)

(2.45c)

where p has been set equal to 1 without loss in generality.
The system (2.45) was considered by Mozhaev. As this
system does not present any dispersion [Eq. (2.45b) is a
true boundary condition for (2.45a)], it cannot allow for
the propagation of true solitons. However, because
(2.45b) can be satisfied in two ways, Ui, =O (a condition
identical to that prevailing in linear isotropic elasticity,
for which we know that SH surface waves are not possi-
ble) or 4( Y=0)= —6 ', b, necessarily negative (as
@)0), it may present strange nonlinear SAW solutions
(SH waves existing because of the nonlinearity). We refer
the reader to Mozhaev and Kosevich for these.

(iv) The system (2.38)—(2.41) is derivable from a La-
grangian. We let the reader check this, the Lagrangian
density per unit X length being given, in nondimensional
variables, by

X=f [ ,'(P Ui N ,'b, P —4 )]dY—+—,'(—U—ir—Ux),

(2.46)

III. LINEAR PROBLEM

A. Murdoch waves

Before attacking the full problem (2.38)—(2.41) and for
further use, it is advisable to consider the linear problem.
In the absence of nonlinearity in the substrate (b, =O) the
system (2.38)—(2.41) reduces to

where kinetic and potential energies are easily
identifiable.
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+Cb,P A exp( —3y Y)cos38+ . .

O= kX —AT,

(4.1)

where odd-order harmonics only contribute because of
the very form of Eqs. (2.38) and (2.39).. Substituting from
(4.1) in T~ and Ts, the first term in (4.1) will yield con-
tributions such as

T~ =
—,'[(9y —3k +2y k )cos8

+(3k +3y —6k y )cos(38)]

dispersion relation on the amplitude. To that effect we
consider for small amplitudes a solution of the form

U =f(8, Y)= A exp( —y Y')cos8

for this last remark, we can look for nonlinear generaliza-
tions of (3.3) in the following perturbed form:

2P~"(k, to, y, A )=el"'+e l' '+

S "(k co g A )=em"'+E m' '+S

where, accounting for (4.4) and (4.5), we have set

2P~ (k, to, y, A ) =2)e—(k, co;y)

(4.6a)

(4.6b)

P (9~4 3k 4+ 2k 2~2) A 2e —2r Y
QR2

4
(4.7a)

2

2)s "(k,co,y, A ) =2)s(k, co;y) — y(k +3y ) A

and

X A exp( —3y Y)+

Ts = —
—,'[y(k +3y )cos8

+y(y —k )cos(38)]A +

(4.2)

(4.3)

(4.7b)

in which 2)~ and Xls are none other than the expressions
defined in (3.3). In (4.6) the perturbations have to be
found through an asymptotic expansion.

The contribution in cosO in these two expressions will
resonate with the linear parts of Eqs. (2.38) and (2.39) so
that these equations provide

B. Asymptotic expansion

Now we assume that Eqs. (4.6) hold well and consider
solutions of (2.38) and (2.39) in the form

( /3'~2+ k'—y2) Ae r—Ycos8

—Q/32 (9~4 3k4+2k2~2) A 3e —3xY
4

U(X, Y, T)=f(8, A)+EU, +8 U2+

with the scaling

x =cX, y=c Y, t=cT,
where E =0( A ) and 8 is a generalized phase such that

(4.8)

(4.9)

( —co +k +y)A cos8= —
—,'b, /3g(k +3y )A cos8+S,

(4.5)
O=k, O, = —~, (4.10)

where B and S gather higher-harmonic contributions in
cos(38), cos(98), etc.

