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We consider the magnetic properties of a strongly correlated electron system within the slave-boson

approach. A finite concentration of holes destroys the long-range antiferromagnetic order but leaves

short-range magnetic correlations intact. These correlations renormalize the interaction vertex between

nuclear spin and the spin-carrying quasiparticle; the spin response functions thereby acquire a tempera-

ture dependence which is qualitatively similar to that observed in both NMR measurements and

neutron-scattering data in high-temperature superconductors. The temperature dependence of 1/T, T is

very prominent on the copper site, the NMR relaxation rate on the oxygen site obeys the Korringa law,

whereas the spin correlations measured by neutron scattering show little temperature dependence.

I. INTRODUCTION

A growing body of experimental evidence indicates
that the layered cuprates display short-range antiferro-
magnetic spin correlations at any doping and at all
reasonable temperatures. These short-range correlations
result in several peculiar physical properties of these ma-
terials: they are responsible for the NMR, NQR, and
Knight shifts, and especially for the non-Korringa tem-
perature dependence of the copper spin-lattice relaxation
rate.

The qualitative idea is by no means new: Walstedt and
Warren speculated' that such correlations play an impor-
tant role for NMR in these materials; Hammel et al. ex-
plained qualitatively the difference between Cu and 0 re-
laxation rate (this idea was later elaborated by Shastry );
Millis, Monien, and Pines developed a quantitative phe-
nomenological one-Quid model which neatly describes the
data. The existence of short-range AF correlations is also
indicated by available neutron scattering data on lightly-
doped cuprates: Birgeneau et al. observed antiferromag-
net correlations peaked near ( m. /a, m. /a ) in a
La, ~5Sr0,5Cu4 sample with a correlation length of ap-
proximately 3—5 lattice constants; similar results were
also obtained by Rossat-Mignon et al. on semiconduct-
ing samples of YBa2Cu306 4, and more recently by Tran-
quada et al. on oxygen deficient superconducting sam-
ples of Y-Ba-Cu-O. Presumably the correlations decrease
with doping and so have not yet been observed in
YBa2Cu 307.

On the other hand the photoemission data of Ref. 9 in-
dicate the existence of a large well-defined Fermi surface,
at least in YBa2Cu307, in which, we believe, short-range
AF correlations coexist with a sharp Fermi surface. We

believe this can be understood by realizing that even the
most heavily doped materials, such as YBa2Cu307, are
not so far from the metal insulator transition where the
material has long-ranged antiferromagnetic order. Even
though the low-energy, long-wavelength physics changes
drastically with doping, the short-range order should be a
smooth function of doping. Thus, as the dopant concen-
tration is decreased, the antiferromagnetic (AF) correla-
tions should become longer and longer ranged in space
and time until eventually the material becomes an insula-
tor.

Two alternative scenarios of the metal-insulator transi-
tion are known. In the classical scenario proposed by
Mott' the formation of long-range magnetic order pro-
duces a gap in the electronic spectrum. In this scenario
the major changes to the electronic system are due to the
changes in its spectrum near the Fermi surface. The
number of charge carriers coincides with the number of
electrons and, thus, depends lightly on doping until the
gap is formed. This feature obviously contradicts the ex-
perimentally observed doping dependence of the charge
carrier density measured by the Hall effect, " which
shows that at small doping the charge carrier density is
close to the density of holes introduced by doping and de-
viates from this value only at larger doping. (A more so-
phisticated version of Mott scenario has been developed
by Kampf and Schrieffer. ' They assume the existence of
slow antiferromagnetic Auctuations in the doped materi-
al, which produce a pseudogap in the electron spectrum
even in the absence of true long-range AF order. ) Fur-
ther evidence that the number of charges is equal to the
doping concentration comes from magnetic penetration
length measurements' which directly measures the ratio
n/m* of the charge carriers. Moreover, no substantial
doping dependence of the effective mass of the charge
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carries was observed in these materials, which also con-
tradicts the classical scenario. In the other scenario pro-
posed by Anderson' and developed in a number of other
papers (see, for instance, Refs. 15—17) the major changes
to the electron system are due to the changes in the over-
lap between the bare electron and the charge and spin
carrying quasiparticles; the overlap goes to zero at the
metal-insulator transition. In Fermi-liquid language this
means that at the metal-insulator transition the residue of
the electron Green function goes to zero, although the
bulk of the spectrum varies continuously. In more
modern language, this can be reformulated as a spin-
charge separation with the spinons carrying the spin and
the holons the charge. ' ' The number of holons in this
scenario coincides with the doping concentration x
whereas the number of spinons is 1 —x. Since the spinons
are Fermi particles in this scenario, they form a large
Fermi surface, depending lightly on doping, which is in
better agreement with the aforementioned photoemission
and penetration-length experiments.

