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Disappearance of long-range order in doped antiferromagnets: A strong-coupling approach
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The spin fluctuations in slightly doped copper oxide materials are studied within the framework of
the t-J model to first order in the doping 6. Due to the motion of the holes, the magnetic properties
are modified in the following ways: (i) the system becomes incommensurate; (ii) the spin waves ac-
quire a frnite lifetime. The latter effect dominates for small 8 and is probably responsible for the de-
struction of long-range order by a few percent doping.

The spin fluctuations in doped copper oxide materials
have been intensively investigated both theoretically and
experimentally since the discovery of high-T, . supercon-
ductors, due to their possible connection to superconduc-
tivity. Experimentally, the long-range antiferromagnetic
(AF) order, present in the undoped insulators, is quickly
destroyed (by approximately 2% doping). ' Nevertheless,
neutron scattering' and NMR data suggest that there
are still short-range AF fluctuations. With increasing
doping, the fluctuations become incommensurate in Laq-
Cu04-based materials. Several strong-coupling ap-
proaches (typically the large-U Hubbard model or the 1 J-
model) have been proposed. For instance, one can reach a
qualitative agreement with the experimental results by as-
suming that the holes induce a static frustration leading to
additional coupling constants. If they are big enough,
they will lead to the destruction of long-range order
(LRO) by long wavelength Iluctuations. This approach
is essentially phenomenological, however, and there is lit-
tle evidence for such a model of static frustration. In par-
ticular, starting from the t-J model, and studying the stat-
ic frustration effectively induced by the holes on the spins,
one can get incommensurate order, ' but the doping
needed to destroy the LRO is very large (—60%). In
fact, there are good reasons to believe that such a static
frustration picture is inadequate. Hopping of doped holes
creates a backflow spin current due to strong correlation.
The static frustration picture neglects this paramagnetic
spin current and violates the spin conservation, resulting
in an incorrect Goldstone-mode structure of the spin-wave
excitation spectrum.

As we shall show in this Rapid Communication, this
paramagnetic spin current is also essential to understand
the disappearance of LRO upon doping. Due to their cou-
pling to this paramagnetic spin current, spin waves are
scattered by moving holes. This results in a broadening of
the spin-wave spectral density. As suggested some time
ago by Ramakrishnan, this broadening enhances dramat-
ically the reduction of magnetic order by long-wavelength
spin waves, which become the most eAective source of de-
struction of LRO at small doping.

Throughout this paper, we will work with the t-J model

H = —t g (c;~~~ + H.c.) +Jg S; SJ,
NN NN

where, for simplicity, the hopping and Heisenberg interac-
tions are restricted to nearest neighbors. We use

Schwinger bosons b;t and slave fermions f; to represent
the projected hole operators e;~:

c; =b;f;, S;= —,'b; rr b; ~ .

They are subject to the local constraint

gbt b; +ftf; =2S.

(2)

(3)

(4)

where S= & is the spin, 6' is the doping, and S* is the
number of bosons of a given spin that are condensed in the

q =0 state. It can be shown that for S*&0, there is LRO
in the spin-spin correlation function with a staggered
magnetization equal to S*. For 2D AF, 8=0, the quan-
tum Iluctuations yield (I/2N) Pq~o (bqt bq ) =0.2.
Then, S*=0.3, and the ground state has long-range or-
der. When the holes are added in, the effect of hole hop-
ping in the static frustration picture is simply to generate
incommensurability, and the staggered magnetization S*

One can justify this choice by noting that in the limit of
zero doping, one recovers the two-dimensional (2D) AF
Heisenberg model, which is known to be well described by
the Schwinger boson mean-field theory. ' '' Besides, we
shall concentrate on the strong-coupling t-J model, i.e.,
the limit t/J»1. It is well known that the t Jmodel-
suffers from an instability against charge-density Auctua-
tions leading to phase separation, at least for small
t/J. ' ' Experimentally, there is little evidence for phase
separation in the doped copper oxides, except possible
chemical phase separation in LaqCu04+ „. Physically, it is
clear that the long-range Coulomb interaction, which is
neglected in the t-J model, shifts the threshold of long
wavelength charge fluctuations to the plasmon frequency,
and, therefore, suppresses the charge-density instability.
In a realistic model, this interaction should be included.
However, it does not play any role in our study of the
effect of doping of spin fluctuations. Bearing this in mind,
we shall confine our discussion within the t-J model, but
we shall neglect the possibility of phase separation since
our main concern is not the phase diagram of the pure t -J
model.

