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Surface-enhanced second-harmonic generation of optical beams from a metal surface
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The spatiotemporal behavior of the surface-enhanced second-harmonic generation at a metal-vacuum
interface with a sinusoidal grating is investigated. Using a singular-perturbation approach, the effects of
self-phase modulation and the nonlinear excitation of the surface polariton on the enhanced second-
harmonic generation are taken into account. The intensity dependence of the enhancement factor is
presented. Lateral shift and beam-profile modification are predicted in the second-harmonic radiation.

I. INTRODUCTION

Surface-enhanced optical effects mediated by surface
polaritons such as second-harmonic generation, ' hot-
electron generation, Brillouin scattering, Raman
scattering, photoconductivity in metal-oxide-metal tun-
nel junction, and optical bistability have attracted con-
siderable attention in recent years. Since the observation
of the surface-enhanced second-harmonic generation at a
rough silver-air interface, ' theoretical effort has been de-
voted to the quantitative analysis of this phenomenon.
In these treatments, the exact model of the rough metal-
air interface was not used because of the difticulties
caused by the nonlinearities in the metal. The deter-
ministic model of the sinusoidal surface profile' was
adopted instead. The limitation of these previous investi-
gations include the plane-wave assumption of the in-
cident wave. Furthermore, the effect of spatiotemporal
evolution" and the nonlinear effects in the excitation' of
the surface polariton, the agent responsible for the
surface-enhanced second-harmonic generation, have not
been taken into account. These effects are important in
this study for the following reasons. Due to the non-
linearities in the metal, the amplitude of the surface po-
lariton undergoes self-phase modulation directly resulting
in the spatiotemporal variation of the strength of the
second-harmonic radiation in vacuum. Also, we have
previously found that the efficiency of the excitation of
the nonlinear surface polariton is a function of the width
and the intensity of the incident beam. Therefore, it is
expected that the efficiency of the surface-enhanced
second-harmonic generation is also a function of the
width and the intensity of the incident beam.

In this paper we improve the previous analyses of the
surface-enhanced second-harmonic generation at a
sinusoidal metal-air interface by including the effects of
the finite width of the incident beam and the self-phase
modulation and nonlinear excitation of the surface polar-
iton. The nonlinearities in the metal are included sys-
tematically using the hydrodynamic model, then treated
perturbatively. The amplitude of the sinusoidal surface
corrugation is also considered as a small parameter. The
method of reduced Rayleigh equations was employed pre-
viously so that it is not necessary to treat the amplitude

of the grating as a small perturbation. However, it is
generally adequate to assume that the amplitude of the
grating is small because it is used to model the rough sur-
face and because only small-amplitude grating can ensure
the efficient excitation of the surface polariton in the ex-
periments. '

The paper is organized as follows. The formulation of
the problem is given in Sec. II. In Sec. III the perturba-
tion expansions of the governing equations and the
boundary conditions are discussed. The self-phase modu-
lation and the excitation of the nonlinear surface polari-
ton are summarized in Sec. IV. The strength of the
surface-enhanced second-harmonic generation in various
directions is determined in Sec. V. Section VI presents
some illustrative numerical results on the enhancement
factor and beam properties of the surface-enhanced
second-harmonic generation by the sinusoidal surface.
Some concluding remarks are given in Sec. VII.

II. FORMULATION OF THE PROBLEM

A. Geometry

We consider second-harmonic generation from an in-
terface x =f (z) separating the half-space x )f (z) of vac-
uum from the half-space x (f (z) of free-electron metal.
For a planar interface f (z) is a constant [x =f (z) =0,
without loss of generality]; the incident quasi-plane-wave
of fundamental frequency ro upon reAection generates an
evanescent wave into the metal which decays away from
the interface. The nonlinearities in the free-electron met-
al produce collective electron motion at the second-
harmonic frequency, which in turn excites second-
harmonic electromagnetic fields in the metal and vacu-
um. When the interface is sinusoidally and weakly corru-
gated (see Fig. l), the profile of the surface is given by
x =f(z)=6ilcosKz, where 6 is used to indicate the
smallness of the amplitude g of the corrugation, and E is
the wave number of the corrugation. The incident funda-
mental quasi-plane-wave then not only generates an
evanescent wave into the metal but also excites an elec-
tromagnetic surface wave called the surface polariton for
a suitable value of E. The surface polariton transports
energy along the interface with its fields also concentrat-
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by c/co~, and the velocity by c. Let E' and B"be the nor-
malized electric field and magnetic Aux density, respec-
tively, in vacuum, and let %, V, E, and B be the nor-
malized number density and velocity of electrons, the
electric field, and the magnetic flux density, respectively,
in the metal. The electromagnetic wave motions are
governed by the following equations:

