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A theory of magnetotransport phenomena in low-density paramagnetic systems at low temperature is
proposed. The main contentions are based on considering a dissipation mechanism due to the inelastic
scattering of paramagnetic particles with transverse collective spin Auctuations. In the presence of an
external magnetic field and in the low-momentum limit the corresponding cross section may be very
large. Theoretical estimates are in good agreement with recent indirect measurements of intrabeam
scattering for cooled H atoms. The extra scattering channel results in a drastic reduction in the mean
free path and, consequently, a decrease in the thermal conductivity and viscosity, in contrast to previous
theories. In the case of degenerate Fermi systems, the calculations yield quite di6'erent temperature
dependencies compared with those given by the Fermi-liquid approach. Application of the theory to
gaseous H$, He], and dilute 'He]- He mixtures are brieAy discussed, and it is shown that the thermal
conductivity and viscosity of gaseous H $ under common conditions are expected to be roughly 10 times
less than the normal gas-kinetic values.

I. INTRODUCTION

Macroscopic properties of spin-polarized systems such
as gaseous, liquid, and solid He(', dilute He&- He mix-
tures, atomic hydrogen H J, and deuterium D $, magneti-
cally diluted Sip, etc. , are intensively being investigated
in laboratories throughout the world. ' In view of these
recent achievements, the question of how an external
magnetic field or induced spin polarization can inhuence
transport phenomena in gases and quantum fluids is
becoming more important.

The first attempts to consider such an infIuence were
based on rotational degrees of freedom. The magnetic
moment of a rotating diatomic (or polyatomic) molecule
interacts with an external magnetic field. This results in
a field dependence of the viscosity and thermal conduc-
tivity in a molecular gas, known as the Senftleben-
Beenakker effect. A general theoretical description of the
effect was proposed by Gorter, Zernike, and Van Lier,
Kagan and Maximov, etc. (see surveys ). However, the
magnitude of the effect is usually rather small, and there-
fore it will not be discussed in this paper. The main
efforts will be directed to studying transport properties of
spin-polarized atomic gases or gaslike dilute systems of
quasiparticles. If one deals with a gas of diatomic mole-
cules, the temperature will be supposed to be less than
the quantum of rotation.

In 1977, a different mechanism of magnetotransport
phenomena was proposed. ' This mechanism results
from exchange effects which always exist and play a very
important role in collisions of identical particles with
spin. The necessity to symmetrize or antisymmetrize the
wave function of two scattering atoms leads to a strong
dependence of the cross section on their total spin. The
scattering cross section can have quite different values de-
pending on whether the total spin of a pair of colliding
particles is even or odd. Inasmuch as the occupation

numbers for different spin states change upon polarizing
the system, the ratio between the numbers of pairs with
an even and odd total spin also changes. This consider-
ably affects the collision term in the Boltzmann transport
equation and hence the transport coefficients. Since the
contribution of the exchange interaction falls off rapidly
with increasing temperature, one can expect the system
to exhibit magnetotransport properties connected with
this mechanism only at low temperatures. It was demon-
strated ' ' that, in the case of a low-density degenerate
Fermi system with a short-range interaction between the
particles (for instance, dilute He- He solutions), the mag-
netic polarization of a gas was accompanied by an in-
crease of the viscosity and thermal conductivity. Later
Lhullier and Laloe and Meyerovich constructed a simi-
lar theory for nondegenerate Boltzmann gases and ob-
tained analogous results. There have been other papers
on the enhancement of transport properties in polarized
Fermi systems where different types of the interaction po-
tential between particles have been used. All these
theories predict that the viscosity and thermal conduc-
tivity of a gas of fermions placed in an external magnetic
field or polarized by means of some dynamical methods
(optical pumping, injection of spins, etc.) are larger than
in the unpolarized state.

Another interesting phenomenon in spin-polarized
gases is connected with the existence of weakly damped
transverse spin waves in the system. Describing spin
modes in degenerate Fermi systems used to be done on
the basis of Landau theory. " The theoretical predic-
tion and experimental discovery of collective spin waves
in nondegenerate paramagnetic Boltzmann gases were
made during the period from 1981 to 1984. ' Spin
modes can be considered as some extra Bose branch of
elementary excitations in the system. In general, it
means that the interaction between paramagnetic parti-
cles and spin Auctuations, as well as the interaction be-
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tween spin modes themselves, should be taken into ac-
count when discussing transport properties. In some
cases the interaction of spin waves with each other plays
an essential role even in thermodynamics. ' On the other
hand, the scattering of paramagnetic atoms with thermal
spin fluctuations can contribute significantly to the trans-
port processes.

The common way to describe quantitatively such
scattering is to consider the interaction between the mag-
netic moment of a particle and the time-dependent and
spatially varying magnetic field induced by the fluctuat-
ing macroscopic magnetization in spin mode. It used to
be done on the basis of the relativistic Zeemann Hamil-
tonian and Maxwell equations. This is why the corre-
sponding cross section normally turns out to be very
small. However, it was shown' that some special condi-
tions existed under which even weak relativistic coupling
might result in a gigantic cross section. The effect was
called the gigantic opalescence (because of some formal
analogies with the mathematical description of critical
phenomena) and the required conditions will be referred
to hereafter as the conditions of gigantic opalescence.
The conditions in question will come into effect if one
creates a high enough degree of polarization, say, by opti-
cal pumping or in some other way, and simultaneously
keeps the external magnetic field low. Equivalently, one
may say that the available degree of polarization should
be higher than the equilibrium magnetization that could
be induced by the external field. Obviously such a state
can exist only for time intervals less than the relaxation
time ~, of the longitudinal magnetization. For example,
one can reach the conditions of gigantic opalescence by
polarizing a gas in the external magnetic field and then by
rapidly reducing the field during a time period less than
7$

A scattering mechanism of purely exchange origin that
can infIuence transport coefficients was proposed in
1989.' This mechanism corresponds to the inelastic
scattering of paramagnetic particles with thermal spin
fluctuations. This kind of scattering is characterized by a
cross section which is of the order of the gas-kinetic cross
section even under normal conditions, where the system
is polarized simply by applying an external magnetic
field. Under conditions of gigantic opalescence, the cor-
responding cross section is also gigantic. Creating the
appropriate experimental conditions in order to observe
the effect becomes much easier. For example, gaseous
He 1, atomic H $, and magnetically diluted Si l' under

common conditions are very good systems for experimen-
tally detecting gigantic opalescence. To illustrate the
enormous magnitude of the effect, let us give some nu-
merical examples concerning a slow neutron beam propa-
gating through a target with polarized nuclei. In the case
of Si 1 and He) targets under normal experimental con-
ditions ' ' (temperature T —1 —4 K, an external magnetic
field H —10 Cr, and the degree of polarization
a-30—50%), the inelastic-scattering cross section men-
tioned above is expected to be of the order of 10 —10 b. '

This tremendous value is even more than the cross sec-
tion of the absorption of neutrons by He nuclei.