The early discussions of the spin-charge separation
were either entirely based on mean-field approxima-
tions' ' (MFA) or took into account only Gaussian fluc-
tuations around the mean field solution. ' In these treat-
ments the formation of the short-range AF correlations
was missed due to the MFA on which they were based.
In this paper we shall try to incorporate the short-range
AF correlations into the spinon-holon picture and discuss
the resulting physical properties.

We shall argue that short-range AF order survives
when the long-range order is destroyed either by frustra-
tion or by a light doping in agreement with Refs. 19—22.
In spinon language, only the spinons close to the Fermi
surface can be regarded as quasiparticles with a large re-
laxation time. The spinons deeper in the Fermi sea in-
teract strongly with each other and their self-energies ac-
quire large imaginary parts, so the spinons do not exist as
we11-defined elementary excitations. Instead, at these
large energies and momenta, spin-wave excitations are
better defined. We shall see that the cross-over scale be-
tween these two behaviors is determined by the changes
in the effective spin interactions induced by the holons.

To deal with this situation we use an approximation in
which we consider the spinons close to the Fermi surface
and far from it separately: we construct "spin" operators
from the spinons far from the Fermi surface and study
the effect of the interaction between these quasispins and
the spinons in perturbation theory. Finally, we estimate
the measurable spin correlators, such as the equal time
correlator (S(0)S(R)) and the spin susceptibility, which
is measured by the NMR relaxation time. We find, that
the correlation length which enters the equal time spin
correlator is inversely proportional to the doping density
and is weakly temperature dependent, whereas the
copper NMR relaxation time decreases with temperature
roughly as 1/&T.

II. ANTIFKRROMAGNKTIC CORRKI.ATIONS
IN THE RVB STATE

To make these considerations more concrete we start
by considering the properties of the t-J model which is

probably the simplest model of holes in an antiferromag-
net

H= —,'g[ —t;c; c +J;SS ]

subject to the single occupancy constraint c, c,
~1 (a=1,2).

In these systems, holes move fast (we assumes t ~ J,
otherwise phase separation is likely to destroy the in-
teresting physics ) and disorder the nearby spins sur-
rounding them. The classical Neel state thereby becomes
a very poor approximation to the true spin state. We do
not have a quantitative theory describing the destruction
of the Neel order by holes. Such a description may be
based on the notion of the resonating-valance-bond
(RVB) state introduced by Anderson. ' In this state,
the low-energy excitations are fermions with spin —,

' ("spi-
nons"). At large doping the spinons acquire electrical
charge and become undistinguishable from electrons.
The RVB states become the exact ground states for the
large-X generalizations of model (1), in which spin index
a runs over X values instead of two. ' '

We consider here only RVB states where the spinons
form a fermi sea bounded by a large Fermi surface.
These states are stabilized by doping. The total number
of spinons is governed by Luttinger theorem which im-
plies that it is equal to the number of sites occupied by
spins in the magnetic system. As in Fermi-liquid theory,
the spinon states close to the Fermi surface are similar to
the states in a Fermi gas.

We cannot prove that such states are close to the
ground state of (1) for %=2. However, assuming that it
is true, one can derive the effective Lagrangian describing
the low-energy physics of this state and study its magnet-
ic properties. We will show that such a state always be-
comes unstable at large scales in the limit of zero doping
and some magnetic long-range order is spontaneously
formed. Finite doping stops this instability at large scales
and stabilizes the RVB state. However, at shorter scales
the AF correlations are left intact.

