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Exact relations between cluster properties and thermodynamical properties are obtained for an
Ising spin glass. The size of the clusters diverges at a temperature higher than the spin-glass
transition. The clusters represent fiuctuations that interfere with each other giving rise to net
correlations of much shorter size than the typical cluster radius. A frustrated-percolation model is
introduced that is related to the Ising spin glass as standard percolation is related to the Ising model.

The description of fluctuations in terms of geometri-
cal clust, ers has been the object of intensive study for
many years. 8 It is well known that in an Ising model
the na'ive definition of clusters made of nearest-neighbor
(NN) parallel spins is not satisfactory to describe the cor-
relations. Such clusters are present even at infinite tem-
perature where the correlations are zero. A more con-
venient definition of a. cluster (also called droplet) was
given for the NN Ising model with zero externa) field by
introducing bonds between NN parallel spins, each bond
being present with probability p given by

of a singularity in the free energy at T& is discussed. By
developing the cluster formalism, we will also introduce a
frustrated-percolation model that is related to the Ising
spin-glass as ordinary percolation is related to the pure
ferromagnetic Ising model.

Before we consider the spin-glass case, it, is convenient
to recall briefly the cluster formalism and its connec-
tion to the thermodynamical properties for the pure Ising
model. Following a recent approach we consider the NN
Ising Hamiltonian in the following form:

H= 1 ) —(s, s~ —1),
(i j)

where J is the NN spin interaction. Two spins belong
to the same cluster if they are connected by at least one
chain of bonds. Using a Hamiltonian formalism based on
a dilute Potts model it is possible to show4 that the size
of these droplets diverges at the Ising critical point with
Ising exponents and therefore they represent, regions of
correlated spins. These results were generalized later
to t,he q-state Potts model. More recently a more di-
rect, approach enabled us to establish exact relat, ions
between connectivity properties and thermodynamical
properties without using the dilute Hamiltonian formal-
isr11. These clusters, that are related to the Kast, eleyn-
Fortuin formalism of the q-state Potts model, have been
employed by Swendsen and Wangt tt (SW) to develop a
cluster dynamics which has the property of reducing dras-
tically the critical slowing down. This dynamics flips in
one step all the spins in the same cluster without having
to wait for t, he correlation to propagat, e. In this paper
we want to extend the above definition of a cluster to
the Ising spin-glass and relate their connectivity to the
thermodynamical properties. It will be showrl that, these
clusters represent interfering fluctuations that reduce the
spill-spill correlat, lolls t,o a I'allge Hlucll shor'ter' t, hall t, he
typical cluster size. This result explains why the SW dy-
namics, as it stands now, is not e%cient in the spin-glass
problem even t,hough it is in the Ising case. The size
of the clusters diverges at a temperature T& higher than
the spin-glass temperature TsG. The possible presence

where s, = +1. For any configuration of spins we intro-
duce bonds only between NN pairs of parallel spins with
probability given by (1). The weight W({s,},C) for a
given configuration of spins {s,}and bonds C is given by

where
I

C
I

is the number of bonds in the configuration
C, and

I
B

I
the number of absent bonds between parallel

spins. From the Hamiltonian (2) e ~"T = (e 2~~~T)~D~,

where
I

D
I

is the number of NN pairs of antiparallel
spins. Using (2), thP wPight (3) can be written in the
following way:

6~t
I

(z,~) qc

where
I

A I=I B
I +

I
D

I
is the total number of absent,

bonds. The product over the Kroenecker delta b, , takes
into account the condition that the bonds (i, j) in the
configuration C are present, only between parallel spins;
otherwise the weight is zero.

It is possible to prove the following relations, using
(4).3,9

where y,
'" = 1 or 0 depending whether or not site i

belongs to the infinite cluster and p, z
——1 or 0 depending

whether or not i and j are in the sanie cluster, n~,
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(s, ) is the magnetization at, site i, P; = (p,'" ) is the
probability that site i belongs to an infinite cluster (for
a system of infinite size these quantities are independent
on i,), and p, &

—(y,z) is the probability that i and j are
in the same cluster; (.. .) = P . . .W(C, (s;))/Z stands for
the average over all spin and bond configurations with
weight given by (4).

The partition function Z can formally be written in

two ways. By taking first the sum of (3) over the allowed
bond configurations, we have the usual expression Z =
pf, l

e ~" . Alternatively from (4), taking first the
sum over the spin configurations, Z can be expressed in

the Kasteleyn and Fortuin formalism:

IcI(1 „)I~I wqc1

C

Here q = 2 and q ~ & is the number of configurations
of spins compatible with the bond configuration C and
N(C) is the number of clusters in the bond configuration
C. For any value of q in (6) one obtains the partition
function for the q-state Potts model.

From (5) it, follows that the magnetization and the per-
colation probability go to zero at the same point. There-
fore the Ising critical point and the percolation point of
the clusters coincide.