The large enough value of the scattering cross section

for H atoms (of the order of 10 '" cm ) has been recently
measured indirectly in experiments with atomic hydrogen
beams at T=2 K, H =4.38 T. Perhaps it is the scatter-
ing mechanism that has been identified in the experi-
ments. Quantitative estimates made on the basis of the
theory' may be in good agreement with the data ob-
tained in Ref. 22. They will be discussed briefly in Sec. V
of the present paper.

The appearance of an extra scattering channel which is
characterized by such a large cross section must cause a
dramatic reduction in the mean free path. This means
that transport coefficients in spin-polarized gases will, un-
der certain conditions, be considerably less than in the
unpolarized state. This conclusion is quite opposite to all
the previous theories. The scattering mechanism contrib-
utes significantly to transport properties even in the case
of equilibrium polarization in an external magnetic field.
The reduction in the mean free path is here predicted to
be of the order of 74—82% provided the external mag-
netic field is not too high. In strong fields the mean free
path starts increasing once again, so the transport
coefficients as a function of the magnetic field should pos-
sess a minimum. Under conditions of gigantic opales-
cence, the mechanism in question plays the most impor-
tant role. The size of the "reducing effect" may be many
orders of magnitude. In degenerate Fermi systems, the
interaction between paramagnetic particles and trans-
verse spin fluctuations is always predominant and the
Fermi-liquid theory no longer describes the temperature
dependence of transport coefficients. All transport pro-
cesses are then determined by the spin-fluctuation-
induced scattering considered above, which results in
quite extraordinary temperature and field dependencies of
kinetic coefficients. In order to obtain an appreciable
cross section, one always needs to apply some not too
small external magnetic field. Polarizing the system can
be created by many different methods, but a magnetic
field has to be switched on. That is why the phenomena
in question are being considered here as magnetotrans-
port effects in spin-polarized systems.

A theory of magnetotransport phenomena in paramag-
netic gases polarized by the same magnetic field or in
some other way is proposed in this paper. The viscosity
and thermal conductivity of a gas are calculated on the
basis of the linearized Boltzmann transport equation. All
the collision terms connected with the emission or ab-
sorption of thermal spin excitations by paramagnetic
atoms are expressed through the exact two-particle
scattering amplitude. It is fortunate that, in the most in-
teresting cases, we can solve the Boltzmann equation ex-
actly, with no use of any approximations or model repre-
sentations, and obtain the final results in a simple, analyt-
ic form. The applications of the theory to the cases of
gaseous H1, dilute Hl- He mixtures, atomic H$ are
briefly discussed.

II. PHYSICAL MOTIVATION:
SIMPLE GAS-KINETIC ESTIMATIONS

At the beginning we shall recollect some results con-
cerning the inelastic scattering of paramagnetic particles
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2 2m
(2.2)

If the criterion (2.1) is fulfilled, the mean de Broglie wave-
length will considerably exceed the size of a particle ro
and the ultraquantum-mechanical case will occur. In this
case, all momenta of colliding particles are small,

pro «A, and the main contribution to the scattering am-

plitude is given by the s-wave scattering length which de-
pends neither on the energy nor on the angle. The low-
energy scattering and small transferred momenta provide
one more advantage. The reason is that finite momenta
would result in some structural factor like e' ' in the
scattering probability. It would essentially reduce the to-
tal cross section of the particle-spin mode interaction in
the final result.

Under the conditions discussed above, the corrections
in the self-energy of a particle associated with the
quantum-mechanical refraction are determined by the
quite simple diagrams shown in Fig. 1. The analytical ex-
pression corresponding to these diagrams has the form

1 2~Pi
5H =gX(r, t ) ——go"M(r t ) g

—= a, (2.3)

where P is the magnetic moment of a particle, o Pauli
matrices, g the coupling constant expressed through the
s-wave scattering length a, ~a

~

—ro, and M the macro-
scopic magnetization related very simply to the degree of
polarization a,

with collective spin fIuctuations' and give a short physi-
cal back-ground. The exchange interaction between a
particle with spin and the spin modes has the same origin
as any collective phenomenon in quantum liquids and
gases (including spin waves themselves). It results from
the fact that the energy of a particle is a functional of the
distribution function (or, in general, the density matrix).
If the distribution function fluctuates, the self-energy will
contain some time- and space-dependent terms which can
be considered as the Hamiltonian of interaction with the
macroscopic fluctuation field. A low-density system of
particles with spin —, and a short-range interaction will be
studied here. We will assume that a natural small param-
eter Xro « 1 exists in the system. X is the atomic density
and ro the range of interaction. Rarefied gases can exhib-
it macroscopic quantum-mechanical behavior most
efriciently if the temperature T is not too high

maxIE~, TI && (2.1)
mI'o

where m is the mass of a particle, and c.F is the quantum
degeneracy temperature which is related to the density by
means of the usual expression

FIG. 1. The diagrammatic representation for the corrections
in the self-energy of a particle, connected with quantum-

mechanical refraction in the low-momentum limit pro && A.

The first term in (2.3) corresponds to the interaction of
a particle in a gas with the density fluctuation field. In
the 1ong-wavelength limit it describes the inelastic
scattering of slow atoms with phonons. It is completely
similar to the problem of slow neutron scattering caused
by density fluctuations in liquids and solids. In this
case, the difFerential cross section is determined by the
dynamic structure factor, i.e., the Fourier transform of
the binary correlation function. When a degenerate Fer-
mi gas is considered, the first term in (2.3) and the related
calculations are somewhat analogous to the problem of
electron-phonon interaction in conducting media. Since
we are going to study the inhuence of transverse with
respect to M spin modes, which are not coupled with
density fIuctuations, we consider just the second term in
the Hamiltonian (2.3).

The process under consideration can be treated as the
inelastic scattering of a paramagnetic atom, accompanied
by the emission or absorption of a thermal spin wave.
Since the Hamiltonian in question has a purely exchange
structure, the total magnetic moment has to be con-
served. This automatically implies and it is also
confirmed by quantum-mechanical calculations of matrix
elements that only the two types of transitions shown in
Fig. 2 are permitted by the Hamiltonian. In both cases
the particle experiences the spin-Aip transition and the
change of the atomic spin is compensated by the magnet-
ic moment of the emitted or absorbed transverse spin
mode. One can interpret it as redistributing the magnetic
moment between fermion spins and magnons, which may
be treated as a system of delocalized, inversely directed,
spins.

