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Dipolar interactions and the magnetic behavior of two-dimensional ferromagnetic systems
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A simple model is presented for spin-wave excitations and the low-temperature magnetization of fer-
romagnetic ultrathin films. The films are assumed to be quasi-two-dimensional arrays of fixed magnetic
moments and both exchange and dipolar interactions are taken into account. Discrete and continuous
models are used to examine the wave-vector dependence of the spin-wave frequency in the long-
wavelength limit. This spin-wave theory can be used to calculate the temperature dependence of the sat-
uration magnetization in the limit of small fluctuations. The role of dipolar interactions is examined for
a single monolayer and for thin films consisting of two or three atomic layers.

I. INTRODUCTION

Theoretical investigations of magnetic ordering in two
dimensions suggested that exchange interactions alone
were found to be insufficient to establish a stable fer-
romagnetic ground state. ' Experimental evidence ex-
ists, however, for long-range magnetic order in several
two-dimensional and quasi-two-dimensional systems.
Although the existence of magnetic anisotropies can lead
to stable two-dimensional ordering, the importance of di-
polar interactions in two-dimensional magnetic systems
has also been recently recognized. The majority of this
work has dealt with the inhuence of dipolar interactions
on the Curie temperature of low-dimensional magnetic
systems, and it has been argued that dipolar interactions
help stabilize the two-dimensional order. '

The low-temperature properties of the magnetization
can be examined with spin-wave theory, but when only
short-ranged exchange interactions between spins are
considered, one again has difficulties with stability in two
dimensions. The spin-wave dispersion in three dimen-
sions has a quadratic dependence on the wave vector, i.e.,
cu-Dq, where ~ is the frequency, D is the exchange con-
stant, and q is the wave vector. This leads to divergence
problems at small wave vectors when this dispersion is
used to evaluate the low-temperature magnetization in
two dimensions.

The inhuence of dipolar interactions on the low-
temperature behavior of the magnetization in two-
dimensional systems has been shown to remove these
divergence problems. ' Furthermore, for ultrathin films
consisting of several atomic layers, there exists a lower-
frequency spin-wave mode which is thermally accessible
at room temperatures and below. This mode is known as
the Damon-Eshbach mode on thick films and the dipole-
exchange "surface" mode on very thin films. " This
mode exists for wavelengths in the 10 -cm range for Fe
and Co, and both short-range exchange interactions and
long-range dipolar interactions are significant. As will be
shown below, this mode is identical with the mode pre-
dicted for the monolayer and can be used to calculate the
low-temperature magnetization of two-dimensional mag-
netic structures consisting of several atomic layers with a

relatively simple formalism.
The purpose of this paper is to present a simple macro-

scopic argument which gives the dispersion relation for
the dipole-exchange spin-wave mode of a two-
dimensional ferromagnetic system. The resulting expres-
sion is shown to be identical with that obtained from a
microscopic treatment in the limit of long wavelengths.
In particular, the low temperature magnetization can be
calculated according to spin-wave theory without diver-
gence problems. Also, since this mode is a low-energy,
long-wavelength excitation, the spins at the surfaces of
the film precess in phase with the spins in the center of
the film, so that the amplitude of the mode is very nearly
independent of position in the film. This is an important
point when studying this long-wavelength spin-wave
mode on a thin film consisting of several atomic layers,
since then the magnetic properties at and near the sur-
faces can shift the spin-wave frequency in the same
manner as bulk anisotropies.

In what follows the dispersion relation for the long-
wavelength spin-wave mode is first derived from a
discrete model and the limiting form for small wave vec-
tors is examined. Next, a simple continuum model is
presented which gives the same dispersion law for long
wavelengths and the results are compared to those for
thin films consisting of several atomic layers. Finally, the
low-temperature behavior of the magnetization in a two-
dimensional structure calculated from spin-wave theory
is discussed.

II. DISCRETE MODEL

The geometry is such that a square array of magnetic
spins lie in the y-z plane and the spin-wave propagation
vector q makes an angle P with the z axis. The saturation
magnetization M, and a static applied magnetic field Ho
lie in the z direction.