Bg Metal V X E'= — B',
at

FIG. 1. Geometry for the surface-enhanced second-harmonic
generation. a;, the normalized amplitude of the incident wave;

b„, the normalized amplitude of the reflected wave at the funda-
mental frequency; a~, the amplitude of the surface polariton;

3 &, normalized amplitude of the second-harmonic radiation
in the —1 diAraction order; A4 „the normalized amplitude of
the second-harmonic radiation in the specular direction.
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at

for the vacuum,
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at
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at
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ed near the interface. However, in the metal region, the
energy transported in the surface polariton is orders of
magnitude larger than that transported in the evanescent
wave transmitted through the planar interface. The in-
tense surface-polariton fields produce a strong collective
electron motion at the second-harmonic frequency giving
rise to the surface-polariton-mediated second-harmonic
generation. This second-harmonic generation is known
as the surface-enhanced second-harmonic generation
since it is relatively more intense than that obtained
directly without the intermediary of the surface polari-
ton. We calculate the efficiencies of the second-harmonic
generation at the planar intrface and the sinusoidally
corrugated interface and subsequently determine the
enhancement factor by the corrugated interface. When
the incident waves are nearly plane waves of finite extent,
some interesting beam properties are also present.

B. Governing equations

Electromagnetic wave phenomena are governed by
Maxwell's equations and the material equations of the
supporting media. The nonlinear properties of the free-
electron metal have been previously accounted for by the
introduction of the nonlinear polarization. ' This ap-
proach, however, cannot be used to correctly quantify the
efficiency of the second-harmonic generation of nonpla-
nar incident waves and the effects of the nonlinear evolu-
tion of the surface polariton on the efficiency of the
surface-enhanced second-harmonic generation. Hence,
we include systematically the nonlinearities of the free-
electron metal in a general manner through the relativist-
ically correct hydrodynamic equations. "'

The equilibrium electron density is denoted by Xo. We
introduce a standard electric field Eo=m, ceo /e, where
m, is the effective rest mass of an electron, —e is the elec-
tronic charge, c is the velocity of electromagnetic wave in
free space, and ~ is the proper plasma angular frequency
of the conduction electrons. We normalize the electron
number density by Xo, the electric field by Eo, the mag-
netic Aux density by Eo/c, the time by 1/~, the distance

+V.(XV)=0,
at

a
at

+V V [(1—V )'i V]= —(E +VXB ), (6)

for the metal. Equations (4) —(6) are nonlinear. Equa-
tions (5) and (6) are, respectively, the nonlinear equations
of continuity and motion. The electromagnetic wave
motions also have to satisfy the boundary conditions that
the tangential components of the electric and magnetic
fields be continuous at the interface.

III. PERTURBATION EXPANSIONS

Small parameters occur naturally in the problem under
consideration. The electromagnetic wave introduces a
small (compared to No) space-time variation of the elec-
tron number density which is otherwise uniform. The
nonlinear responses (high harmonics) in the variation are
small compared to the variation of the electron number
density at the fundamental frequency. Hence, the high-
harmonic electromagnetic waves are also significantly
weaker than the incident wave at the fundamental fre-
quency. The nonlinear wave phenomena such as the
self-phase modulation of the nonlinear surface polariton
take place at longer space and time scale than the wave-
length and the period of the fundamental electromagnetic
wave. Finally, the amplitude g of the surface corrugation
is also a small parameter as compared to the wavelength.
The physical occurrence of these small parameters sug-
gests the application of the multiple-scale singular pertur-
bation technique.