So, using the second term in (2.3) as the Hamiltonian of
a particle-magnon interaction and calculating the proba-
bilities of inelastic processes shown in Fig. 2, one can ex-
press the corresponding difFerential cross section through

M =PNaJK, a=, Xt +Xi =X . (2.4)

Here A, is the unit vector in the direction of spin polar-
ization, and X& and X& the number densities of particles
with spin up and down, respectively. The imaginary part
of 50, describing the attenuation of single-particle excita-
tions, contains higher orders in the small momentum p.

FIG. 2. Two types of spin-Aip inelastic transitions permitted
by the exchange Hamiltonian (2.3). In both cases the change of
the fermionic spin is compensated by the magnetic moment of
the emitted or absorbed thermal magnon.
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the dynamic magnetic form factor S,.k (k, co) (Ref. 19)

dop
'2

Here JVO is the occupation number for magnons

(
H 1)

—1 (2.12)

[o"g„„(q,co) —crag, (q, co)]dI ',
pX

2 r 2
Ace= p—H(cry' o—' ), p —p'=iiiq, (2.5)

do i t =—do. , =A(co)Imp+(q, co)dl ',
der t i—=do, = —&(co)Imp+( —q, —iu)dl",

2 (2.6)

A (ru) =4'
pN Piii

%co
1 exp T

x+(q, ~)=x..(q ~)+is,.(q ~) .

If spin oscillations are not too strongly damped the mag-
netic susceptibility, y+(q, co) is determined by the mag-
non dispersion law and has the following form:

=2 2Imp+(q, co) = PNa — „, (2.7)
(co —QH —

co~ ) +coq

where the Larmor frequency of the uniform precession in
an external magnetic field QH =2p&/A' is introduced, aiz'

corresponds to the imaginary part of the magnon energy
spectrum and describes the attenuation of spin waves,
and (ro~ +AH ) gives the real part of the spectrum. In the
case where external magnetic field is not too small,

&„»maxfI~qI, I~ I},
and by making use of the known relationship

lim — =$(x),1 v

v~o 1T Q + 'p

one can easily obtain

(2.8)

(2.9)

Imp+(q, co) = P Na5(co AH) .'—(2.10)

After this, integrating the expressions (2.6) for do „dcr2
becomes trivial and yields with good accuracy the total
inelastic-scattering cross sections

—anH ZT
cr, = 16m a a(1 —e )

=16' a(A'o+ 1),
AH yTo2=16na~a(e H —1) '=16+a aJVO .

(2.11)

ddr=
(2rriri)

where a= 1, J, , p= T, l are spinor indices, and the exter-
nal magnetic field and z axis are assumed to be directed
along the vector M. The transverse component of the
magnetic structure factor in (2.5), which determines the
transverse magnetization correlation function, is related
to the dynamic susceptibility y;k(q, co), i, k =x,y. The re-
lationship is tensorial even in a gas because the magnetic
symmetry is broken and the related properties of a sys-
tem are no longer isotropic. Substituting y;k(q, co) into
Eq. (2.5), we get

2 I
Ct)

q
co =&q, co

1+y2 '

Do 2'+y= =Q ~ Q.int & int

(2.13)

Eg —Eg
2m g(Na)2

Here Do is the spin-di6'usion coefficient in the unpolar-
ized gas, and w is the gas-kinetic relaxation time. E& and

E~ are the total energies of the components consisting of
particles with spins up and down

2

E = n''dl, a=( l,2' (2.14)

where the equilibrium distribution functions n' '(p) for
both species are introduced. The terms co' and co" deter-
mine the spatial dispersion in the frequency and attenua-
tion of spin Auctuations. Keeping only the Larmor fre-
quency QH in the energy spectrum means neglecting both
the absorption and q-dependent corrections in the fre-
quency of spin waves. If the parameter I@I is large
enough, I@I )&1, the damping Icoq I

is much less than Ice~ I

and nonuniform spin oscillations can propagate in the
gas, but the contribution of q-dependent terms to the
spectrum is much less than A~ for all accessable values
of q. In the case IQ;„„r&)1,collective spin modes can
also propagate even in the nonhydrodynamic regime, ' '
ql ))1, if their wavelengths are not too short
qu* « Q;„,I. Here u* is some average velocity. In a de-
generate Fermi gas, U* is the Fermi velocity and in the
classical high-temperature limit, u' —(T/m )'~ . For the
case in question, formulas (2.13) for ru' are still valid and
one can easily convince oneself that, for all permitted q,
the magnitude of Ice~ I

cannot exceed IQ;„,I. At higher
wave numbers when qu

*))
I 0;„,I, Landau collisionless

damping makes the propagation of spin waves impossi-
ble. In the opposite limiting case, IyI «1, the imagi-
nary part plays the dominant role

I

co"
I
))

I

co' I. The
nonuniform motions of macroscopic magnetization
(diffusive spreading) may attenuate rapidly but the uni-
form Larmor precession lives for a much longer time (in
the exchange approximation the lifetime is equal to
infinity). The value of q in this case is cut off by the re-

and only the Larmor energy gap in the spectrum of spin
waves is taken into account. In this sense, one may treat
4'0 from (2.12) as the number of uniform precession
quanta. Formulas (2.11) imply that the Einstein relation-
ship for the induced emission and absorption of spin
waves are fulfilled automatically.

In the hydrodynamic range ql «1, where I is the mean
free path, and within the exchange approximation, both
co' and co" are quadratic in the wave vector q and can be
represented in the form' ' '

+~~ + l CO
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n»maxt In, „,I, r 'I, (2.15)

and being applied to the case of a nondegenerate
Boltzmann-Maxwell gas it gives

ciprocal mean free path so the magnitude of Ico"
I

is not
more than Dpl -v*l '-~ '. In general, the imagi-
nary part of the frequency contains also some terms of
the order of r, , which is of the relativistic origin (say,
the dipole-dipole interaction). Normally the value of r,
is much less than Ia~~'I and Ia~~ estimated above. Any-
way, the inequality QH~, )) 1 will also be assumed to be
fulfilled.