The derivation of the effective Lagrangian describing
the low-energy physics can be found in a number of pa-
pers (see, e.g., Refs. 15 and 17). To derive it, one intro-
duces auxiliary fields which describe the fluctuations of
the bond variables 6; =c; c to decouple the exchange
term in (1). In the large X limit the amplitude Iluctua-
tions of these fields around a value 5; =6 are small and
short ranged. Neglecting them one finds the Lagrangian:

L= f [V—i(A+a)] f + b [7' ia] b—
2mF 2mb

+P(b b+fQ —1),
where a is the continuum limit of the phase of the bond
variable 6; =Aexp(ia; ), A is the external electromag-
netic field, and P is a Lagrange multiplier that plays the
role of a longitudinal scalar potential. Its fluctuations are
also short ranged. The efFective Lagrangian (2) describes
the subsystem of fermions (f ) and bosons (b ) interact-
ing with a gauge field. The number of bosons coincides
with the number of holes introduced by doping. The in-
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teraction with the gauge field is very important. The
transverse gauge field (a) describes an overdamped col-
lective mode which mediates a long range interaction be-
tween the Bose and Fermi particles. '

A. The undoped case

D ( )
@~9 P5 —qq/q

x q'+r(q)I~I (3)

We consider the undoped case first. The Lagrangian
(2) describes a dense liquid of interacting fermions. The
interaction is mediated by the gauge field. The longitudi-
nal part of the field is short ranged. This part of the in-
teraction is repulsive, and small in the limit 1V~ ~. We
assume that it does not result in qualitative changes of
the state even at X=2. We neglect this interaction
below. The transverse part is long ranged and far more
dangerous. The interaction mediated by it is attractive
between fermions moving in the same direction, but
repulsive between fermions moving in opposite direc-
tions. Thus, this interaction does not lead to a Cooper in-
stability, but can result in an instability in the particle-
hole channel. This instability corresponds to the forma-
tion of a SDW.

Here we estimate this interaction and show that it,
indeed, results in an instability with wave vector 2pF, i.e.,
the formation of a magnetic state. To simplify the discus-
sion, we make the approximation of a circular Fermi sur-
face. The Green function of the transverse gauge field a
was computed in Ref. 17. At small frequencies and mo-
menta it has the general form

where gF is the orbital part of the susceptibility of the
Fermi system with respect to the internal "magnetic"
field and I (q) is its damping coefficient. The "suscepti-
bility" of the Fermi system can be approximated by its
values in a Fermi gas:

XF
24mmF

(4)

where X is the number of fermion species, X=2 for the
physical systems. The damping coefficient depends
strongly on q. The main part of the interaction is mediat-
ed by the low-frequency "photons" with co«UFq. At
these frequencies 1 (q ) describes Landau damping, which
for a Fermi gas is

I (q)=y/q, y =NpF/(2~) .

Both estimates (4) and (5) neglect Fermi-liquid correc-
tions.

In our estimate of the effect of the gauge field on the
magnetic correlations we shall restrict ourselves to the
simplest ladder approximation, neglecting the corrections
to the particle Green function and renormalization of the
particle-gauge field interaction. Within this approxima-
tion one should solve the problem of the spinons interact-
ing with the holons via the gauge field. The interaction
mediated by the gauge field is retarded. Thus, we must
solve the Bethe-Salpeter equation for the particle-hole
pair, or in other words find their scattering amplitude by
solving the Dyson equation for the renormalized vertex
function V& at zero external frequency:

V&(s,p, s',p') = Vo(E,p, E',p')+ g f (dq) 8'(s,p, co, q) V&(E+co, p+q, E',p'), (6)

W(E,p, co, q)= D„„(q,co)(p +q /2)„( p+Q+q/2)„= 1 1
7 P P, g l 8+CO p+q l K+CO g+p+q