We now show how to extend the cluster definition and
their relations to the thermodynamical quantities for the
Ising spin-glass model. We consider the NN Ising-spin-
glass Hamiltonian in the following form:

H=) (J,—, ss, —
I J,, I),

(i j)

where the NN interaction J,j ——+J are iandomly dis-
tributed and the constant in the Hamiltonian has been
chosen for convenience in such a way that, t, he energy
between two spins satisfying the interaction is zero and
—2J if they do not. A concept crucial in spin glasses
is frustration. Frustration occurs when for a given re-
alization of interactions it is impossible for all the spins
to satisfy at the same time their mutual interactions so
that J;js;sj ) 0. Frustration occurs if and only if there
is at least one loop which contains an odd number of in-
teractions. For a fixed configuration of interactions the
average magnetization at site i is given by m, = (s, )~,
where (.. .)g stands for the thermal average for a fixed
configuration of interactions (J,z). For high tempera-
tures m, = O. For low temperatures the spin-glass phase
is characterized by the Edward-Anderson order parame-
ter: yE~ —~ Q, (s, )&, where JV is the number of spins
and the bar stands for the average over all the interac-
tion configurations. qEA is diAerent from zero in t, he spin
glass phase and goes to zero at, the spin-glass temperature
TsG, Similarly one defines the pair correlation function:
y, , = (s,s, ) J —(s;)g(sz)g. However, since the sites can
be positively and negatively correlated, one defines more

appropriately C;j —
g, , which is related to the Edward-

Anderson susceptibility, ifEA
—p C,&. This quantity

diverges at Tgq and reiiiaiws dIvergent, foi all teiiipera-
tures below TSG.

In the Ising spin glass, for a given realization of in-
teractions (J, z ) and a given configuration of spins, the
clusters are defined by putting bonds only between those
pairs of spins that satisfy the interaction J,j s, sj ) 0, the
bond probability being given by (1). Two spins are in the
same cluster if they are connected by at least one chain
of bonds. (See Fig. 1.) Following the previous f'ormalism
the weight for each configuration of spins (s;) and bond

can be shown to be given by

W((s ) C)

pl &
I (1 p) I

&
I

~&,j~qzF (m, n) qc„

(8)

As in (4) I
A

I
is the total number of absent bonds, Cy

and C~ are the subsets of C made of bonds present on
top, respectively, of ferromagnetic and antiferromagnetic
interactions. The double product takes into account the
fact that the weight (8) is zero whenever the bonds in C
are not inserted between spins satisfying the interaction.
As a consequence those sets of bonds C which contain
a frustrated loop have always zero weight since there is
never a configuration of spins which can be consistent
with such bonds. Following the same procedure as for
the ferromagnetic Ising model, it is straightforward to
prove the following relations:

(s') = (~l1")J —(~'1') ~

( ) = (~ II)
—(~ Il)

where p,'&" (p,"&") is 1 or 0 depending whether or not
site i is up (down) and belongs to the infinite cluster;

(p,&II) is 0 or 1 depending whether or not i and j
are parallel (antiparallel) and belong to the same clus-
ter; P, f = (p,'& )g (P,1 = (p,'& ) is the probability that
i is up (down) and belongs to the infinite cluster and

p;z II
= (p,z. II) g (p;z II

= (p;z )z) is the probability that the
spins i and j are parallel antiparallel) and belong to the
same cluster. The angular brackets stand for an average
over all configurations of spins (s;) and bonds C with
weight given by (8).

r ~~&MAL

FIG. 1. (a) Example of a, configuration of up aud down

spins, represented, respectively, by filled and empty circles.
Straight and wavy lines indicate ferromagnetic and antifer-
romaguetic interactions, respectively. (b) Clusters obtained
from the configuration given in (a) by putting bands {heavy
lines) between spins satisfying the interaction with a proba;
bility p given in Eq. (1).
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As for the Ising ferromagnetic case, the partition func-
tion for a given realization (J,~) can be written in the
standard way, Z(( J,~)) = P&, I e H~ "T; or otherwise,
by summing (8) over the spin configurations first Z can
also be written

(a)

where q = 2 and the star means that the sum must be
taken only over those configurations C that do not con-
tain frustration.

We note that in contrast to the ferromagnet, ic case, the
thermal quantities are related to differences of connec-
tivity quantities. Therefore m, = 0 (namely qEA ——0)
implies P;~ —— P, ~, but it does not necessarily imply
P, ~

——P;~ —— 0. Consequently the density of sites in
the infinite cluster

p'" = —) (P, T + P,i)

(b)

FIG. 2. Clusters contributing to correlations. In both
clusters site i is sending signals to site j. The signals, however,
have opposite sign and the effect is null.

can go to zero at a percolation temperature Tz & TSG.
For example, for the cubic lattice, with j/Ii = 1, re-
cent numerical calculations showed that such percola-
tion temperature occurs at a value T& 3.92 below the
critical t, emperature of the pure Ising model T, 4.5 and
well above the spin-glass transition TSG 1.2, with criti-
cal exponents numerically indistinguishable from random
percolation exponents.