To avoid misunderstanding, let us emphasize that
neglecting a11 q-dependent terms in the spectrum and
magnetic susceptibility does not mean that the moving
particle emits or absorbs just the uniform-precession
quantum and experiences the zero-angle scattering only.
In the process in question, we deal with the isotropic
scattering in all directions

I
differentia cross sections (2.6)

have been integrated over all the scattering anglesj in the
limiting case of small momenta p —+0 and q~O. It is
somewhat analogous to the case of the elastic s-wave
scattering when, in the zero-momentum limit, the cross
section remains finite and goes to some constant value.
Cross sections (2.11) correspond to emitting and absorb-
ing spin Auctuations with all possible q. However, since
the momentum p is very small, and, consequently, the
value of q is small too, in the main approximation p ~0,
the spatial dispersion terms do not contribute essentially
to the total cross sections which turn out to be finite be-
cause of the existence of the Larmor energy gap in the
magnon spectrum.

It should be pointed out that, in some cases, especially
in degenerate Fermi liquids, the contribution of co' to the
spectrum may be commensurate with that of the Larmor
gap. It results in rather interesting effects. ' However,
such a situation wi11 not be discussed here.

Using the estimations mentioned above, it is easy to
figure out the range of magnetic fields where the theory
developed can be applied and to evaluate the contribution
of the scattering mechanism to transport processes. Cri-
terion (2.8) reduces to

K-tV
~ vTl &+X&vTl &,

1 —a 1+a+a'a ~p+ I JVp

(2.18)

and viscosity

g-mX&vTl~+mN&vTI& -mK . (2.19)

where Kp and gp correspond to the thermal conductivity
and viscosity in an unpolarized gas at H=O. One can
convince oneself that, under the conditions of gigantic
opalescence, a ))(/3H /T ), the transport coefficients
(2.20) turn out to be much less than their values Kp 7)p in
the unpolarized state. Therefore, in the case of nonequili-
brium polarization, the predominant contribution to dis-
sipative processes is given by the scattering mechanism
and direct elastic fermion-fermion collisions need not be
taken into account. In the case of thermodynamically
equilibrium polarization, when

H Ha=tanh
T T

(2.21)

we find from (2.20) that quantities ~, il have the same or-
der of magnitude as Kp, gp and, in the first approximation,
do not depend on H at all. It means that we have to take
into account both the spin-Auctuation-induced mecha-
nism and direct particle-particle scattering simultaneous-
ly. After all, the final reduction in the transport
coeKcients is not so drastic, but it is large enough to be
measured experimentally (74—82%). One must not for-
get, however, that these estimations cannot be extended
to the zero-field limit H=O because of the existence of
the lower boundary for H given by Eq. (2.16).

In the case of a degenerate Fermi gas, the relaxation
time ~ does not depend on the density

If the external magnetic field is not too strong, /3H « T,
Eqs. (2.18) and (2.19) can be simplified to

/3H 1 /3H

a a
(2.20)

mUT /3H 1 /3H
2 T "' T'

bNIaI a, if a~a„a, =
H»

A%a vT if o. ~o.,
(2.16)

ma T

and, instead of (2.16) we get
r

bNIaI a if a+a,
where the thermal velocity vT, characteristic energy 6,
and average de Broglie wavelength are determined by the
expressions

2 T
m

A=
ma mvT

(2.17)

Formulas (2.16) yield the lower limit for the external
magnetic field below which the theory no longer holds.
Combining common gas-kinetic relationships and expres-
sions (2.11) and (2.12) for cross sections, one can easily es-
timate the thermal conductivity

(2.22)

In low magnetic fields, when /3H « T «EF, all mag-
non energies are small compared with the thermal distur-
bance of the Fermi step function. This allows us to ap-
proximately treat the emission or absorption of a spin
mode as a sort of elastic fermion scattering. (It is abso-
lutely the same as in the case of electron-phonon interac-
tion in metals at high temperatures. ) This is why no
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q-gmN vF 1, y=f, $,
r

vr PH (1+a) +(1—a)
a &F CX

mvF /3H (1+a) +(1—a).2 T

(2.23)
mVF

~F

In the case of thermodynamical equilibrium, we have

3
CX

=
2E,F

and formulas (2.23) reduce to

(2.24)

VF mvF EF
K lg

a a2 T' (2.25)

which do not depend on the magnetic field in this approx-
imation. We see that, in all cases (both the equilibrium
and nonequilibrium polarization), the thermal conduc-
tivity and viscosity turn out to be much less than corre-
sponding values in the unpolarized gas. The reduction
factor is of the order of ( T/E~) && 1 in the equilibrium
case and ( T/sF )(/3H/E~) &(1 under conditions of gigan-
tic opalescence when e—+1. The temperature dependen-
cies of K and g are quite different from those predicted by
the theory of normal Fermi liquids. Thus, transport
properties of spin-polarized degenerate Fermi gases
placed into an external magnetic field are completely
determined by scattering with transverse spin Auctua-
tions and Fermi-liquid theory no longer holds provided
criterion (2.22) is fulfilled and the temperature is not ex-
tremely small /3H((T«EF. It should be mentioned
that there is a conflict between the condition /3H « T on
the one side and inequalities (2.16) and (2.22) on the oth-
er. A range of magnetic fields satisfying both conditions
undoubtedly exists in all cases provided the density of a
gas is not too high

1»—»NIa
I

T 3 (2.26)

[Sometimes, e.g. , in the case of Boltzmann-Maxwell
statistics, this requirement may be weaker,
1» ( T/5)'~~ »N

I
a

I

3
]

small multiples such as (T/sF) will appear in expres-
sions for the thermal conductivity and viscosity as a re-
sult of Fermi statistics. Simple estimates yield

T
Ic g Nr vFrl r~F

2 & 2
s= /3H, E'=— +/3H, p —p '=Aq .

2m 2m

(3.1)

Here n t, n &, JV are the spin-up particle, spin-down
particle, and magnon distribution functions, respectively,
W(p', q;p) and W(p', p, q) the probabilities of emission
or absorption of a spin wave as illustrated in Fig. 2, and
A'co the energy of a collective spin excitation. In a simi-
lar way, one can formulate the collision term describing
the change of the distribution function for spin-down
particles

C lol, [n ~j
= J [W(p, p', q)n~ t(I n„g)~, —

—W(p ', q; p)n~~(1 n~ ~ )(JVq+ 1)]—
X 5( E —A'co —E' ) (2~)'

(3.2)
2 & 2

s= +PH, E'= PH, p —p '=Aq—.
2m 2m

As it follows from the result obtained in the previous sec-
tion, probabilities W(p', q;p) and W(p';p, q) reduce to
the same constant 8'o in the low-momentum limit
Pro (&A,

W(p' q p)= W(p' p q)

both fermion and magnon components, taking into ac-
count all possible interactions between them. We, how-
ever, will consider the high-temperature limit, T »PH,
when the number of magnons is large enough and the re-
laxation in the spin-fluctuation subsystem is very fast. In
other words, the magnon distribution function may be set
to equal to its equilibrium value in all transport equa-
tions. After this, one can obviously restrict oneself by
considering the Boltzmann equation only for fermions
but the collision term in the equation will certainly con-
tain the particle-magnon interaction. In the case in ques-
tion, the low-momentum inelastic particle-magnon
scattering may be treated like the quasielastic one. This
resembles very much the case of electron-phonon scatter-
ing in metals at high temperatures.