On comparing (4.4) and (4.5) with (3.3) and accounting
I

the imaginary "i" in the last expression visualizing a
nonpropagative behavior along the depth coordinate Y.
Discarding intermediate calculations, from Eq. (2.38) we
obtain

a' , a' , a a'
2)~(~,k;y) 2

—E 2'/3 +co,P +2k +k„+iy +2i y
ao

2

(9y —3k +2k y )A e r /3 b,eB, —P EE B2—(uo+eu, + . +e"u„+ . . )=0, (4.1 1)

where there is no need to give explicitly B, and B2, and ~ is computed with the variables (x,y, t). Accounting now
for (4.6a) and (4.7b) we can rewrite (4.12) as

a2—4'b, /3 (9g —3k +2k y ) A exp( —2y Y) 1+
ao

—e 2'/3 +co,P +k +iy +2k +2iy

a+e +(el"'+E l' '+ . ) /3 bEB /3 hE B—(u —+su +E u + )=0 .8 aO2 1 2 0 1 2

(4.12)

As uo=0(E), at order one, this yields the "linear" solution ( A can still be a function of X, Y, and T)
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uo = A exp(i0), o=kX —coT+iXY,

while at the next order (4.12) gives

2—
—,'5/32(9X4 —3k4+2k X )A exp( —AY) 1+ ui /3 b—Biuo

exp(i8)((p coA ), +(kA ) +(iXA ) )+l'"A exp(i8),

(4.13)

(4.14)

from which we deduce that u& =0 and I'"=0 and there
holds the following "bulk" conservation law of wave ac-
tion

CAs= (coA )+V.Ks=O, Y'=0
Bt

(4.20)

CAii—: (P coA )+V K~ =0
Bt

(4.15)
K = kAS (4.21)

where Kz is a two-dimensional vector of components

Kii =(kA, iXA ) . (4.16)

This seems to be the first case where the notion of conser-
vation of wave action is treated in two spatial dimensions
where one, x, is of the propagative type and the other, the
transverse coordinate y, is of the vanishing (in some sense
modal) type although Hayes envisaged such a generali-
zation (but this is not all as there is also another such
conservation law at the interface, see below).

At the next order E [e in (4.11) is really s as
uo=0(E) j, (4.11) gives

——'bp (9X —3k +2k X )A exp( —2X Y)

B2
X 1+ u~ —hP 82uo

BO'

ii(A )exp(i0)l' 'A . (4.17)

As u2 solutions of the form exp(i9) make the first term in
the left-hand side of Eq. (4.17) vanish, the right-hand side
is selected in order to avoid the appearance of secular
terms. This is the spirit of multiple-scale techniques. As
a rnatter of fact, it is sufficient to make it zero, yielding
thus

(4.18)

At the third order we have thus found (4.6a) in the form

C
2@ (k, ai, X, A ) — A =0, Y & 0 . (4.19)

This, in effect, may be referred to as the "bulk" nonlinear
dispersion relation which results from a double expansion
in which c. and 3 are of the same order. We can also say
that the dispersion relation not only depends on the am-
plitude, but it has itself become dispersive as it involves a
wave operator. As the notion of true harmonic motion is
lost, we should rather refer to (4.19) as a wave-amplitude
equation.

Now we should proceed in a similar manner for Eq.
(4.6b). We simply state the results. 2)s=0 holds at the
first order; at the second order m'"=0 and there holds
the surface conservation of wave action:

At the next order we can select I ' ' in such a way that
the following "surface" nonlinear dispersion relation
holds

2

"(a~,k, X, A ) — A =0, Y=0 . (4.22)

To the above results should be added the relations of ki-
nematic wave theory which follow from the fact that 0 is
a potential for the triplet (k, co, iX):

Bk Bco Bg . Bco
l

Bt Bx
'

Bt By
(4.23)

C. Small-amplitude, quasimonochromatic limit

Let us assume that we are close to a harmonic regime
characterized by a frequency coo, a wave number ko, and
penetration parameter yo, which altogether satisfy the

where the first is the conservation of wave number and
the second gives the time evolution (if any) of the
penetration parameter X once the solution co(X, Y, T) is
known.

In all, Eqs. (4.15), (4.20), (4.19), (4.22), and (4.23) pro-
vide a system for evaluating 2, co, and k once g has been
eliminated. This system clearly is unexploitable in this
state of generality, but we shall take profit of it in the so-
called quasimonochromatic, small-amplitude approxima-
tion.