1
Vo(e p ) = D„,„(p p E E )(p+p )„(p +p +Q )„

m

where g =p /(2m )
—p, and Vo is the scattering ampli-

tude in the Born approximation.
The kernel of this integral equation becomes large if

both g and g +Q are small. Thus, attraction between
particles has maximal effect at Q=2pF. The particles
most strongly affected by this interaction are those close
to the Fermi surface which have p= —Q/2. The insta-
bility appears first at these values of Q and p. For these
Q,p the main contribution to the integral (6) comes from
q, which are nearly parallel to the Fermi surface and
transverse to Q,p. We neglect the dependence of D(co, q )

on the small longitudinal component of q, and perform
the integral over this component:

where p, q are now only the components of p, q transverse
to Q. The vertex function increases at small E,p. To
make an estimate of the eigenvalue of the integral opera-
tor in the right-hand side of (6) we replace it by a con-
stant that gives us a lower bound for this eigenvalue. At
c.=p =0 the sum of (9) over ai, q diverges logarithmically.
Evaluating this sum for finite co, q with logarithmic accu-
racy we find:

p~ln[minIp ', E '",Z '"]]
J (dq) g W(s,p, co, q)=

(10)

U/q sgn( s+ ai )8'(E,p, co, q ) =
2[E+co+i(p+q) /(2mj )](yIcoI+yq )

(9)

The estimate (10) shows that at low temperatures, this ei-
genvalue becomes large and the ground state becomes un-
stable with respect to the formation of a spin-density
wave (SDW). Clearly, this instability is due to the singu-
lar behavior of the gauge Green function (3) and the ex-
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istence of gapless fermion excitations.
This is, of course, a singularly awkward way to de-

scribe a magnetically ordered state. However, we will see
that it allows us to deal simply with the moderately
doped state; the singular behavior of the photon is re-
moved at finite doping which destroys the long-range an-
tiferromagnetic order.

B. The doped case

There are two scenarios we have considered for the de-
struction of the antiferromagnetic order.

(i) In the first, which is more likely relevant to reduced
T, materials such as oxygen deficient Y-Ba-Cu-0 or
La2 Sr„Cu04, the holes are quite dilute and are strong-
ly scattered at all relevant temperatures above T, . A hole
gains a delocalization energy in the spin state where all
spins are ferromagnetically aligned. Thus, the only effect
of doping is to introduce some effective frustration into
the spin system which causes pairing of the spinons and
the formation of a state that could be described as a
strongly fluctuating spinon superconductor or, in the
strong coupling limit, as a lightly doped dim. er liquid
(the dimer represents a Cooper pair of spinons). In this
case, a pseudogap 6, should open in the spin excitation
spectrum below a spinon pairing temperature T, . The
superconducting T, & T, in this scenario is associated
with bose condensation of holons and hence should be
linearly dependent on the concentration x. While the di-
mer model adequately describes properties of the system
at energies below the pseudogap, it is wholly inadequate
at distances less than hUF/6, . At short distances and
high energies the system should look like a weakly frus-
trated antiferromagnet. We have not yet developed a for-
malism capable of treating this situation in a more de-
tailed fashion. This is an interesting regime and warrants
further study.

(ii) At moderate doping, the holons, being bosons, oc-
cupy predominantly states at the bottom of the band. In
the absence of scattering by the gauge fields, the bosons
will Bose condense at a very high temperature
T~ '-2~xmb '. The scattering by the gauge field Auctua-
tions decreases the transition temperature signifi-
cantly. In the large range of temperatures below
T~ ' the bose occupation number of the lowest energy lev-
el remains finite, so that no bose condensate is formed.
However, at small but finite frequencies the response
function of the bosons is similar to that of the bose con-

I

5 =— 'c'o c e
+ —i(p. —p )r.

I 2 P~ P2
Pl P2

(13)

where g' means that the sum is performed only over mo-
menta far from the Fermi surface: ~p

—
p~~ ~po. The

properties of the quasispin operators (13) are close to
those of usual spin operators if po « 1:

densate, and hence the bose contribution to the propaga-
tor of the gauge field can be approximated by a mass
term:

5D '=mb 'x .

This term makes the Auctuations of the gauge field
short range. At low temperatures T « Tz ', either a bose
condensate or a completely new state in which time re-
versal symmetry is broken is formed. In any of these
cases the Auctuations of the gauge field remain short
ranged. Therefore, doping removes the singularity of the
interaction, which was the reason for the SDW instability
in the first place. At large q the form of the gauge field
propagator remains unchanged. This means that holes
change the antiferromagnetic correlations only at large
scales and low energies. To estimate these scales we in-
sert the mass term into the gauge field propagator in (7)
and note that it infiuences the integrals (6)—(10) only at
small p:

p &p o= m~ /( mby) x.