The particle-magnon collision term corresponding to
the scattering of spin-up particles is given by the expres-
sion

Coil, [n, ]= J[W(p qp')n ~( nest
~—~+"

—W(p';p, q)n t(1 n. &)JV ]—
X 5(s+ A'co~ —E')

(2m)'

III. TRANSPORT EQUATIONS:
COLLISION INTEGRALS

2

—= Wo =4(2~fi) Na .
m

(3.3)

Transport coefficients should be found by solving
Boltzmann transport equations for all kinds of elementa-
ry excitations in the system. In this case, we have two
types of quasiparticles, namely, single-particle Fermi ex-
citations (the particles themselves in the main approxima-
tion) and collective oscillations of magnetization. Thus,
in general, one should deal with transport equations for

On the other hand, when discussing the case of not too
high magnetic fields /3H « T, we may consider the mag-
non distribution function JV as the thermal-equilibrium
one. Besides, as mentioned above, if the external magnet-
ic field is not too small, one can restrict oneself by taking
into account only the Larmor gap in the spectrum
Am =ASH and distribution function JV =JVO, where JVo
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is determined by Eq. (2.12). After this, collision integrals
(3.1) and (3.2) are essentially simplified and reduce to the
form

Coll, In t J
= Wo f [n~ t(1 n~—t)(A'0+1)

vanish according to hydrodynamic equations. Expanding
the left-hand side of Eq. (3.6) in a power series of small
gradients V T, 8 V, /Bxk, and linearizing the collision
terms, one can get the transport equations in the common
form

—n t(1 n—g)JVO]5
p p
2m 2m

Coll, [n ~]
= Wo f [n~ &(1 n~&—)JVp

np $( 1 np t )(JVQ+ 1 ) ]

& 2

xn
2m 2m

dl ',

(3.4)

n (1 n— )
G =CollI5n J, a= 1,1,

E p Bp

T aT
+ v.V'T+ mF, k V,k,

av, av„
ik ipk 3 ik & ik 2 BXk BX;

(4.2)

d3p dO pm
4~ ' ' 2~'R'

In most cases, collision terms (3.4) entirely determine the
dissipative characteristics of spin-polarized quantum
gases. The exception is the case of a Boltzmann-Maxwell
gas which is in full thermal equilibrium being placed into
an external magnetic field. In this case, one should take
into account direct elastic interparticle collisions and add
the appropriate collision terms which have the common
form4

Coll& j n~ t J
= f w (n~ &

n,
&

n~ &n &
)—d I"d I,d I", ,

P 1
g P Pl

Coll&In~~] = t w(n~ ~n,
&

—
n~&n~ &)dl"dl, dl", , (3.5)

P I f P Pl

2 p & 2 p
P+Pi =P +P&, + — +

2m 2m 2m 2m

5n~ = A (e)p.VT+B (e)(p;p„——,'p 5,„)V;„. (4.3)

That is why all the terms in St, (5n ) containing 5n
vanish upon integration and the collision integrals are
drastically simplified:

As the gas-kinetic estimations demonstrated, in the cases
of gigantic opalescence and a degenerate Fermi gas as
well, the main contribution to collision processes is deter-
mined by spin-flip inelastic scattering with transverse
spin fluctuations. Thus, we may neglect Collz[5n~ ] and
keep only Coll, I5n~ ] in the collision term Collt5n ] of
Eq. (4.2). [The case of a Maxwell-Boltzmann gas polar-
ized by a brute-force technique where Coll2I5n } cannot
be neglected, will be examined separately in Sec. IV C.]

In a monatomic gas, any deviation of the distribution
function caused by temperature and velocity gradients
should have the form

In the general case, two linearized coupled kinetic equa-
tions

Coll, I5n~t [
= —Wog~(JVO+n~&)5n„T,

Coll, [5n ~] = —Wog (CAVO+1
—n„&)5n &

.
(4.4)

IV. THERMAL CONDUCTIVITY AND VISCOSITY

In order to find the thermal conductivity and viscosity,
one has to calculate the heat and momentum fluxes in-
duced by temperature and macroscopic flow velocity spa-
tial gradients. To do this, we may substitute the local
equilibrium distribution function

c—PV —p
n =— 1 —tanh

pcs

2

fn dI =N

a=T, l,
(4.1)

a
n +v Vn =C llo&[n ]+ Clol I2nz ]

—=CollInz

(3.6)
v= P, a=1, 1

m

need to be solved in order to determine transport proper-
ties of a spin-polarized gas in an external magnetic field.

n t(1 n t)G —
tp p p

Wog~ (JVO+ n
p g )T '

n &(1 n~)G —
~

5n )=-
Wog (A'o+ 1 n t )T—

(4.5)

Of course, there exist many kinds of transport phenome-
na in multicomponent systems (spin-up and spin-down
particles, magnons) connected with a temperature gra-
dient, e.g. , thermodiffusion, etc. But now we shall re-
strict our attention to the case of pure thermal conduc-
tivity at a constant relative concentration of species.

A. Degenerate Fermi system

This allows us to solve exactly the linearized transport
equations without use of any polynomial expansions or
other approximations. Actually, the problem is reduced
to calculating the heat and momentum fluxes caused by
the small perturbations 5n which can be found from
Eqs. (4.2) and (4.4)

with slightly nonuniform temperature and velocity fields
T(r), V(r) into the left-hand side of transport Eq. (3.6).
Since we are interested in the first viscosity, we may sim-

ply consider the case divV=O when all time derivatives

In order to calculate correctly the heat flow which
determines the thermal conduction coefficient ~, one has
to subtract the convective current associated with the
motion of a Fermi sphere as a whole. The correct
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definition of heat Aux is well known from the theory of
the electron thermal conductivity in metals with impuri-
ties and, in this case, is given by the expression

Q= g J (s —p )v5n dI = ~V—T, a= 1', J, . (4.6)

When dealing with strongly degenerate Fermi systems,
T «Ez, one can put (Bp /BT) =0 in Eqs. (4.5) as the
basic approximation. Besides, in the low magnetic field
limit 13H «T «EF, the magnon occupation number is
large