The following treatment is a limiting case of an ap-
proach developed by Benson and Mills, who used a sirni-
lar model to investigate the spin-wave modes of a thin
film. ' Erickson and Mills have also recently applied this
model to thin-film systems consisting of only a few atom-
ic layers, with an emphasis on the effects of anisotropies
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on the magnetic ground state. '

One begins with the Hamiltonian defined by

&=&,„+Md;p+A,

where the exchange terms are given by

&,„=—,
' g Jj&.S(j) S( j') .

JJ

The exchange integral between spins at sites j and j' is
denoted by JJJ . The energy due to the presence of the
static applied field is given by

Explicitly,

r;, =ya (j —j '
) +za (j,—j,' ) .

y and z unit vectors in the y and z directions, the lattice
spacing is given by a, and j and j, are integers.

The equations of motion are next formed by commut-
ing S(j) with the Hamiltonian of Eq. (1) and linearizing
under the assumptions that the transverse oscillations of
S(j) are small and (S,(j))=-S. Note that in the long-

wavelength limit, the spin operators behave as classical
vectors. Finally, the translational invariance of the sys-
tem in the y and z directions is used to write S (j) and

Sy (j ) in the form

&,=gps g Ho. S(g) .
J

g is the gyromagnetic ratio and p~ the Bohr magnetron.
Finally, the dipole-dipole interaction energy is given by

S„(j)=A exp[i(cot —q r. )]

Sy(j)=8 exP[i(cot —
q r )] .

(6)

S(j) S(j ) [r,;"S(j)][r;,S(j')]
~d(p 2g PBX 3 5

33 . 3J

3 and B are constants, the position vector rJ=rj j o7 and
the wave vector

q~I
is defined as a two-dimensional vector,

appropriate to a two-dimensional square array of spins:

The vector rjj points from a spin at site j to a spin at site
j', and the distance between two spins is given by rjj.

~~

=
yqy +zgz

The resulting equations of motion are then

1 . 1 1 1 1 (rjy)
co A = iS g 5;;,Ho —— J;,, —— + 3

g Pg 3 gag g Pg rJJ rJJ 2 2 2
, g Pa

(r,;"z)
3 S

B,

1 . 1 1 1
coB =iS g — 5 H+—"J"—

g2p2 gp
3J' 2 g2p2 33

e
33

i(j j) q
' —1 1 1

2 2 33 3 5
, g Pa 3J 33

(10)

Cubic symmetry has been assumed, which means that di-
polar terms of the form (r;, y)(r, ; z) cancel in the sums.

The dispersion relation co(q) for the spin-wave excita-
tion on a two-dimensional square lattice is easily found
and takes the remarkably simple form (where y =g(Ms /A'

and A' is Planck's constant)

co =y +(Ho+ X,„+Xd()(HO+ X,„+Xd2) .

The exchange contribution to the energy is

X,„=—,
' g J;; [1—exp(iqll. r&j )],

J

and the dipolar contributions are

&,=[,(qll) —,(0)]+[ y(ql) —y(0) )

+3[o,(0)—cr (qll )],

Xd2 [o (qll) (y 0 ]+[(yy qll cry 0)]+3o.,(0) .

(14)

The quantities o. and o., are defined by
Zl' ~ ~

qadi

o (qll)= Spa g (r—;;, y)
2 ' r ~ .,

JJ

(15)

o, (qll)= —S(Ms y —, (r);.z)' .
3 J3

(16)

From the structure of Eqs. (14)—(16), one sees that, as

q goes to zero, most of the dipolar terms cancel. The
terms which do not cancel represent the demagnetizing
fields that are expected for a thin planar structure. In
particular, for qa &&1, the frequency of the spin-wave
mode becomes
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co=y+(HO+X, „)[Ho+2,„+3cr,(0)] . (17)

The quantity 3o,(0) can be evaluated numerically using
the methods of Ref. 12 and is the demagnetizing field for
a square planar array of magnetic moments. In the next
section, an expression identical to Eq. (17) will be derived
using a continuum model and the macroscopic Maxwell
electromagnetic equations.