At short scales (at r(po ') and high energies
(E )popo/mz), the effect of holes on the gauge field Green
function is small. The direct interaction of spin excita-
tions with holes is short ranged, its effect becomes small
at low doping and/or at large X. We thus assume it is
not essential. Thus, the effect of holes at these scales is
small and all spin correlations are the same as in an un-
doped antiferromagnet with somewhat renormalized in-
teraction constants. In the RVB theory these correla-
tions are due to the spinons far from the Fermi surface,
which interact strongly with each other at %=2. At
these scales the description in terms of localized Heisen-
berg spins becomes much more convenient.

Thus, we will treat the spinons close and far from the
Fermi surface separately. From now on, by spinons we
will mean spinons close to the Fermi surface only. We
construct "quasispins" from the spinons far from the Fer-
mi surface:

[S, ,S J~]=—g 'f(r)e ' '
c~ IE &rcr cos[r(p, +pz)] —5 pin[r(p, +pz)]]c~

p p

f(r)=5(r) — [(Pb+Po)J&((PF+Po)r) —(PI Po)ji((pr Po)r)] r=r; —r/, R =(r;+rj)/2 .Il

2m
(14)

At small rpo (( 1 the function f(r ) can be approximat-
ed by a 5 function and the commutator (14) coincides
with the usual spin commutator. Each site is occupied ei-
ther by a spinon, a quasispin, or a hole. The average den-

sity of spin carried by the spinons is small:

z
~

PopF3
I SP

(15)
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Therefore, the expectation value of the quasispin
squared is close to the usual 4. The Hamiltonian,
describing the interaction between spinons and quasispins
follows from (1):

(16)

where the sum over momenta is performed only over the
momenta close to the Fermi surface. The interaction be-
tween the spinons [omitted in (16)) is short ranged, small
and can be neglected. At short scales rpo « 1 the quasis-
pin correlations coincide with the spin correlations in the
undoped antiferromagnet. At larger scales they decrease.
We do not know the exact form of the correlation func-
tion in the intermediate region. For the following esti-
mates we will assume the simplest possible form for it:

& S(0)S(r) &
=

& S &fexp(iQ r —vr ), (17)

where Q =2pF, and &
.

&f denotes the average over
"fast" spin fluctuations that happen at short scales. We
estimate: &S&f=0. 1 and the inverse correlation length
by ~=pa. Since the average spin carried by the spinons is
small, their contribution to the spin correlator is small.
Therefore, the quasispin correlation function (17) also de-
scribes the equal time correlations of the total spin in the
system:

&S(0)s(0)&, = &S S &, = &S&', , „, . (18)
[~ +(Q+q) )

In the following we will only need the static quasispin
correlation function. The dynamics of the excitations
with large momenta involve ineractions at small length
scales only. Therefore their spectrum should coincide
with the spectrum of the spin waves: cu=ck with c-J
and hence should be important only at very high ener-
gies. For the estimates in the following Section we will
assume the simplest form of the dynamic correlation
function which satisfies this requirement and yields (18)
after being integrated over frequency:

8 vc&ss&. , =&s&f
[c (~ +(Q+q) )+co ]

At reasonable temperatures all characteristic frequen-
cies of the quasispin correlators are large compared with
the temperature: co-cmax[q, ~j =&2Jmax[q, ~j ))T;
thus, the quasispin correlators depend only weakly on
temperature. The low-energy spinon excitations are more
sensitive to temperature variations. Their existence re-
veals itself in the imaginary part of the spin correlation
functions only. These correlations are measured by
NMR experiments.