1,2' (4.7)

so both n and (1 n) —in Eqs. (4.5) are negligibly small
compared with JVo and can be omitted. Then, substitut-
ing expressions (4.5) in (4.6) and taking into account the
relationships

Bn
n (1 —n )= —T

BE,

2 B2

6
= —5(E—p )

— T' &(s —p ),
(4.8)

one can easily obtain

PH (1+a) i +(1—a) i
2 VF

96a EF CX

(4.9)

Thus, in the main approximation the thermal conductivi-
ty (4.9) does not depend on the temperature at all in con-
trast to predictions of the traditional Fermi-liquid theory.
At a fixed value of a (the nonequilibrium situation for the
time less than r, ), the magnitude of v turns out to be pro-
portional to an external magnetic field. In the case of
equilibrium polarization (the brute-force technique),
when the degree of polarization (2.24) is determined by
an external field, the thermal conductivity is just a con-
stant and does not depend on H,

K—
72 a

(4.10)

Following the same procedure, we may define the
viscosity of a gas by means of the usual equation for the
momentum Aux tensor II,k

II;k= g J p, v„n dl

(4.1 1)

so that the scalar coefFicient of viscosity has the simple
form

19 )p Qik, ik (4.13)

where I' and p are the total pressure and density and
is the viscosity tensor. In an isotropic gas, the ten-

sor g, k I must have the form

(4.12)

1 PH (1+a) +(1—a) ~

'g
2 IVF

80+a a (4.14)

In the case of total thermodynamical equilibrium (2.24),
the viscosity does not depend on an external magnetic
field either,

1
'g = PlVF

60~a
(4.15)

B. Boltzmann statistics: Gigantic opalescence

When the temperature of a gas is high enough and all
particles obey the Maxwell-Boltzmann statistics, we can
restrict ourselves by only considering the term Sti(5n )

in the collision integrals in the case of a nonequilibrium
polarization. In this case one can find the viscosity and
thermal conductivity with better accuracy than for de-
generate systems discussed earlier. In the classical limit,
particle occupation numbers n are always small
n ((1. It enables us to omit n and keep not only JVO

but also 1 in the denominators of Eqs. (4.5).
The chemical potentials p can be represented in the

form

Thus, we see the coefticient of viscosity g also exhibits
quite unusual, for degenerate Fermi systems, temperature
and field dependencies. It should be emphasized once
again that formulas (4.9), (4.10), (4.14), and (4.15) cannot
at all be extrapolated to the zero-field limit H =0 since
the theory developed here holds only when
13H, «PH(&T «EF, where H, is determined by Eqs.
(2.22).

There is now a temptation to apply the results obtained
to the case of He)- He degenerate solutions. Unfor-
tunately, the experimental fact is that the s-wave scatter-
ing description which has been used here does not work
sufIiciently well even at low enough concentrations of a
mixture. One could probably expect the approach to
work better at concentrations of the order of 10 —10
at. %%uo . Inorde r toge t at leas t aqualitativ epictur e, le t us
make numerical estimations for the 0.1 at. %%uodilute
He 1'- He mixture polarized by an external magnetic field

at T=1 mK. In this case the theory is expected to be
valid within the magnetic field range 10 kG &)H ))4 G.
Using formulas (2.11), (4.10), and (4.15), one can easily es-
timate the mean free path I —10 cm, viscosity
g-5 X 10 cgs, and thermal conductivity ~-10' cgs, all
of which turn out to be considerably less than those cal-
culated from the Fermi-liquid approach. Thus, qualita-
tively, the efI'ects in question could lead to nonmonotonic
dependencies of the viscosity and thermal conductivity
on an external magnetic field and to creating a deep and
wide enough minimum in the curves g(H) and v(H)
which might be located within the field range shown
above. The experimental identification of such a
minimum might require accurate low-field measurements
inasmuch as the lower boundary of the field range is corn-
parable with the background magnetic field.

Combining Eqs. (4.5), (4.11), and (4.13), we immediately
find

p = —TlnT +TXconst .

Then it is easy to verify that

(4.16)
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Bp
p T —5 T

2 (4.17)

where the total pressure P and relative concentration c
are defined as

P P
N =cN=c— N =(1—c)N=(1 —c)—.T' T

Finally, calculating the heat Aux

g=g fEv5n dI = ~VT—

(4.18)

(4.19)

leads to the final result
1/2

1 2TK-
24~a em

. h2PH

2 H+o,'cosh —1T (4.20)

Similarly, using Eqs. (4.5) and (4.11)—(4.13), one can find
the viscosity of a gas

1 /2
m 2T71=

30~a
. h2PHsinh

2 H+e cosh —1
T

(4.21)

Formulas (4.20), and (4.21), which contain the same com-
bination

NT Ng A'QH AQ~+ =2 sinh +2a cosh —1
JVo+ 1 T T

(4.22)

actually hold when pH (T.
Gaseous He), which is normally polarized by optical

pumping' ' and can be placed in an arbitrary magnetic
field, would be an ideal object for experimental measure-
ments if it could be cooled down to low enough tempera-
tures. Regrettably, the saturated vapor pressure is ex-
ponentially small at such temperatures and, under the
common conditions T —1 K, N —10' cm, a —30%,
the s-wave scattering description works even worse than
in the case of dilute Hel'- He mixtures. Nevertheless,
the evaluations within the approach developed might be
useful in order to figure out when one could hope to
detect some anomalies in the transport properties of gase-
ous Het'. The estimations carried out under the condi-
tions mentioned above result in the following magnetic
field range H ))50 G (the criterion pH (T is automati-
cally fulfilled for all available magnetic fields). In the case
a ))tanh(pH/T), the viscosity and thermal conductivity
are expected to be essentially less than the common gas-
kinetic values.

npo
XPa= T XPa . (4.23)

In the first approximation of the Chapman-Enskog
method applied to the problem of thermal conductivity
on a Maxwell-Boltzmann gas, we can seek the solutions
of transport equations (4.2) with collision integrals (3.5)
and (4.4) in the form

S&i2 —v VT, y™,a= 1 $, (424)2T'

where S3&2(c/T) is the Sonine polynomial determined in
the usual manner, ' and coefficients 2 have to be
found. According to the definition (4.19), the coefficient
of thermal conductivity ~ can be calculated as
a= —'(At+ 2 ~). Substituting Eqs. (4.23) and (4.24) into
the transport equations and following the traditional
Chapman-Enskog procedure, one can reduce the problem
to a system of linear equations for coefficients A (see the
Appendix). After some algebra we finally get

N) Ng +54+F(a)
Ng Ng

a.(0) 1

172 I+4(a)
Wo ~o+1

F(a)= 104V'2 + o.N,
Ng

' 1/2

(0)= 75 T
2S6a 2

(4.25)