Implicit in the derivation of Eq. (17) is the equality

o (0)=o,(0) . (18)

This equality holds anly when the lattice is highly sym-
metric. A distortion of the lattice from cubic symmetry
invalidates Eq. (18) and leads to additional terms in the
frequency. In fact, in the limit of very long wavelengths,
one can use the techniques described in Ref. 12 to show
that the sums for a rectangular lattice with lattice spac-
ings a and a' are

4~ 32m+ g n K2(2n.nma/a') Spz,
9QQ 3Q mn

(19)

4m 32m'+ g n K2(2m. nma'/a) Spz .9a' a 3a

(20)

For moderate qlla, the exchange contribution dominates,
and it is easy to see from the dispersion relation of Eq.
(11) that

co qll

Here E2 are modified bessel functions of order 2.
With

a%a�',

these terms are no longer equal and create
a uniaxial anisotropy due to dipolar interactions. A feel-
ing for the magnitude of these anisotropies can be ob-
tained by examining the energy at

q~~
=0 given by Eq. (11)

for small differences between a and a'. Calculations show
that for difFerences between a and a' on the order of 2%
or 3%, which is a possible value for monolayers grown on
(110) substrates, the dipolar anisotropy energy is on the
order of 0. 1M, , which is roughly the same magnitude as
bulk anisotropies. This value is one to two orders of
magnitude smaller than typical surface and interface an-
isotropies, however.

In the long-wavelength limit of qlla &&1, the exchange
contribution given by Eq. (12) has the usual form

(21)

means that the modes are highly elliptical for small Hp,
so that the precession of the spins is primarily out of the
film plane.

III. CONTINUUM MODEL

The long-wavelength nature of the modes described by
Eq. (17) suggests that it should be possible to describe the
spin-wave excitations with a semiclassical continuum
model. Such a model is constructed as follows: First, the
Landau-Liftshitz equations are written in terms of the
time and spatially varying magnetization M, the
gyromagnetic factor y, and an effective field H, ff.

M=yM XH,ff,

where the effective field is defined by

(24)

H ff
—ZHp+ T M+hd .

M,
(2&)

x xx+xll ' (27)

xll =yy +zz

Using Eq. (25) in Eq. (24) and linearizing, one has

(28)

. co
l Pl~ = Hp+2 2

a'
qll g 2

m +h, (29)

l pl = Hp+2 q
, CO A 2 8

II g 2
m —h„. (30)

For films which are on1y one or two monolayers thick,
the fields m and hd are expected to either vary slowly or
have negligible amplitudes across the film thickness d for
the surface mode excitation. For long-wavelength excita-
tions, it is then appropriate to define fields which are
averages taken across the film thickness

(31)

hd is the dynamic demagnetizing field in the x-y plane,
M, is the saturation magnetization, and the exchange
constant A is defined for a simple cubic lattice by

2A 2JSa 2

M, A'

where J is the exchange constant and S the spin number.
The magnetization is assumed to consist of a static part
in the z direction and a small fluctuating part m in the
x-y plane. Both m and hd are assumed to depend on the
three-dimensional position vector x according to
exp[i(cot qll xll ~, where

As q
ll
a goes to zero, it can be shown that d/2

(hd )m~=
d J dx hd . (32)

(23)

This dependence on qll is the essential feature of the
dispersion of Eq. (11) since it is these modes which will
dominate the low-temperature behavior of the rnagnetiza-
tion. It can also be shown from Eqs. (9) and (10) that in
the limit of large wavelengths, 8 ))A for small Hp. This

These averages will now be calculated explicitly under
the assumption that the magnetic excitations can be de-
scribed by plane-wave solutions of the equations of
motion. First, however, it is useful to note that the wave-
lengths of the spin-wave excitations of interest are long
enough such that the magnetostatic approximation is val-
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id and the dipolar fields hd obey VXhd=0. It is then
convenient to define a magnetic potential P such that
h„=—V1(j.