Finally, in this limit, we expect the superconducting
transition to occur when the spinons pair and the holons
simultaneously bose condense. In lightly doped materials
the transition temperature coincide with the bose conden-
sation temperature, which is linear in doping density. At
larger doping, the bose condensation temperature be-
comes larger than the temperature at which the spinon

gap is formed and the superconducting transition temper-
ature is limited by the latter. The mechanism of spinon
pairing is not clear to us at the present moment, but al-
most any spinon pairing is suppressed by the preexisting
bose condensate which converts spinons into ordinary
electrons. Thus T, should be a strong function of x:
T, -x at small x, saturates at moderate concentrations
x-xo, and then drops again. The transition x +xo, in
contrast to that at lower dopant concentration discussed
previously, should be qualitatively like a BCS transition
in that pairing and condensation occur simultaneously.

III. RELAXATIQN TIME IN NMR EXPERIMENTS

The magnetic moment of the nucleus at site n interacts
with the surrounding spins:

H„t= g A„ I„s (20)

The constants A„of the hyperfine interaction are
small, so this interaction can be treated as a small pertur-
bation. The nuclear relaxation rate is related to the spin
susceptibility by the well-known formula:

=—f (dq)A „(q)lmy (co, q) .
1 1

Ti T co
(21)

The frequency co of the NMR experiment is always
very low, so the relaxation time 1/T, is a very effective
probe of the low-energy spin excitations. In our ap-
proach, we neglect the anisotropy of the spin correlation
functions, so all components of the susceptibility are
equal: y =g. The hyperfine coupling constants
depend on the overlaps of the electronic orbitals on
different sites. We will use the simplest model in which
the spin of the copper nucleus interacts only with the
spin on the copper site, whereas the spin of the oxygen
nucleus interacts with spins on adjacent copper sites.
Thus, we simplify (21) to

1 1

Ti T co
=—f (dq) A„(q)lmy(co, q),

Ac„(q)=A, Ao(q)=8(1+cosq ) .
(22)

To evaluate the susceptibility y(co, q) we express it in
terms of the Matsubara Green function,

g(co, q ) = f dt & T,s'( t )S'(0) & exp(i cot ) . (23)

We estimate the spin correlation function (23) using a
perturbation expansion in the interaction between quasis-
pins and spinons. We restrict ourselves to the ladder dia-
grams:

D(co, q )+ II+(co, q )+2D(co, q )II+(co, q )
& T,s'S'&

9
=

1 J(q)D(co, q )I—I~(co, q )

(24)

where D(co, q) is the correlation function of the quasis-
pins, D(co, q)=& T,S S &, and II (co, q) is the spinon
susceptibility. Since magnetic long-range order is absent,
the excitations of the quasispins have a gap. Thus, the
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Imp(co, q ) = ImIIz(co, q )D (co, q ) V(co, q ),
J(q )+D '(co, q )

1 —J (q )D ( co, q )IIr( co, q )

(25)

At q =Q, D ( co, q ) becomes large, D ( co, q )J(q ) ))l. In
this range we can neglect the second term in the nomina-
tor of (25). The denominator in (25) describes the renor-
malization of the quasispin correlation function due to
the interaction with spinons. We will neglect this effect
and estimate Imp(co, q ) at q = Q by

Imp( co, q ) = Im II+(co, q )D ( co, q )J ( q ) .

We see that the contribution to the relaxation rate
coming from the vicinity of the point q =Q is strongly
enhanced by the factor D (co, q ). Far from this point
D co, q) becomes small and the susceptibility can be es-
timated by the fermion polarization loop itself. Comput-
ing the fermion polarization loop we neglect small effects
of the spinon relaxation rate and expand over co « T:

(26)

Imp(co, q ) = ImIIz(co, q )

imaginary part of the quasispin susceptibility is zero at
low frequencies:

where n (g) is Fermi distribution function. Th f
(1+cos sucosq„) suppresses the contribution from the vicinity
of the line q =m. For reasonable doping concentrations
and coupling constants J;., the vector Q lies close to this
line, so the cntribution to the oxygen relaxation rate is
substantially suppressed. Thus, we can use (27) to esti-
mate the relaxation rate at the oxygen site:

1 =2 08. v (E/),
1

where v(E) is the spinon density of states and the numeri-
cal coefficient corresponds to a spherical Fermi surface
v=mF/(2~)). This is the usual Korringa relation.