767V2 JVO JVo+ 1@a = -+
344 N( Nt

o:N

Thus, complete thermodynamical equilibrium is assumed
to take place and the degree of polarization is determined
by an external magnetic field as shown by Eq. (2.21). In
this case, as it was demonstrated above, calculating trans-
port coefficients requires taking into account the direct
particle-particle collisions, described in terms of
C oil 2In I from Eq. (3.5), which were omitted in all pre-
vious computations. It makes the problem more compli-
cated since the exact solution cannot be found in this case
and one has to use some polynomial approximations. It
is very convenient to use Sonine's polynomials when deal-
ing with collision integrals of the type (3.5). ' Of
course, when expanding both ColliIn~ I and C oil~I n„)
in a series of Sonine's polynomials, we lose some accura-
cy. The convergence of the Sonine expansion for
Coll2I n I is pretty good. However, considering only the
leading term in the Sonine expansion for Coll&In
indeed results in a worse precision than in the case of
gigantic opalescence where practically the exact solution
of a linearized Boltzmann equation was found. Nonethe-
less, in this paper we will restrict ourselves to discussing
the main term in a series of Sonine's polynomials for the
total collision integrals Coll(n I. Let us introduce the
notation

C. Boltzmann statistics: Equilibrium polarization

Now we shall discuss the case of a Boltzmann
paramagnetic gas polarized by the brute-force method.

338~ ~ +1) (aN)
43 NgNg

Here v(0) corresponds to the thermal conductivity of an
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unpolarized gas in the absence of an external magnetic
field, and functions F and N depend on the degree of po-
larization and magnetic field only but do not depend on
the total density N. Equations (4.25) take into account
both scattering mechanisms and provide the description
valid for any polarized state. But we are particularly in-
terested in the case of equilibrium polarization. Then, us-
ing definitions (2.12) and (2.21), one can easily prove the
identity

JV~ JV~+ 1
R (a)=3v'2 +

1/2

aN,

g(0) = 5

64a
mT

2 + +1+R(a)&(0) 1 Nt Nt
5 1+:- a Nt Nt

(4.29)

JVo+ 1 JVo

Ng
+ Ng+

N)
(4.26)

8t/2 Ao JVo+ 1-( ) o.N

and obtain the field dependence of the thermal conduc-
tivity:

N+—',4 JVO( JVo+ 1)

x(H) 2(59+104&2)cosh(2/3H/T)+54
ir(0) 1524+767'/2

(4.27)

where r)(0) is the viscosity of a gas in the unpolarized
state. In the case of equilibrium polarization in an exter-
nal magnetic field, the calculations similar to those car-
ried out above for the thermal conductivity yield

When considering the viscosity in the same approxima-
tion, we should seek the deviation of the distribution
function in the form y =g k 'V;k, where

rj(H ) 2(2+ 3t/2)cosh(2PH /T )+ 1

ri(0) 29+ 16' 2
(4.30)

2

g.' '= — F,„B, a = 1', l .
a

(4.28)

Here F;I, is the same as in Eqs. (4.2), and it is taken into
account that S~&2(E/T) =1. As it follows from the
definitions (4.11)—(4.13), the viscosity of a gas is deter-
mined by the expression g=(m/4T)(Bt+B&). Then,
following the standard method (see the Appendix), we
find

Thus, at high enough magnetic field H &&H„where H, is
determined by Eqs. (2.16) and (2.21), the thermal conduc-
tivity and viscosity are linear functions of cosh(A'QH /T).
It is the same H dependence that was given by previous
theories considering the elastic particle-particle scatter-
ing only. But the numerical coefficients in Eqs. (4.27) and
(4.30) make a(H) and g(H) at H ))H, less than even

a(0) and g(0) (see Fig. 3). The dotted curves in Fig. 3 re-
sult from calculations neglecting the scattering mecha-
nism and are given by the expressions

9.0 8.0

8.0-
70-
6.0-

I
I

I
I

7.0-

6.0-

5.0-
Q

4.0-
3.0-
2.0-

0

0 o 4.0-

3.0-

2.0-

1.0--

0.0 I I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

2PH
T

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIG. 3. The magnetic field dependencies of the viscosity g and the thermal conductivity ~. The dotted curves correspond to the
old calculations [see Eqs. (4.31)] which did not take into account the inelastic scattering of paramagnetic particles with transverse

spin fluctuations. The solid curves result from the present theory [see Eqs. (4.27) and (4.30)]. They cannot be extrapolated to the
zero-field limit at H &H, . This implies that there should be at least one minimum in the functions g(H) and w(H) within the field

range 0&H &K, .
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a.(H ) 59 cosh{2PH /T ) +27
lr(0) 86

' g(H)
q(0)

4 cosh(2' /T ) + 1

5

V. SPIN-POLARIZED ATOMIC HYDROGEN H $

We have just discussed the magnetotransport effects in
Fermi gases but practically all of the above statements
are also valid in the case of paramagnetic Bose gases. In
view of this, atomic hydrogen HJ is probably the ideal
object for experimentally studying the phenomenon un-
der consideration. First, gaseous HJ, is not liquified and
possesses a high enough density at the required tempera-
tures (2.1). Second, the quantum-mechanical refraction
mechanism at low-momentum scattering holds perfectly
in this case. It was given experimental evidence after
detecting the collective spin waves in H1. ' "6 And,
last, when considering the nuclear magnetization one can
conclude that gaseous HJ, is always under conditions of
gigantic opalescence since the degree of nuclear polariza-
tion is normally much higher than that which could be
induced by the available magnetic field. Thus, one can
expect spin-polarized atomic hydrogen H J, to exhibit
anomalous transport properties affected by inelastic
scattering with coherent spin fluctuations.