The plane-wave solutions for the magnetic potential g
and magnetization I inside a film with surfaces at
x =+d/2 are given by

e ax+ y e
—ax)e '&ll'"ll (33)

m= x(a+e +a e ")+y(b+ea"+b e a
) e

Here a is a decay constant which is as yet undetermined.
Substituting these expressions into the equations of

motion [Eqs. (29) and (30)] and integrating across the film
thickness, one obtains

i (a—++a )+ Ho —
(q~~

—a ) (b++b )
. CO 2A

y s

+iq M, (g++f )=0, (35)

Ho —
(q~~

—a ) (a++a ) i (b—++'—b )
S

+aM, (f+ —P )=0 . (36)

The behavior of the magnetization at the surfaces of
the film is described with exchange boundary conditions
of the Rado-Weertman form. ' This allows the inclusion
of surface anisotropies which can act to "pin" the surface
spins. For simplicity, an out-of-plane directed uniaxial
surface anisotropy k, is defined:

2A 2 2k, . COHo+ M q~~ d
(a++a ) —i—(b++b )

M, M, d y

B=h„+4mfm . (42)

f is a demagnetization factor for a thin-film geometry. In
the thick-film limit, f is 1, and in the monolayer limit, the
calculated value of f is 0.5392. It is noted that averaged
values for cases in between have been calculated by an al-
ternative method and are tabulated in Ref. 14. The im-
portant point for what follows, however, is the identity'

f= o.,(0) .3

47TSpg
(43)

It will be seen below that this identity connects the mi-
croscopic approach described in the previous section
with the macroscopic continuum theory of this section.

In order to proceed, the fields outside the film need to
be defined. In these regions, the magnetization is zero
and the magnetic potential has the form

e Pxe— (44)

for the region above the film, and

+aM, (g+ —P ) =0 . (41)

Equations (40) and (41) are the Landau-Liftshitz equa-
tions of motion with exchange boundary conditions, aver-
aged over the magnetic film thickness. This same pro-
cedure is next applied to the Maxwell equation of motion,
V 8=0, and the electromagnetic boundary conditions.
The macroscopic 8 field is here defined appropriate to an
ultrathin-film geometry:

8+A m~ =k, (m~)„+&&2 .
ax '

=+d/2
(37) e Pxe (45)

&
—(a++a )+ H, + q'„(b++b+ — o M II

+iq M, (g++g )=0,
T

(38)

2 A 2 ks cxda + qII
—a coth

M, M,
(a++a )

Using the forms for m given by Eq. (33), these boundary
conditions provide four new equations from which two
equations can be derived which involve (a++a ) and
(b++b ). These two equations are substituted into the
averaged equations of motion [Eqs. (35) and (36)], yield-
ing

for the region beneath the film. The decay constant P is
determined from V-8=0 for the nonmagnetic regions.
This gives P=

Iq~~ ~.

The electromagnetic boundary conditions require the
normal components of 8 and the tangential components
of hd to be continuous across the surfaces at x =+d/2.
This results in four equations involving g&, P&, g+, g
a+, and a . Another equation is obtained by averaging
V B=O across the film thickness, which relates g+, g
a+, a, b+, and b . These five equations can be used to
derive the following relations, where again expansions
have been made to first order in nd:

i (b++b —)+—aM, (g+ f)=0 . —. CO

y
(39)

The hyperbolic cotangents are now expanded in powers
of ad, and terms up to first order are kept. The resulting
expressions are

a++a
1+Pd /2

q d b++b
2P 1+Pd/2

(46a)

(46b)

. CO 2A
i (a++a )+ —Ho+ q~~ (b++b )

y S

+iq M, (g++g )=0, (40)

Substituting these two relations into the averaged equa-
tions of motion given by Eqs. (40) and (41), equations of
motion are obtained which are independent of a:
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4m M~ fqy d /2
+ — 0 M II P(1+Pd /2)

X(b +b )=0, (47)

2k, 4@M f
M M d 1+Pd/2

0.4

I I I I
)

I I I I

)
I I I I

)
I I I I

—i—(b +b )=0 .. N

y
(48) 0.2

The frequency of the long-wavelength mode, where
pd =q~~d && 1, is then given by

X Ho+ q(~+2 M, fqId si
2A

S

1/2

2k,
Ho+ q I

— +4',f (1—
—,'q~ d )

S S

(49)

0.0
0.000 0.005 0.010 0.015 0.020

Here the angle p is defined between qI and the z axis.
Equation (49) has several interesting features. First, note
that the surface anisotropy has been averaged over the
film and appears as an eff'ective bulk anisotropy. Thus
the surface anisotropy, which acts to "pin" the surface
spins, here functions as a simple shift in the surface mode
frequency. Second, the energy depends on the propaga-
tion direction through dipolar interactions and is largest
for propagation in the y direction, perpendicular to the
applied field.