In this context, LRO appears as a Bose condensation of
the Schwinger bosons. Treating the constraint with a
Lagrange multiplier, one gets
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is nearly unchanged' (for small doping 8, the change is of
order 8 ), in contrast to experiments.

Since holes cannot hop in a perfect AF spin back-
ground, the spin background has to be twisted to allow
holes to hop and to gain some kinetic energy. The general
method to treat such incommensurate magnets is to rotate
independently the spin basis at each lattice site so that the
reference frame is locally ferromagnetic. ' The Hamil-
tonian in the new reference frame is

Heven+ Hodd ~

H„„„„=—g t;~ cos(8;.J/2)f f~~b;tbj. +H.c.

(5)

+Jg [(S; n;~)(S,"n;, )
NN

+cos8;, [S; S, —(S; n;, )(S,'n;, )]],

H ~d = —g t;, sin(8;i/2) ffjtb;t (n;i" cr) b~+ H.c.
NN

+Jg sin8;qn, q (S; && SJ),
NN

where b =(bt, b~ ), the unit vector n;j is the axis required
to rotate the coordinate system at site j into the coordi-
nate system at site i, and 0;~ is the angle of rotations be-
tween the two local reference frames. In the static frus-
tration picture, one performs a mean-field factorization of
the even part of the Hamiltonian H,„„„and neglect the
odd part H~d. It is easy to verify that H„,„does not con-
serve the total spin by calculating their commutator, lead-
ing to an incorrect shape of the spin excitation spectrum.
The first term of H~d results from the local constraint: a
forward hopping hole is associated with a backAow spin
current. This term describes a dynamic frustration effect.
For t/J»1, although its average vanishes, its Auctuation
cannot be neglected. In the large S limit, a systematic 1/S
expansion which conserves spin demonstrated that the
correct spin-wave spectrum can be recovered by including
the fluctuations of Hgd. " In that case, the spin-wave ve-
locity is renormalized down by hole hopping. In the small
doping limit, the leading renormalization comes from the
Auctuations of H~d, yielding c =ep —const x t 8/J, which
signals the instability of LRO for t 8/J —1.

In order to study the effect of small doping for the more
realistic S= & case, we make a mean-field factorization
for H„„„„and assume a simple uniform twist: n;~ =i,
8;~. =Q (R; —Rj). We take into account the local con-
straint (3) by using a Lagrange multiplier k and make a
saddle-point approximation. Now, H,„,„ is quadratic both
in Schwinger boson and slave-fermion operators. Since
for small doping incommensurability can change the mag-

I

sk = t (cosk „+cosk, , ) —p,
hq =A(cosq, +cosq, , ),

(8)

and where X, and 5 have the same value as for 8=0. In
Eq. (8), p is the chemical potential and is determined by
the hole density, while t is the effective fermionic hopping.
For small doping, the fermionic band is narrow: When
there is long-range order, t —t 8/J; without long-range
order, it becomes of order 8 . For H~d, we only retain the
first term, because the second term, of order sino;~ —8,
gives a correction to S*of order b .

H~d =— g 8(k) —k2+ k3 —k4)
1

kl, k2, k3, k4

zx gkq —k3f k)fkpk3rr bk4 ~

where the coupling constant is

(10)

gk = —2t [sin( —' Q„)sink„+sin( —,
'

QJ)sink~, ]

= —2t(sink„+sink~, ) .