To this end, we introduce multiple time scales t„and
multiple space scales x, and z„, where t„=5"t,x„=6"x,
and z„=6"z. The geometry is invariant with respect to
the y direction. We therefore assume that the problem is
invariant in y. The various field quantities are also ex-
panded as power series in 6: E'=+5'E,', B'=+5'B,', for
i =U, m, X = 1 +g6'X„V=g6'V, . Also, according
to the chain rule of differentiation, f)/dt =g5' "()/
()t(, (), 8/()x =+5' "()/()x(, (), and () /()z
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=+5" "8/Bz~, , ~, where 8/Bt„B/Bx„and 8/Bz, are
of order of unity. All the summations in the expansions
run over positive integers. Substituting these expansions
into Eqs. (1)—(6), writing all the terms as power series of
5, and equating separately the coefticients of various
powers of 6, we deduce the set of equations of various or-
ders 0 (5'). In the first order 0 (5), the problem is linear.
The fields separate into two groups, namely the trans-
verse magnetic (TM) mode with fields B', , E,', , E,'„ for
i =v, m, Vxi, V, 1, and N1,' and the transverse electric
mode with fields 8'„8,', ,E'„ for i =v, m, and V 1. The
surface polariton is associated with the TM mode. Since
the excitation of the TM mode is responsible for the
enhanced second-harmonic generation mediated by the
surface polariton, we assume that the incident quasi-
plane-wave contains only the field components associated
with the TM mode. The two modes are orthogonal in the
first order. An inspection of the geometrical symmetry
and the nature of the nonlinearities shows that the two
modes remain orthogonal in subsequent orders. If the in-
cident wave contains only the fields of the TM mode, the
fields generated by the nonlinearities and the geometrical
inhomogeneity still remain in the TM mode. This con-
clusion is also confirmed by the perturbation expansions
of the governing equations. The governing equations for
the fields of the TM mode in various orders are as fol-
lows:

(7)—(15). In vacuum, substituting E', and E,', from Eqs.
(8) and (9) into Eq. (7) yields

a a a a a a
2

+
2 2 Bys —

~ Sis+ ~ S2s S3x o azo at o clto clzo axo

a2
Em

at. 2 xs
0
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A similar manipulation leads to

m a m+ I E: By +S9 +
atp

Operating both sides of Eq. (10) by (8 /Btii+ 1) and using
Eqs. (17) and (18) lead to

a a a
a. ax. +a".

a2
Bm

at'0

a a
S8, + S5, — S9, — S6,azo azoato ax o

' ax at

(16)

For the metal region, eliminating V, from Eq. (11) using
Eq. (14) gives E, in terms of B, and the source terms:

a . a
ys a xs a zs 1s

tp zp xp
(7) a2+ +1 S4s .

atp
(19)

a ~ a
E„',+ B', =S2, ,

to zo

a — a
zs a ys 3s

tp Xp

for the vacuum,

(9)

We now deduce the boundary conditions of various or-
ders. At the interface x =f (z), the tangential com-
ponents of the magnetic Aux density and the electric field
B and E,cos8(z)+E„sin8(z) should be continuous, that
is

a a a
ys a xs a zs 4st.

aE,—V, + „B,=S5, ,
ato OZp

(10)

Bv Bm

E,'cos8(z)+E'sin8(z) =E, cos8(z)+E, sin8( ),
at x =f (z), where

dX
tan8(z) = = 5ilK sin—Kz .

dZ

(20)

(21)

a aE„—V„—„B,=S6, ,
ato clx p

X, + Vxs+ V„=S7, ,
a a a

atp ax 0 azo

V, +E„,=S8, ,
C}

ato

V„+E„=S9,,
a

ato

(12)

(13)

(14)

for the metal. The source terms appearing on the right-
hand sides of Eqs. (7)—(15) are equal to zero for s = 1, and
their expressions for s =2, 3, and 4 are given in Appendix
A.

The governing equations for the magnetic Aux density
in vacuum and the metal can be derived from Eqs.

BU Bm

EU —Em
z1 z1

for O(5),

(23a)

(23b)

In order to exploit fully the smallness of the amplitude
of the surface corrugation, we convert the boundary con-
ditions as given by Eqs. (20) and (21) at the actual inter-
face x =f (z) to the equivalent boundary conditions at
the average interface x =0. The fields in Eqs. (20) and
(21) are written as power series in 5, and the fields of each
order in 5 at the interface x =f (z) are expanded as Tay-
lor series about their values at the average interface
x =0. When these expressions are substituted into Eqs.
(20) and (21), we obtain the equivalent boundary condi-
tions at the average interface x =0 as follows:
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for 0 (5 ). Equations (7)—(15) associated with the
equivalent boundary conditions given by Eqs. (23)—(26)
are used to investigate the surface-enhanced second-
harmonic generation taking into account the self-phase
modulation and the nonlinear excitation of the surface
polariton. To describe the self-phase modulation and the
nonlinear excitation of the surface polariton, it is re-
quired to carry out the perturbation procedure up to
third order 0 (5 ). The enhanced second-harmonic radia-
tion in the specular direction (see Sec. V) is determined in
the fourth order 0 (5").