The most interesting feature of Eq. (49), however, is
the behavior as q~~d goes to zero. We set k, to zero for
simplicity. The directional dependence disappears, and
one has

2A 2Aco=@ Ho+ qI Ho+ qadi +4~fM,M, Ms

1/2

IV. DISCUSSION

The frequency of Eq. (50) is shown in Fig. 1 as a func-
tion of q~~. Here the value 2/2~M, =2.31X10 ' is
used. This value is chosen appropriate to bulk Co and is
used only to illustrate certain general features, although

(50)

Comparison of Eqs. (17) and (50) shows that the discrete
and continuous models give the same dispersion law for
long wavelengths. Note that this correspondence rests on
the identification of f with the q~~a

=0 dipole sum o tEq.
(43)].

Finally, it is interesting to compare Eq. (49) to the
dispersion relation derived by Yafet, Kwo, and Gyorgy.
In order to agree with the expression given in Ref. 9, the
terms f (1 —

—,'qId ) and fqt~d sin p must be replaced with

(f—
—,'q~~d ) and q~~d sin P. This dift'erence comes from the

dependence of the dipole sums on
q~~

and shows the
inadequacy of the simple approximation of Eqs. (42) and
(43). But since these expressions are only valid in the
long-wavelength region anyway, the error involved in this
approximation is quite small and the continuum approxi-
mation presented here is very good.

FIG. 1. Approximate dispersion relation for spin waves on
the two-dimensional array. Ho is zero, and A /2m M,
=2.31 X 10 ' . All anisotropies are set to zero. For large wave
vectors, the behavior is quadratic in q~~, while for small wave
vectors the frequency is linear in q~~.

it is noted that this ratio could change significantly for a
monolayer. Ho is set to zero, and the frequencies and
wave vectors are in unitless reduced forms. For small

q~~

the frequency increases linearly with q~~, while for larger

q~~
the frequency is quadratic in q~~. For finite d, the fre-

quency increases as Qq~~ at long wavelengths. As shown
in Ref. 9, this behavior allows one to calculate the tem-
perature dependence of the saturation magnetization
without the problem of singularities in the two-
dimensional sum over states.

While Eqs. (50) and (17) agree in the limit of qI
—0, it is

useful to know how well they agree for larger q~~. AIloth-
er important question is how well the approximation
works for films which are thicker than one monolayer.
First, the question of larger

q~~
is addressed.

The validity of Eqs. (50) and (17) for larger qI can be
determined from Table I. In Table I the frequency of the
spin-wave mode calculated from the full discrete model
[Eq. (11)] is shown for two directions of propagation:
/=90' (q~~=yq~) and /=0 (qI=zq, ). The method used
to evaluate the sums of Eqs. (12) and (13) is described in
Ref. 12. For comparison, the frequency as calculated
from the continuous model [Eq. (50)] is also shown. The
parameters are the same as in Fig. 1, and in order to facil-
itate comparison with the continuous model,
X,„=(2A /M, )q~~, which is valid in the long-wavelength
limit.

For larger
q~~

the two models are in good agreement
since the exchange energy dominates. As

q~~ goes to zero,
however, the frequencies calculated from the discrete and
continuous models diverge for propagation in the y direc-
tion, perpendicular to the saturation magnetization. The
frequency dependence on propagation direction is well
known from studies of magnetostatic spin waves in thick
films and is due to the dipolar fields generated by the Auc-
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TABLE I. Comparison of the frequencies calculated from the discrete model [Eq. (11)]and the con-
tinuum model [Eq. (SO)]. The frequencies of the spin-wave mode are shown for various wavelengths for
propagation parallel to the z axis (/=0) and perpendicular to the z axis (P=ir/2) T.he applied field Ho
is set to zero, A /2~M, =2.31 X 10 ', and there are no anisotropies. The last column is the difference
between the frequencies for the two propagation directions in GHz units using parameters appropriate
to bulk Co: 4m.M, =17.6 kG, 3 =2.85X10 erg/cm, and y=1.936X10 Hz/Oe.