Our starting point is the effective Hamiltonian (7)
+ (10). In a state with LRO, Hodd includes terms involv-

ing boson condensate bk-p . These terms reduce to
effective three-particle interactions that describe the pro-
cesses of spin-wave decay into particle-hole pair. These
terms are not responsible for the destruction of LRO in a
self-consistent treatment. There are two reasons for this.
First, when the critical doping for destruction of LRO is
approached, which is the region we are really interested
in, this type of interaction becomes vanishingly small be-
cause (bk -p ) goes to zero. Second, for small doping only
virtual decaying processes for spin waves are allowed by
this type of interactions which lead only to the softening of
spin-wave excitations. "' It mainly reduces the spin in-
teraction strength J, which has little effect on the deter-
mination of the magnitude of the ordered moment. For
example, the order moment is independent of J in pure 20
AF. For these reasons, only the four-particle interactions
of H~d which allow real decaying processes for spin exci-
tations will be considered in the following. In the presence
of interactions (10), the full Schwinger boson Green's
functions can be represented in terms of the self-energy
matrix Z(iv„,q),

netization only by an amount of order b', we can simply
approximate the bosonic part of H,„„by the mean-field
AF Hamiltonian to get

H„„,„=gekfkfk+g [Xbqt bq + 2 hq(bq b-q- +H.c.)],
k q, cx

(7)
where

(bq (iv )bq (iv )) (bqt (iv )bt
q ( iv ))—

(bq (iv )b —q — ( iv )) (b —
q — ( iv )b q ( iv ))——

i v„—A,
—

ZP~ (iv„,q) —
Aq

—ZP2(iv„, q)
Aq Z21(iv„,q) —i v„—k —Z22( —i v, —q)

(12)
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In the absence of magnetic field, Z~ ~(iv„,q) =Z22(iv„, q),
Z)2(iv„,q) =Z2((iv„, q), and the self-energies do not de-
pend on spin so that the superscript cr will be omitted. In
general, the imaginary parts of the self-energies do not
vanish, and the Schwinger boson spectral density is no
longer a Dirac function, but is broadened. Nom, the im-
portant point is that this broadening increases the boson
occupation number nq for q~o.

Let us show this by using the following simple illustra-
tion. In the mean-field AF,

I

n qo' 7

APe—
1

CO J toe
dco ncaa (co)S(co 2 coq2) ———,

(13)

where coq =(k —hq) 't is the spin-wave spectrum,
nti(co) = I/(e~" —I ) is the Bose distribution function, and
co,. is the maximum spin-wave energy. The first term of
(13) k/coq redistributes Schwinger boson spectral weight
due to quantum fluctuations. It cancels out in the spectral
density sum rule, which is a direct consequence of the
Schwinger boson commutation relation. When the spec-

I

trum is broadened, let us assume for simplicity that the
Dirac function becomes a Lorentzian distribution:

cl(CO' —
COq2) ——1 I

( 2 2)2+I 2

The normalization factor Ã is necessary to ensure the
sum rule. If we assume that the self-energies have an ex-
pansion in some small parameter e (in our case
=t 8/J ) and keep only the first-order terms, the
broadening I is proportional to e. Usually, this kind of
expansion does not satisfy general sum rules to first order
in t. and one needs to include contributions of the self-
energies of order e to cure it. However, when one calcu-
lates a quantity averaged by the spectral density, one can
prove that using the spectral density calculated from the
first-order self-energies only but with a normalization fac-
tor yields a result that is accurate to first order in e, and
this is what we do here. We note that the variable in-
volved is co, due to time-reversal symmetry in AF state.
This broadening increases the first term of (13). This
means that the quantum fluctuations are enhanced. To
see it, we can calculate, as an example,

]/2
CO

dco —,=I+a,r/~,'+, r« I,I

(~2 ~2) 2+ I 2

APc I
dco 2

4o (~2 ~2)2+I 2
q

&f„ f,&. = k =(k, 1 co„)

+
~ ~ ~ e~a s ~ ~ ~ ~

+ +(bk b k)0

Z ii(k) = ~ ~ ~ 4 II ~ ~ ~

Z i2(k) =

FIG. l. Bare Green's functions and RPA Schwinger boson
self-energies.