IV. SELF-PHASE MODULATION
AND EXCITATION

For the sake of completeness, we briefly summarize the
self-phase modulation and the excitation of the nonlinear

I

surface polariton, which are needed in the subsequent
evaluation of the enhanced second-harmonic generation.
A detailed treatment of these topics is contained in Refs.
11 and 12.

A. Surface polariton

B", =N ag exp( —a, x p )exp [i (Pzp tot p ) ]+c.c. , —

B,=N a exp(a xp)expri(Pzp totp)]+c. c. , —
(27)

(28)

where the decay coe%cients in vacuum and the metal are,

The 0(5) surface-polariton fields are governed by Eqs.
(7)—(15) with s = 1 for which all the source terms vanish.
The 0(5) magnetic Aux densities in vacuum and the met-
al B~, and BP, are determined from Eqs. (16) and (19)
with s =1 as



1244 GUIFANG LI AND S. R. SESHADRI

respectively,

(p2 2) 1i2

(P2 co2+ 1 )
i ~2

(29a)

quency range 0 & co & 1/V'2. All the fields associated with
the linear surface polariton are given in Appendix B.

B. Reradiation of the surface yolariton

P=[co (1—co )/(1 —2co )]' (30)

Therefore, the surface polariton only exists in the fre-

Also, Ns =(4copa )' is a normalization constant which
scales the power in the surface polariton for unit width in
the y direction to be equal to ag ~

. The tangential com-
ponents of the electric fields in vacuum and the metal are
obtained using, respectively, Eqs. (9) and (18) with s = l.
The application of the boundary conditions as given by
Eqs. (23a) and (23b) yields the dispersion relation

The surface polariton, on interaction with the small-
amplitude grating, generates two Floquet modes which
are of order 0 (5 ). One of the Floquet modes is of the
radiative type, whose phase is matched with the incident
and the rejected quasi-plane-waves. This phase match-
ing enables the incident quasi-plane-wave to transfer en-
ergy to the surface polariton. The 0(5 ) magnetic fiux
densities in vacuum and the metal, B~2 and B~z, are deter-
mined from Eqs. (16) and (19) with s =2 and the first-
order surface polariton fields as

a t/3 a tco a+ + Nsag xpexp( —a, xp )exp[i(Pzp cot p ) ]Bx, a, Bz& 0., Bt&

+ [a;exP( —ik„ixp )+b„exP(ik„,xp ) ]Nf exP [i [(P K)z p
—

cot p ] I

+f,exP( —a,zxp)exP[i [(P+K)zp cotp]I—+fzexP( —2a, xp)exP[i2(/3zp cotp)]—+c.c. (31)

and

a ip a
$2

ECO

Nsctsx pexP(a xp )exP[i(Pzp cot p )]-0,'m

where

+g, exP(a, x p )exP [i [(P—K)zp cot p ]J-
+g2exP(amzxp)exP[i [(P+K)zp cotp] I +g3exP(—az xp)exP[i2(Pzp cotp)]+c—.c. , (32)

k, i =[co —(P—K) ]'

a,2= [(/3+K) co ]'— (33a)

(33b)

a, = [(P—K) —co +1]'i
a ~=[(P+K) —co +1]'i

ap =(4P —4co +1)'~

(34a)

(34b)

where f i, f2„gi, g2, and g3 are the amplitudes of the new wave components generated by the nonlinearity and the sur-
face corrugation. The normalization constant Nf is chosen as Nf =(2co/k„)' such that —a; and ~b, ~

are the x
component of the Poynting vector of the incident and the rejected waves, respectively.