Since the size of the clusters does not diverge at the
spin-glass transit, ion, they no longer represent correlated
regions of spins. What is their physical meaning? One
can still consider these clusters as fluctuations that con-
tribute to the correlations as in the pure ferromagnetic
Ising model. However, in the ferromagnetic case, two
spins i and j that belong to the same cluster have al-
ways the same relative orientation: either both up or
both down. Therefore if the spin i is fixed to be up, j
is also fixed to be up, and this gives rise to a net corre-
lation between i and j. In the spin glass, we can have
two distinct clusters with i up and j up in one cluster
and i still up and j down in the other cluster (see Fig.
2). Therefore although both clusters can be viewed as
fluctuations that can arise in the system, these Huctua-
tions can interfere. Due t, o this interference eftect the net
correla. tion is greatly reduced compared t,o the average
size of the clusters. For this reason the cluster size does
not coincide with the size of the correlated region.

Does the percolation transition correspond to a singu-
larity in the free energy, This is certainly the case for the
ferroniagnetic Ising model where the crit, ical temperature
and the percolation temperature coincide, I; = 'I&. A di-
rect evidence of such singularity at T&, can be found in
the particular formulation of the partition function (6),
expressed in terms of the cluster number %(C). Since
at the percolation temperature Tz t, he cluster number is
singular, it, follows that the free energy must also contain
this singularity.

In the spin-glass case, using the cluster formulation,
we have written the partition function in a similar way
(ll), and by the same argument the free energy should

also have a singularity at the percolation temperature T&.
However, this singularity would disappear if the singular
part of the free energy contains a prefactor Q —2. Nu-
merical work is under way to investigate the existence
and the nature of this singularity.

I"rustrated percolation model. Finally we discuss the
partition function (11) with q g 2. Unlike the corre-
sponding pure ferromagnetic case other values of q do
not give the partition function of the spin-glass q-state
Pot ts model. However, it is still of interest to extend (11)
to all values of q. As a special case in the limit q = 1 we
obtain what we call the "frustrated-percolation model. "
This is defined in the following way: For any given config-
uration of interactions (J;~} and for a fixed value of p, a
bond configuration C which does not contain frustration
has a weight given by

while those bond configurations which contain frustra-
tion have zero weight. This is a percolation problem
which is related to the spin-glass model in the same way
as standard percolation is related to the Ising model.
For p = 0 there are only one-site clusters. For p ~ 1 the
ground states are obtained by maximizing the number of
bonds in the lattice with the constraint that the bond
configuration does not contain frustration. To stress
more explicitly the analogy with the Ising spin glass we
map a value of p with a temperature given by (1) and
each configuration of bonds with a configuration of spins
obtained by fixing at random in each cluster one of the
two configurations of spins which satisfy the interaction
in that cluster. i (See Fig. 3.) It is easy to realize that
the ground states at T = 0 (p = 1) and the disordered
state at T = oo (p = 0) coincide with those of the Ising
spin glass. For intermediate values of T we expect a
behavior similar to that of the Ising spin glass, with a
spin-glass transition temperature and a percolation tem-
perature. As for the dilute quenched Ising ferromagnet,
it can be shown that the free energy E = (N(C)) ln 2,
where (N(C)) is the average number of clusters in the
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(b)
41

~ ~

frustrated-percolation problem. Therefore the free en-

ergy has a singularity at T& identical to that of the aver-
age number of clusters.

The advantage of studying the frustrated-percolation
problem is that it is essentially a geometrical problem
and as in percolation there is no slowing down. However,
the main problem consists in implementing an efFicient
algorithm to generate the bond configurations that do
not contain frust, ration.

Another interesting case is the limit q —0 which de-
scribes tree percolation, ' In this problem the only con-
figurations are those without loops. Since these config-

FIG. 3. Example of configurations made of three bonds
with weight p (1 —p) (a) and two bonds with weight p (1 —p)
(b). Straight and wavy lines represent positive and negative
interactions, respectively; heavy lines indicate t, he presence
of bonds. There is no allowed configuration of four borids
since in this case it would necessarily contain the frustrated
plaquette. For each configuration of bonds, also shown is t, he
set of all spin configurations obtained by fixing at random in

each cluster one of the two spin configurations which satisfy
the interaction in that cluster.

urations do not contain frustration, the cluster distribu-
tion and the percolation properties are the same as for
standard tree percolation. However, by introducing the
spin variables as described before one can calculate other
quantities typical of a spin glass. In principle one can also
calculate deviations from the tree problem by introduc-
ing one or more loops into the problem in a systematic
way.

In conclusion we have presented exact relat, ions be-
tween cluster properties and thermodynamical proper-
ties in a Ising spin glass. These clusters, which represent
fluctuations of spins unlike the Ising model, interfere and
give rise to spin correlations with a range much shorter
than the typical cluster size. This property explains why
the Swendsen and Wang dynamics is not so efIicient as
in the Ising case. An eScient dynamics should introduce
a way to break further apart the clusters so that the
cluster size coincides with the correlated region of spins.
Finally we note that, while the clusters in the Ising model
well represent the droplets introduced by Fisher' to de-
scribe the behavior near critical points, the analogous
clusters introduced here for the spin glasses should not
be confused with the droplets introduced by Fisher and
Huse, which describe the critical behavior at the spin-
glass transition.
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