Vote As the sy. stem (2.38)—(2.41) is derivable from a
Lagrangian variational principle via the Lagrangian den-
sity (2.46), it is theoretically possible to use Whitham s
method of the averaged Lagrangian (see Refs. 51 and 52
and p. 223 of Ref. 47)—applied to (2.46) in the form gen-
eralized by Hayes for several spatial dimensions, and
deduce Euler-Lagrange equations for the amplitude and
the phase in the form of dispersive nonlinear dispersion
relations and the conservation of wave action. This, how-
ever, requires some ingenuity while carrying special solo-
tions in (2.46) and eff'ecting the time average, as shown in
a general manner by the very few existing applications of
Whitham's method to cases simpler than the present one
(see Luke and Yuen and Lakes~ as exceptional cases in
fluid mechanics). The authors intend to give this applica-
tion to the present case in a separate work.
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linear dispersion relations (3.3) that, therefore, we rewrite
as

2)~ ( ko q coo) Xo ) =13 coo k 0 +Xo 0

&s( ko~ coo»0}:—coo k o Xo

(4.24a)

(4.24b)

where 4 is a phase perturbation and
(coo, ko ) HX)M(coo, ko ) =0. We need to evaluate the slowly
varying quantities 4& and A when (4.25) holds well. We
introduce the new variables and function (compare Ben-
ney and Newell )

g=x coot+i—X~, r=Et, A ~EA, (4.26)

Accordingly, we note that the actual (nonlinear solution)
k, co, and y have the perturbation form

k =kp+s4&„co=coo —s@„X=XO i—E&b~, {4.25)

where a prime denotes the derivative with respect to ko
of the solutions mo(ko) and Xp(ko) of (4.24). Working as
if the triplet (kp cop Xp) were variables, we deduce from
(4.24a) and (4.24b) the following useful relations:

coocooP k o +XoXo=0

+cpocoo~ 1+Xo +XoXo

for Y& 0, and ( Y =0)

(4.27a)

(4.27b)

263pcop 2k p gp —0

2coo +2~0~0 2 go 0

(4.28a)

(4.28b)

We should consider the bulk and surface conditions
simultaneously. We give the detail only for the former.
Substituting {4.25) into (4.19) and accounting for (4.24a),
we obtain

E( —2co&p 4&, —2ko@ )+E (p 4&, —N )+( 2ci—X0@.~
—E 4

p
2

+ —'h p2A ~exp( —2X Y)(9XO—3ko+2koXO) = (I3 A« —A„„—A~~ ) .0 0 (4.29)

Accounting now for (4.26) we get

—2cog @,E +2copg E@~0—2Eko@&+2eXoX04&+E P coo 4&—e 4&+E XOC&~

+—bP A exP( —2XOY)(9XO —3ko+2koXO)= (P coo
—I+Xo )A~~, (4.30)

where only terms of O(e ) at most have been kept. Equation (4.30) is automatically satisfied at O(c. ) because of the first
of Eqs. (4.27}. At order E, Eq. (4.30) gives, on account of the second of (4.27),

0 XQX0

2copP
+ exp( —

2XO Y)(9XO—3k 0+2kpXO) .
8~0

(4.31)

We proceed in the like manner to examine Eq. (4.19).
The first order in c. is automatically satisfied because of
(4.27a), while at the next order we obtain

on account of (4.27b). Here the asterisk denotes complex
conjugation.

A =
2 (p coo +Xo 1)(2@gAg+ A@gg) .

2P coo

Finally, introducing the complex quantity

a = A exp(iN),

we note that

a,exp( —i@)= A, +i A 4, .