Now we consider the copper relaxation rate. The main
contribution to it comes from the vicinit f thy o e point
q=Q. Therefore, in this case we use the estimate (26).
The function D (~,q ) depends weakly on co, so we can re-
place it by D(q)=D(0, q). The function D(q) is strongly
peaked at q=Q (19). If this peak is narrow compared
with the temperature broadening of the Fermi surface
(U~lr((T), we can replace D (q) in all integrals by a 5
function: D (q ) = (2m) 8/3 (S )&Ir c 5( —Q ) Usin
the estimate J(Q)/c =2&2, which holds for weakly frus-
trated Heisenberg antiferromagnets, we find

=2Nco J o(g~+q —g~) (dp),
Bn(g )

(27) 3/2
=0.16~

T, T
(29)

At low temperatures the width of the peak becomes
larger than the thermal broadening of the Fermi surface

The beh
and the square root temperature growth (29) t t

e e avior of the relaxation time in the whole range of
temperatures is shown in Fig. 1.

The anisotropy of the Fermi surface, which happens
near half filling enhances the temperature dependence of
the Korringa ratio in the intermediate range of tempera-
tures. In the limit of a nested (square) Fermi surface (29)
becomes:

(30)

IV. CONCLUSION

~e
~s

a

I I I

0.3 0. '1 0.5 0.6 0.7 0.0

FICx. 1. NMR relaxation rate 1/( TI TA v ) for two AF
correlation lengths: solid curve I, =2.5, dashed curve L =1.5
(the latter was multiplied by factor 5).

We h
do e

e have considered the magnetic properties of li htl
oped Mott insulators. We assumed that the spin carry-

ing quasiparticles in these systems are fermions with spin
—,', which form a Fermi sea with a large Fermi surface.
We have shown that a small amount of doping stabilizes
this phase against the spontaneous formation of long-
range magnetic order, but the short-range antiferromag-
netic order is preserved.

Here we consider briefly the other possible states of the
doped materials and the applicability of our arguments to
them. The first possibility is that the fermion subsystem
has a small fermi surface, which shrinks to zero at zero
doping. This state was discovered in Refs. 16 and 34.
The gauge field fluctuations are larger in this state, ' so
that all instabilities are more pronounced. These instabil-
ities are likely to result in long-range Neel order. A
finite concentration of holes again stabilizes this state,
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leaving the short-range magnetic correlations intact.
Thus, we expect that the spin correlations in this state are
qualitatively similar to the correlations in the state with a
large Fermi surface.

The second possibility is that the state is close to one of
the dimerized states described for the undoped frustrated
Heisenberg model. In these states, spinons on adja-
cent sites form a singlet and spin excitations have a large
gap. If the dimers crystalize into a state with long-range
order, the motion of holes in this state is drastically im-
peded, so such a state can hardly exist at finite doping
without phase separation. This is why we do not believe
that this state can be used for the description of the
doped materials. Otherwise, when the dimers form a
liquid, the motion of a hole becomes easy and the phase
separation is not inevitable. It seems that this is the
only phase in which the short-ranged AF correlations can
be completely excluded self-consistently. However, it is
hard to imagine a spin Hamiltonian that does not result
in short-range AF fluctuations at all, so that these corre-
lations should be probably included in this description as
well. As discussed at the beginning of Sec. II, a version
of this state may occur at smaller values of x.

In order to incorporate the short-range AF fluctuations
into the spinon picture we separated the spinons close to
the Fermi surface and constructed quasispins from the
spinons far from it. We evaluated the physical spin
correlators in the lowest-order approximation in the in-

teraction between quasispins and spinons. At present it is
not clear to us how to go to the next order in perturba-
tion theory in which one should actually take into ac-
count the nontrivial commutation rules of the quasispins.

%'e have shown that such a scheme results in spin
correlators whose behavior is similar to that observed ex-
perimentally. In particular, the oxygen relaxation time
displays Korringa behavior, whereas the copper Korrin-
ga ratio falls with temperature as T ' . The static spin
correlation function displays no changes at reasonable
temperatures, in agreement with neutron scattering ex-
periments. This point distinguishes the present
scheme from the phenomenological model of Millis,
Monien, and Pines where the changes in the NMR relax-
ation rate were associated with the temperature depen-
dence of the spin correlation length.
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