10
—1

10
10
1O-4
1O-'

EQ. (50)

4+M, y

6.032 71
0.185 38
0.017 66
0.001 77
0.000 18

4aM, y

6.032 71
0.185 38
0.017 66
0.001 77
0.000 18

Eq. (11)

(P =90')
4+M, y

6.045 60
0.189 34
0.021 14
0.004 07
0.001 17

A'ro(P =90')—Piro(P =0)
(10 eV)

2.889
0.888
0.780
0.515
0.222

tuating in-plane component of the magnetization. The
in-plane dipolar fields alternate in sign every half wave-
length and oppose each other for propagation directions
away from the saturation magnetization. ' The extreme
case is for propagation perpendicular to the saturation
magnetization. Note, however, that the difference in ener-
gies for propagation perpendicular and parallel to the sat-
uration magnetization is quite small since the precession
of the magnetization is mostly out of plane.

The last column in Table I shows the difference in en-
ergies of a spin wave propagating in the /=0' and 90
directions for a thin film with Co parameters
(4irM, =17.6 kG, A =2.85 X 10 erg/cm, and
y/2m. =3.078X10 Hz/Oe). There is no applied field.
These energy differences are very small: In terms of ex-
perimentally m.easurable quantities, the energy difference
is too small to be measured by light-scattering methods
and also too small to have a significant effect on the ther-
modynamics. To a good approximation, the spin-wave
energies can be thought of as isotropic with respect to
propagation direction.

Next, the effects of film thickness are examined. A
good description of the spin-wave modes in thin films can
be obtained with a continuum theory that includes both
exchange and dipolar effects in a semiclassical elec-
tromagnetic boundary value problem. Details of this
model are given by several authors and are not repeated
here. Instead, the results of such a calculation are
presented for various film thicknesses in order to study
the evolution of the thin-film surface mode as the film
thickness approaches that of a monolayer.

In Fig. 2 the frequency of the surface mode is plotted
as a function of the in-plane propagation angle it'i, defined
as the angle between

qI~ and the z axis. The three curves
are calculated according to the semiclassical electromag-
netic boundary value problem described above and
represent the surface modes for three different thickness
films: one, five, and ten monolayers (ML). The reduced
wave vector q~~a is held at 10 and Ho =0. For ease of
comparison, the demagnetizing factor is set to 0.5392 for
all cases shown. In reality, however, this factor increases
with increasing thickness, which in turn raises the fre-
quency of the spin-wave mode. The 1-ML case is the iso-
tropic spin-wave mode calculated from Eq. (50). As the

0.23

0.22—

0.2l—

0.20—
3

0.1 8 t

30

tI («g)
60 90

FICx. 2. Frequency as a function of propagation direction P
for films of various thicknesses. The solid lines are calculated
from a semiclassical continuum model, and the dashed line is
calculated for the limiting case of a monolayer. The depen-
dence of the frequency on P increases with increasing thickness
and is due to the higher-order terms neglected in the approxi-
mations leading to Eq. (52).

thickness decreases, the directional dependence of the
frequency also decreases, and the frequency approaches
that of Eq. (50). It is noted that the small thickness ap-
proximation of Eq. (49) agrees with the results from the
"full" boundary-condition problem to within a few per-
cent for the thicknesses shown here.

The energy of the spin wave is smallest for propagation
in the /=0 direction and largest for propagation in the
/=90' direction. As described above, this difference is
very small for the monolayer film. The precision of the
magnetization becomes less elliptic as the film thickness
increases, however, and the directional dependence of the
frequency increases correspondingly.