(4.32)

(4.33}

(4.34)

(coo —1)

2cop
P b.XO(k 0+ 3XO ),

8C00
(4.36)

1
(cop —1)( A @g+24&(A ~),

26)p

The same method is applied to the surface conditions
(4.22) and (4.20) on account of Eqs. (4.28). It is found
that + and A satisfy the following coupled evolution
equations (at Y =0):

This allows us to gather Eqs. (4.31) and (4.32) in a single
complex equation for a ( Y & 0) as

l „ XoXQ
a — co +0

+i exp( —
2XO Y)(9XO—3ko+2koXO)a a*

8Q)p

(4.35)

l
a =—

2
Xp

2 ~
aug

t' Xp(ko+3Xp)a a2 2 z *
8C00

(4.37)

valid at Y=O.

and, introducing (4.33) reduces (4.36) to a single complex
equation
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D. The governing nonlinear SchrMinger (NLS) equation

ia, +p(cpo, ko)a&&+q(coo, kp)IaI a =0, (4.38)

where the coeScients depend on the working regime
(coo, ko)&2)M(coo, ko)=0, and, in particular, on the cur-
vature cop of the linear dispersion curve cpo(ko) as

P ( cop, k p ) —2 cop (4.39a)

(P co —2k )
q(cpp, kp)= —', b,P cop

P +2( cpp —k p )

and we recall that in Eq. (4.38)

(4.39b)

g=g( Y =0)=x coot, r e=t— (4.40)

In the same way that the true linear dispersion relation
of Murdoch waves is obtained, by eliminating yp between
the two equations (4.24), to obtain a single equation for
our nonlinear problem we need to combine Eqs. (4.35)
and (4.37) at Y=0 and eliminate Xp'. This procedure
yields the single nonlinear Schrodinger (NLS) cubic equa-
tion for the complex field a at Y=O,

kp [1+2(coo —k p ) ]
cpo[P +2(coo ko) 1

(cpp —ko)[2(P cpp
—kp) —P (cpp —kp)]

cp [P +2(co —k )]

(4.41a)

(4.41b)

This will allow us to discuss the possible solutions of Eq.
(4.38).

Note. The NLS equation (4.38) can be obtained in a
di6'erent way, which is sketched out in Appendix B.

K. Bright and dark surface acoustic solitons

Equation (4.38) is known to exhibit soliton solu-
tions, ' especially in the context of the nonlinear optics
of optical fibers, ' and also in plasma physics. ' Two
types of solutions, with different stability characteristics,
are possible, depending on the sign of the product pq of
the remaining two coefficients. This was established by
Zakharov and Shabat ' by the method of inverse
scattering. In our case the sign of pq depends on the pair
(cop, kp)E2)~(coo, ko)=0, and this requires a discussion
when the expressions (4.39) and (4.41) are taken into ac-
count.

so that g has recovered its usual meaning of a characteris-
tic variable in the propagation direction; ct)@=dc()p/dkp is
the group velocity of the linear, harmonic wave process.
It is easily shown from (3.4) written for (coo, kp ) that

1. Bright solitons

According to Refs. 59 and 60, for pq) 0 one obtains
stable "bright" soliton solutions in the form

a(g, r)= 2 2) exp[ 4i (a 2—) )ps —2i a/+i y—o]sech[2ri( g go)+ 8rta—ps] (4.42)

or, at Y=O,

u (X, T) = Elhi

1/2

e px{i [ —2E cop'T(a ri )
—2aE(X——copT)+cpp+koX —cppT]]

X sech[2e2)(X —cppT —Xp )+4arie cop T], (4.43)

which contains four parameters 2) (the amplitude), a, Xp, and yo. Taking a=O, without loss in generality, reduces
(4.43) to

1/2

u(X, T,a=O) =sr)
Q)p

q
exp[i [2E cpp'Tr) +cpp+kpX copT] ]sech[2Er—/(X —copT —Xp)] . (4.44)

Figure 4 gives a sketch of Ia I
vs (g —go), which explains

the naming of bright soliton in the optical context as Ia
would then represent the intensity of light.