The tangential components of the electric fields in vacuum and in the metal, E,'z and E,z, are determined using, re-
spectively, Eqs. (9) and (18) with s =2. The 0 (5 ) boundary conditions given by Eqs. (24a) and (24b) are used to obtain
the transport equation of the surface-polariton amplitude and the amplitudes of the newly generated wave components.
The terms in the boundary conditions having the phase factor exp[i (pzp cot p )] lead to—

a =0
g (35)

where Vs =aco/ap is the group velocity of the linear surface polariton. The terms in the boundary condition having the
second-harmonic Phase factor exP[i2(Pzp cotp)] enable us to—obtain

coPN a
g

g s
(

2 1)[ (4 2 1)+2 2
]

(36)

The terms having the phase factor exp [i [(P+K)zp cot p ]] in the boundary cond—ition yield
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(a„+KP—a a„2—a, a, z)(co —1)—co (a +KP)
g2 =gza =gX a

2[(co —1)a,~+co a 2]
(37a)

(a, +KP)(co 1)—+ (a ~a —a K—P+ a 2a, )co

f, =f,a =r)N a
2[(co —1)a,2+co a 2]

Lastly, the terms in the boundary conditions having the phase factor exp[i [(p—K)zo cot—o] j yield the result

b„=C„„a;+C„a
with

(37b)

(38a)

and

C,„= co a, +i(co 1)k-„
—co a, +i (co —l)k„
r)Ng [co (a —a,a, —a a, KP)+ (c—o —1)(KP a„)]-

2Nf [ —co a, +i (co —1)k„]

(38b)

(38c)

i2(co 1)k—„Nfa,gi= +g&a—co a, +i(co —l)k„
(39a)

where

a, (a KP)+a—(a, KP)+ia—k„(a +a, )

gi =gX —2(a, a &+ia k„~)
(39b)

Fquation (38a) shows that the amplitude of the rejected wave b„has a contribution from the incident-wave amplitude

a; and the amplitude of the surface polariton a . The parameter C, characterizes the strength of the reradiation of the
surface polariton into the vacuum. Other second-order fields in vacuum and the metal are given in Appendix C. The
incident quasi-plane-wave excites the surface polariton, which in turn produces second-harmonic fields. However, as is
evident from the expressions of the second-order fields in vacuum (Appendix C), the order 0(&') pa«« the s«ond-

armonic field is evanescent. The evanescent second-harmonic fields become radiative on interaction with the surface
corrugation in 0(5 ).

C. Self-phase modulation and excitation

The self-phase modulation of and the incident wave coupling to the surface polariton take place in 0 (5 ). The mag-
netic flux density fields in vacuum and the metal in 0 (5 ), B "3 and B 3, are evaluated from Eqs. (16) and (19) with s = 3

and the first-order and second-order fields given in Appendixes B and C. Due to the nonlinear wave mixing and the
scattering by the surface corrugation, B'3 and 8 3 and the rest of the third-order fields contain a variety of components
with the fundamental, second-harmonic, third-harmonic, as well as many Floquet-mode phase factors. The field com-
ponents relevant to the present treatment are given in Appendix D. The terms with the phase factor exp[i(pzo coto)]-
in the third-order boundary conditions as given by Eqs. (25a) and (25b) lead to the following equation governing the
self-phase modulation and the excitation of the surface polariton:

i a+V a+Ca+C„a;a a
at ' ' az

a'+P a =gras( a~, (40)

where

ir)co pa
Cg = [2(a g, +a zgz)+ gaia N +2K(P —K)g, —2K(P+K)gz]

4(co —1)N

'9 am+ [
—2a, 2f&+isa„N +2K(P+K)f&]

ii Pa [ (1 —2 )' [k„—K(P—K)]+ k„]
[co (a,a, +a a, +K/3 —a )+(co —l)(a, —KP)]

4(l —2co )' [
—co a, +i(co 1)k„]—

i rico pa+ [2( a~,g ) +a~ ~g ~ ) + ria m Ng +2a, 2f, —ria, Ns ],
4(1 —Zco )'i N

(41a)
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rtk„]/3a Nf [~'(a —a~]aU —a~ am ] K—/3)+ (ai' l—)(K/3 —
aU ) ]

C
N [ —co2a ]+i(co 1 )k„]

(41b)

+2 3

Q=—
(1—2' )(2' —2' +1)

y(4a]4 —4' +3) 12'] —12' +1
8(1—a] )