When discussing the exchange interaction between the
nuclear spin of a hydrogen atom and the long-wavelength
fluctuations of transverse nuclear magnetization, we have
to de6ne the degree of polarization as

(5.1)

where X, and Xb are the number densities of atoms in
the states la &

=
~ ( 1 &

—g' ( 1 & and ~b &
=

~ tt 1 &, respec-
tively. Here the arrows I and 1' denote the electronic
and proton spin, g is the small hyperfine structure param-
eter. Transport equations (4.2) are just slightly
transformed, that is to say, we must replace the factor
{1—n„) by the factor (1+n ), where n now looks like

The solid curves include both scattering mechanisms and
are given by Eqs. (4.27) and (4.30). Thus, one can expect
some nonmonotonic behavior of the thermal conductivity
and viscosity and the appearance of at least one minimum
in the curves rl(H) and Ir(H) within the field range
0&H (H, . The relative depth of the minima can be
easily evaluated as

lim — =0.18, lim =0.26 . (4.32)
~(H) . rj(H)

H o Ir(0)
'

H o g(0)
In the case of a very diluted nondegenerate He]- He
solution with concentration x ~0. 1 at. % at T=30 mK,
we may estimate that H, =300 G. Under these condi-
tions the contribution of rotons and phonons is certainly
negligible and cannot mask the effect in question. How-
ever, one should keep in mind all the restrictions and
stipulations mentioned previously when applying the
theory to the case of Hei- He mixtures.

the Bose-distribution function and the index o,'

enumerates the ~a ) and
~
b ) states, i.e., in the leading ap-

proximation it indicates the projection of a protonic spin.
Regretfully, the Bose-Einstein condensation in gaseous
H $ has not yet been reached and the temperature avail-
able is normally much higher than the degeneracy tem-
perature. That is why, in this case, we may directly use
all the formulas for the viscosity and thermal conductivi-
ty obtained in Sec. IV 8 in the limit of Maxwell-
Boltzmann statistics.

Under typical experimental conditions, " ' ' T =220
mK, H = 8 T, and +=0.8, one can easily calculate q and
~ by means of Eqs. (4.20) and (4.21) which yield

=0. 13— =4. 7 X 10
Kp A T

1 PH
- =0.38—— =1.4X10

0! T

(5.2)

Ta, =ai—-a2-—8~a u =10 '" cmII (5.3)

Of course, such an explanation of the effect must be
verified in separate experiments. In any case, it looks
plausible and has a number of advantages. Probably the
best way to carry out the crucial experiment is to directly
measure the transport coefticients or some other dissipa-
tive function (such as sound absorption, etc. ) in gaseous
Ht„which are expected to be considerably less than in
the case of a common unpolarized gas under the same
thermo dynamical conditions. Beam-target-like experi-
ments with atomic Hg may also provide a good oppor-
tunity to observe the phenomenon. Spin-polarized atom-

Thus, we have obtained a dramatic reduction in the
viscosity and thermal conductivity of gaseous H$. This
result provides the basic statement of the theory.

Such a drastic reduction is certainly due to the anoma-
lously large cross sections (2.11) describing the inelastic
scattering of paramagnetic H atoms with macroscopic
spin fluctuations. The first experimental evidence for the
scattering mechanism was probably found by Hershcov-
itch in the measurements of intrabeam scattering of H
atoms at T=2 K, H =4.38 T. He observed an intrabeam
scattering process which prevented the focusing of H
atoms in the beam. He also managed to infer the scatter-
ing cross section per single H atom which turned out to
be unexpectedly large, o. , =10 ' cm . It is dificult to
ascribe such an enormous cross section to real H-H col-
lisions which do not seem to play any important role (the
corresponding mean free path is larger than the size of a
beam). But, the origin of the scattering mechanism in
question, as well as the quantum-mechanical refraction,
in general, does not at all require that the distances
should be more than the mean free path calculated for in-
terparticle collisions. It is created at smaller distances
and exhibits itself even in the collisionless regime' ' '
(as seen in neutron optics). There are no data concerning
the nuclear magnetization of atomic H in Ref. 22. But, if
one assumed the effective degree of polarization u to be
equal to just 0.01, then the measured value of the total
cross section is obtained



MAGNETOTRANSPORT EFFECTS IN PARAMAGNETIC GASES 12 451

ic deuterium D 1 might be a good system for an experi-
mental study too.

ACKNOWLEDGMENTS

I am very grateful to M. Ristig for the warm hospitali-
ty extended to me in Cologne. The useful discussions we
had with A. Andreev and L. Pitaevskii (IPP), T. Greytak
(MIT), I. Silvera (Harvard) on different stages of the work
are greatly appreciated. I would also like to thank very
much D. Einzel, G. Frossati, F. Laloe, P. Nozieres, and
F. Pobell for clarifying discussions of the results at ENS
and the Universities of Bayreuth, Leiden, and Munich be-
fore publication. The work has been supported in part by
the Deutsche Forschungsgemeinschaft under Grant No.
Ri 267/14-1.

APPENDIX

3/2
2M2
mT

d a

e v S3/2 Y vS3/2 d IT
' 1/2

vo=208 Na a(A'0+ 1),
m

' 1/2

208
2 7TT

Po
m

Na'aJVD .

x f e ' vS3~/2 X ("S3/2)dIT
' 3/2

2mB

mT r
(A4)

Let quantities X and Y be defined as

' 3/2
2mB

mT

The way to calculate the parameters c and d was actu-
ally developed in Ref. 25 for the case of a binary gas mix-
ture. Comparing Eqs. (A4) with the results of Ref. 25
and considering the s-wave scattering only, one can easily
obtain

X f we '/ (X, —X )dI 'dI', dI", ,

3/22~2
mT

(A 1)

HATT

c& =c
T
=118

m

dT =dg = —54
7TT

a

' 1/2

a

(A5)

X f we '/ (X, —X )dI"dI,dI", ,p&a

a=T, l .

Combining Eqs. (A3) —(A5) we obtain the result (4.25).
In order to calculate the viscosity we should multiply

Eqs. (4.2) by n~ F;kd I and integrate them taking into ac-
count the relationships (4.23), (4.28), (A 1), and (A2). This
procedure leads to the following linear equations:

n
TCoil, (n„„)= ' N, (X, +I', ),T

(A2)

Then, taking into account Eq. (4.23), one can express
linearized collision integrals (3.5) in terms of X and &
as

T2
10

T2
10

NT 8vo
=bTBT+ a) + Bg,13')

Ng 8Po
BT+bgB) .

T

(A6)

n
&C lolz tn&) = N&(X~+ Yt) .p

Here the quantities a, b are determined by the formu-
las

Substituting Eqs. (4.23), (4.24), (Al), and (A2) into
transport equations (4.2) with both Coll, [n, J and
Coll2 ( n~, ), and multiplying them by the factor
vn S3/2(s/T), and then integrating over the momentum
space d I, we get the system of linear equations

N) Po 15 T
cT + AT+dgdg=

T T
2 m

(A3)
&o

dTAT+ cg +
2 m

a
3/2

e "Fkx F,, dr,mT

b a

3/2

f ' F Y (Fk)dl

aT =a&=

and, in the s-wave scattering limit, they are equal to
1/2

256 ~T a, bT=b)= —
—,'aT .

(A7)

(AS)

where the quantities c, d, po, and vo are defined by the
following:

Then, solving Eqs. (A6) with coe%cients (A4) and (A7),
we find the result (4.29).
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