Assume that 6)0. The condition pq )0, on account
of Eqs. (4.39) and (4.41), takes on the form

coo 2 —P
2 2) ) 1

k 2 p2( 1 2/32)
(4.47)

so that pairs (coo, ko) &2)~(cuo, kp) =0 cannot be working

2(P cop —kp) —P (cop —kp) &0 (4.45)

as cop) ko for pairs (cpo, kp ) belonging to the linear disper-
sion relation (see Fig. 3). This can be rewritten as

P cop(2P —1) &kp(2 —P ) . (4.46)

If /3 & —,
' we have then FIG. 4. Bright soliton.
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points for the carrier wave. On the contrary, if P )—,
'

(but P & 1 according to the linear analysis), then
CL

ohio 2 —/3
2 2

k P (2P —1)
(4.48)

and this is allowed.
Conclusion .[6)0, —,

' &/3 & 1] provides the stable
bright soliton solution of the soliton-envelope type
sketched in Fig. 4. FIG. 5. Dark soliton.

2. Dark solitons

q
2p

a(g, r)

(A. +iv) +exp[2v(( —
go

—2ipr)]
1+exp[2v(g —

go
—2Apr) ]

(4.49)

where there are three parameters, A, , v, and go, but only
two of these are independent as (4.49) holds for
v=(1 —A. )'/ . If we take A, =O, hence v= 1, we are left
with a one-parameter (Xo or go) solution (the constant
amplitude at g—++~ is also a parameter),

According to Refs. 59 and 60 for pq (0, one obtains
stable "dark" soliton solutions in the form

' 1/2

—,
' & P & 1. Remarkably enough, once the sign of the non-
linearity parameter is known, the stability is decided only
by the value of the ratio of linear shear elastic waves in
the substrate and the thin film (see below). Finally, it is
important that the amplitude of the signal be as large as
possible. This is obtained for the maximum of the ratio
~p/q~(coo, ko) along the curve coo(ko) in Fig. 3. This pro-
vides the optimal working point for the carrier wave.

Finally we note that the penetration depth of the soli-
ton SH SAW, Yo, is still given by the linear solution at
our order of approximation, i.e., it also depends on the
working regime by

YO=XO '

—(k 2 /32 2) —1/2

~d(g, r) =2[1—sech (g —go)],
2p

(4.50)
0o

(1 /32 2) —1/2

2~

u(X, T)=e tanh [e(X—Xo —cooT ) ]

of which a graph is given in Fig. 5. It explains the nam-
ing of "dark" soliton in the optical context. The dis-
placement u (X,T ) at Y=0 is obtained as

1/2

[ 1 ( V2/c 2
) ]

—1/2Xo

2' (4.52)

from Eq. (4.24a) with Uo =coo/ko, Ao=2~/ko, and V is
the phase velocity in dimensional units.

Xexp[i(koX rooT)] . — (4.51)
V. CHOICE OF MATERIALS

The corresponding stability condition is discussed as in
the previous case.

Conclusion For [.b, )0,/3 & —,'] we have the stable
dark soliton solution in the form (4.50) or (4.51). That is,
we have a mechanical analog, in the form of an elastic SH
surface wave propagating on a nonlinear substrate coated
with a very thin "slow" film, of optical dark solitons in
optical fibers. This result was announced in Ref. 61.

If the nonlinearity coefficient 6 is negative, then the
above conclusions are interchanged so that stable bright
solitons correspond to P & —,

' and stable dark solitons to

We may consider a substrate of lithium niobate
LiNb03 (obviously, LiNb03 is not isotropic but this ap-
proximation is sufficient to give an idea of the looked-for
efFect), a reputedly nonlinear crystal which also presents a
high electromechanical coupling coefficient, which may
be useful in experimental investigations and signal-
processing applications. Thus po =4.7 X 10 kg/m3 and
p=c44=6X10' N/m, and 6)0. Hence c&=3.735
X10 m/sec.

The remaining critical parameter is

TABLE I. Film materials for which p & —,
' (LiNbo, substrate).