Because dipolar interactions modify the long-
wavelength behavior of ro(q~~), spin-wave theory can be
used to calculate the magnetization as a function of tem-
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perature without having to deal with divergences at

q~~
=0. This can be seen by examining the expression for

the magnetization as a function of temperature, M(T),
defined by

M(T) bM(T)
M(0) M(0)

For low temperatures, hM(T) is proportional to a two-
dimensional sum over spin-wave states. The integration
is taken over the first Brillouin zone and in the limit

q~~
—+0, the integrand does not diverge.
A dispersion relation of the form u =Dq

~~

+Ho
without dipole interactions will result in a temperature
dependence for the magnetization that is much too sensi-
tive to the magnitude of Ho since the Curie temperature
in this case would become vanishingly small as the field
goes to zero. This is because Ho creates a "gap" in the
spin-wave dispersion for

q~~
-0, which in turn makes it

more dificult to thermally excite spin waves and essen-
tially stabilizes the system. The same effect can also be
achieved by bulk or surface anisotropies. The effect of
the dipolar fields, however, is to modify how co goes to
zero as q

~~

goes to zero, which in turn determines the sen-

sitivity of M(T) to external applied fields and anisotro-
pies.

V. CONCLUSIONS

The spin-wave dispersion for a magnetic monolayer
has been derived from a microscopic argument and
shown to have a simple form that can also be obtained

from a simple macroscopic model. The formalism was
shown to be applicable to ultrathin films consisting of
two or three atomic layers for the low-energy spin waves,
since these spin waves are governed by the magnetic
properties of the film averaged over several lattice sites.

The most important property of these spin-wave modes
is their dependence on wave vector at long wavelengths
due to the presence of long-range dipolar interactions.
This means that the thermodynamic properties of mono-
layers and ultrathin films are strongly affected by aniso-
tropies and external fields, since both create gaps in the
spin-wave dispersion curves at long wavelengths. Furth-
ermore, lattice distortions which reduce the symmetry of
the system can also contribute slightly to the magnetic
anisotropies through dipolar interactions. It is thus
necessary to distinguish between the effects of dipolar in-
teractions and magnetocrystalline anisotropies when in-

terpreting experimental data from low-dimensional mag-
netic systems.

ACKNOWLEDGMENTS

We would like to thank Professor G. Giintherodt for
discussions and continuing support. We also thank R. E.
Camley, B. L. Johnson, and D. Pescia for stimulating dis-
cussions and are grateful to R. P. Erickson, D. L. Mills,
and D. Pescia for providing copies of their work prior to
publication. This work was supported by the Deutsche
Forschungsgemeinschaft through SFB 341. One of us
(R.L.S.) acknowledges support by the Alexander von
Humbolt Stiftung.

~N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133
(1966).

2M. J. Klein and R. S. Smith, Phys. Rev. 81, 378 (1951).
J. C. Levy and J. L. Motchane, J. Vac. Sci. Technol. 9, 721

(1971).
4D. Kerkmann, J. A. Wolf, D. Pescia, Th. Woike, and P.

Griinberg, Solid State Commun. 72, 963 (1989).
5S. O. Demokritov, N. M. Kreines, V. I. Kudinov, and S. V.

Petrov, Zh. Eksp. Teor. Fiz. 95, 2211 (1989) [Sov. Phys. JETP
68, 1277 (1989)].

U. Gradmann, Phys. Rev. Lett. 52, 771 (1984).
7V. L. Pokrovskii and M. V. Feigel'man, Zh. Eksp. Teor. Fiz.

72, 557 (1977) [Sov. Phys. JETP 45, 291 (1977)].
8D. Pescia and V. L. Pokrovsky, Phys. Rev. Lett. 65, 2599

(1990).
Y. Yafet, J. Kwo, and E. M. Gyorgy, Phys. Rev. B 33, 6519

(1986).
ioM. G. Pini, A. Rettori, D. Pescia, N. Majlis, and S. Seizer (un-

published).
i R. E. De Wames and T. Wolfram, Prog. Surf. Sci. 2, 233

(1972); R. L. Stamps and B. Hillebrands, Phys. Rev. B 44,
5095 (1991).
H. Benson and D. L. Mills, Phys. Rev. B 18, 839 (1969).
R. P. Erickson and D. L. Mills, Phys. Rev. B (to be pub-
lished).

~4J. F. Cochran, B.Heinrich, and A. S. Arrott, Phys. Rev. B 34,
7788 (1986).

i5G. T. Rado and J. R. Weertman, J. Phys. Chem. Solids 11, 315
(1959).
M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill,
New York, 1964).