For our practical problem, co, —O(J+t). Taking coq/co,
=0.5, we have aq=0.93. The enhancement is stronger
for smaller coq. So, the broadening of the spectral density,
which is measured by I, leads to an increase of the boson
occupation factor, hence, to a decrease of the magnetiza-
tion 5*. In the actual problem, the broadening I depends
on the frequency co and the momentum q, and we must
resort to numerical calculations, but the essential physics
is the same.

Let us now turn to a more quantitative approach and
calculate the self-energies for our model. For small dop-
ing, the bosonic self-energies can be expanded in terms of
doping 6. We have calculated the RPA self-energies as-
suming a gapless bare bosonic spectrum (Fig. 1) and re-
tained only the terms linear in 6. The imaginary part of

I

the self-energies is then given by

E2
Z,"ii(v, q) = Z,p(v, q)+O(8 ), a,P=1,2, (14)

and the real part is obtained from it by using the
Kramers-Kronig relations. Substituting the self-energies
calculated this way into (12), we have calculated the re-
normalized boson occupation numbers nq, from which we

get S according to

S*(a,t/J) =S ——— gn .,
6 1

2 2Wq, . q

1
nq = dvntt(v)Im(bq (v+le)bq (v+ie)) .

Z'4

(15)

As discussed above, this calculation includes all contribu-
tions linear in t 6/J, assuming that nq has an expansion.

We mentioned before that t is small. After taking into
account Fermi statistics, the result of the calculation is in-
sensitive to the value of t, so long as t/J«1. So, ef-
fectively one can take t =0. Besides, Z" depends on 6 and
t/J only through the ratio t 6'/J to the first order in 6
(actually, it is t 6/A, 5=1.16J for 2D AF), so that the
various curves S*(b,t/J) scale with each other. The nu-

merical results are shown in Fig. 2. Extrapolating from
the calculated small doping results, the long-range order is
destroyed for t 8/J —0.3. Taking t/J =3-4, the re-
quired doping is about 1%-2%. So, in the strong-coupling
regime t/J)&1, where the fermions are very mobile, the
destruction of LRO is expected to occur mell before
6'=0.6, the value predicted in the static frustration pic-
ture.
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FIG. 2. The staggered magnetization vs doping for various
values of parameter t/J

wavelength) we expect the inverse correlation length g
to be proportional to Imcoq-t JZ/J. The scaling g—Wb is precisely what was found experimentally. "

To summarize, we have calculated the effect of hole
doping in a 2D spin- 2 antiferromagnet to first order in 6.
The main eff'ect is a reduction of the ordered moment sug-
gesting that, for large t/J, the destruction of LRO occurs
for very small doping. The most direct extension of this
work would be to include the incommensurability predict-
ed by various authors. ' Let us emphasize again that
this effect is of order 8 and will not modify qualitatively
the main result of the present work. However, the sym-
metry of the incommensurate state is still controversial: If
only H„„„is taken into account, one finds a pitch vector Q
along the diagonal (Q =Qy), while the weak-coupling
approach, for example, that of Schulz, ' predicts a pitch
vector Q along the x and y axis, in agreement with experi-
ments. ' It would be interesting to see whether, within
the present approach, a consistent analysis of the 6 con-
tribution, including H~d, reproduces this latter result.
Work is in progress along these lines.

Beyond the critical doping where LRO is destroyed, we
expect that a gap gradually opens up in the Schwinger bo-
son spectrum. For small gap, the spin-spin correlation
length will be effectively determined by the imaginary
part of the spin excitation frequency. From (14), if we
naively assume Imtoq —t 8/J, then for small Retoq (long
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