Material Gold Cadmium Copper Silver Zinc Platinum Tantalum Bismuth

Pl
(10' N/m )

PL
(kg/m )

p2

2.7

19.3

0.109

1.92

8.65

0.173

4.83

8.96

0.422

3.03

10.5

0.226

4.34

7.14

0.476

6.10

21.4

0.223

6.92

16.6

0.326

1.2

9.8

0.095
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TABLE II. Film materials for which —' (P' & 1 (LiNbO, substrate).

Material Aluminum Tungsten Vanadium Titanium Nickel

PL
~ 10"Nym')

PL,

kg/m )
p2

2.61

2.7

0.757

16.06

19.3

0.651

4.67

6.1

0.599

4.38

4.51

0.760

8.39

8.9

0.738

po pL H pO O'L pO

p po p pL~ p pL
T3 = (53~+u3 „), a= 1,2, p =1,2, 3, (Al)

88'
3(x gE 3p 3,p

which does not depend on the thickness H of the film (we
may have H = 1 pm ).

Tables I and II (values taken from Ref. 62) give the es-
timated /3. Accordingly, with a substrate of LiNb03 a
thin 61m of gold, cadmium, copper, silver, zinc, platinum,
tantalum, or bismuth would allow for the stable propaga-
tion of dark soliton SH SAW's. As a rule the superim-
posed film, in addition to being "slower" than the sub-
strate, must be very "slow" (for Au, cr =P/Po=1182
m/sec).

am
aE„

Thus (A2) gives trivially

T32 PQ 3 2 at X2 0

As to (Al), it yields

(A2)

(A3)

VI. CONCLUSION

We have shown analytically that an elastic structure
made of a nonlinear elastic substrate and a thin linear
elastic film coated on it can allow (with a good choice of
the two materials) for the propagation of stable and un-
stable envelope solitons which are mechanical analogs of
envelope light solitons observed in nonlinear optical
Abers. From the point of view of engineering practice,
with the availability of electronic generators of hyperbol-
ic functions it should be possible to enter the required sig-
nal (or one which can rapidly adapt to the required
shape) via a piezoelectric transducer in the appropriate
structure and thus to realize a real elastic-soliton SAW
line. From the point of view of applied mathematics, the
Whitham-Newell type of approach has been preferred
over others (e.g. , the derivative expansion method as
used, for instance, by Teymur ). Its elegance in treating
simultaneously bulk and interface conditions must be em-
phasized. A direct numerical approach of the basic non-
linear dispersive system (2.38), (2.41) and the direct varia-
tional approach through (2.46) will be given in other
works.
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APPENDIX A: BASIC WAVE EQUATIONS

For solutions (2.30) we symbolically have t)/t)X3=0.
The relevant stress components in Eqs. (2.32) read, on ac-
count of Eqs. (2.22) and (2.23)

BR' 88
31 gE 3 1 gE 32

11 21 31

ag
12 22 32

(A4)

In general, for isotropic solids we have

08' 08' 08'
gz,

(A5)

where K, in components, is defined by (2.24). In the
present case, on account of Eq. (2.30a), we have for the
E,- 's

E„=—,'u =O(f )

E =—'u =O(f )

=0

2u3 iu3 p O(f')

E,3=—,'u3, =O(f ),
E3~ =

—,'u3 2=0(f ),

(A6)

while

I, =
—,'(u3, +u3 ~)=O(f ),

I~=0(f ),
I3=0(f ) .

(A7)

For the special case of the truncated expansion (2.27), we
note that
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aw =A,I, +pI2+4$I, +2rlI, I2+vI3 =O(f ),
1

aw =p+ pI, + rII, +25I2 =0 ( 1 ),
2

(A8)

T3f p'~3 ]+~eft(+3 ] ++3 ]~3,2)3 2

T32 8~3,2+~ fte(+ 3,2+~3, 2 3 1 )
3 2

(A9)

from which there follow Eqs. (2.33) and (2.34) via Eqs.
(2.32) while accounting for (A3).

aw =y+vI, =O(l) .
aI3

Substituting from (A8) and (A7) into (A5), accounting
then for (A6) and carrying the results into (A4) while
keeping terms 0(f ) at most, we are led to

APPENDIX 8: ANOTHER METHOD YIELDING
THE NLS EQUATION

Here we show that Eq. (4.38) can also be obtained
by working practically from the start at the interface.
To do this, the following trick is necessary. We
study the modulation u (0, Y,x,y, r ), 8=kX roT-,
F= —gF, x =cX, y=a. F, t=t-T about the mono-
chromatic surface-wave solution u = A exp(i 8+ Y). We
account for these in Eqs. (2.38) and (2.39) and consider
asymptotic expansions for u(Y)0) and u(Y=O). Ac-
counting for the fact that co —k =g at the first order of
approximation, noting that r}/B Y = 1, integrating the
equation resulting from (2.39) with respect to y, and com-
bining this at Y =0 with the equation issued from (2.38),
we obtain the single equation

a2 a2 a
~ [P co k+(ro— k) ]

——E 2coP +co,P —+2k ++k
ao

+2y 2' +co, +2k ++k c1 8

ax

a2 a2
+2( —k )

a@2 at2

a2

ax

—P DES, —
—,'bP A (yo —ko) —P AE Sz '(uo+Eu, +E uz+ )=0 . (81)

Accounting for the nonlinear contribution present in this
equation and noting that

6=koX rooT+d&(x—,y, t), Y= —goY, (86a)

~2 P2 2+k2 (82)

we look for a perturbed nonlinear Murdoch dispersion re-
lation in the form [compare to Eq. (3.4)]

~NL( k A ) [P2 2 k2+( 2 k2)2]

3 gP4A 2 2(2k 2 P2 2)

—
~g ( i ) +~2g (2)+. . .

Substituting from this in Eq. (81), at orders E and c we
obtain the "dispersive" nonlinear dispersion relation and
the "conservation of wave action" as

co=coo —sN„, k =ko+EC&„y yo =iEC&—. (86b)

Then Eq. (85) at the first order yields

2(coo —k o )( A A, coo+ A A„ko ) +P A A, coo+ ko A A =0 .

2(coo —ko )(ko rooroo) ~ ~oooo+ ko 0 . (88)

Introducing g=x —root+iyoy, r=Et, we transform this
into

2

2)M = [P A„—A „—A +2(co —k )(A„—A„)]

2(co —k )[(coA ), +(kA ) ]

(84)

But this is nothing else but the first di6'erential with
respect to ko of the Murdoch dispersion relation (4.4a) so
that it is identically satisfied. Then at the next order, the
equation obtained after rearranging terms and accounting
for (4.28a) and the following expression of coo'..

+[(P A@A ), +(kA ) +i A yy]=0, (85)

respectively. The right-hand side in Eq. (84) is of impor-
tance only when A =O(E) and 2)M(co, k)=O(s ). Let us
consider 2 ~cA, and co=coQ, k =kQ such that
X)~(mo, ko ) =0. We set (small-amplitude, quasimono-
chromatic limit) yields

1 —P coo —4(voodoo —ko) —2(coo —ko )(coo —1)

coo[P +2(~oo —ko )]

(89)
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II
COp

2
(Atlig+24~A() . (810)

coo Ag 3 b,g'A coo(2kii —P roti)
(p2 (811)

[P +2(coti —k )]
Exploiting now Eq. (83) on account of (86), the first
order yields the Murdoch dispersion relation
2)~(too, ko)=0. The second order yields again the first
diff'erential of Murdoch s dispersion relation, Eq. (88),
and the next order, on account of (89) yields

Introducing now the complex function a = A exp(i@)
and combining Eqs. (810) and (811)by noting (4.34) pro-
duces the NLS equation (4.38) at I'=0 with g=x coo—t.
Q.E.D.
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