+
2(4a] —1)

(1—co )[2a] +(4a] —2~ +1)' ]
(4a]2 —1)[(4' —1)+2(4' —2a] +1)' ]

(41c)

The coefficient of self-phase modulation Q is given in Eq. (41c), where the term containing y( = 1) gives the relativistic
contr]bution to the self-phase modulation. " Also p =—'d co/dp is the coefficient of group velocity dispersion. The pa-
rameter C „characterizes the strength of the energy transfer from the incident radiative wave to the surface polariton.
So far, the effect of losses in the metal have not been included. We assume that v is the normalized collision frequency
of the metal, then Eq. (40) is modified to'

i as+ V~ a +(C +a )ag+C~„a;
a a
t2 Z2

(42)

where ag =va]P/[2(1 —a] )(1—2' )] is the loss coefficient.
The evolution of the amplitude of the surface polariton is governed by Eqs. (38a) and (40) or (42). With these results,

we are now in a position to determine the amplitudes of the second-harmonic radiative waves.

V. SECOND-HARMONIC RADIATION

A. Second-harmonic radiation in —1 diffraction order

The strongest second-harmonic radiation fields are of the order 0 (5 ), which has the phase dependence
exp[i [(2P—K)zo 2coto]], if the —grating wave number is chosen suitably. Following the usual convention, we desig-
nate this second-harmonic radiation in —1 diffraction order. The bulk contribution comes from the nonlinear mixing
of the first-order fields having the phase dependence exp[i(/3zo a]to)] and the —second-order fields having the phase
dependence expIi[(/3 —K)zo coto]I. Th—e second-harmonic fields generated in the second order 0(5 ) have the phase
dependence exp[i2(/3zo ceto)], whic—h is evanescent. These fields, after being scattered by the surface corrugation, also
have the phase dependence exp I i ( [2P—K)zo 2aito ] J,—constituting the surface contribution to the second-harmonic ra-
diation in the —1 diffraction order. The magnetic Aux density and the z component of the electric field associated with
this radiative second-harmonic wave are expressed as

By3 ] Nf ] A 3 ]exp(ik„2xo)expIi [(2/3 —K)zo 2aito] I +c—.c.

k, 2
E;~ ]

= — Nf, A 3,exp(ik„2xo)expti [(2/3 —K)zo 2coto]I+c.—c. ,

(43)

(44)

and

Byq ]
= A, , exp(a2 xo)expIi [(2P—K)zo 2coto][+c.—c.

i (2/3 —K)[P(/3 —K)—a a, ]E 3 ] 2 i 2 g]Ngagexp[(a +a ] )xo ]exp[i [(2/3 —K)zo —2', ]I
(4a] —1)(a] —1) g g m m tO

E 2COCX2m+
2

A 3 ] exp(a2 xo )exp[i [(2/3 —K)zo 2coto ] I +c.—c.(4' —1 )

where

k =[4' —(2/3 —K) ]'

a ~
= [(2](3—K) —4' + 1]'~

(45)

(46)

(47a)

(47b)

The normalization constant is chosen as Nf ] =(4a]/k, 2)' so that
~
A

& ] ~

is the x component of the Poynting vector
of the second-harmonic radiation in the —1 diffraction order. The 0 (5 ) boundary conditions given by Eqs. (25a) and
(25b) provide the relation between the amplitude of the second-harmonic radiation in the —1 diffraction order
[A& ], A3 ] ] and (a;,a ) through the terms having the phase factor exp[i [(2](3—K)zo 2coto]], —
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p'9azmgzag Nf iA—3, —i '9aufzag ~

i 2coaz i (2/3 —K)[P(P—K)—a a, ]

(4co —1) (4co —1)(co —1)

i rt(2/3 K—)a Ng ag i r/co( azm 2—K/3)g 3

2(co —1)(4co —1) 4co —1

i z)(2a'„K/3—)fzas

2' f-133 -1+ 2'

(48)

(49)

From Eqs. (48) and (49) we determine the amplitude of the second-harmonic radiation in vacuum in the —1 diffraction
order as

2co(4co —1)
[4co azm i (—4co —1)k„z]Nf

X [2co(co —1) az r/(az +2a, )g3+2(2P —K)[/3(P —K)—a a, ]g, Ngag
2(4co —1)(co —1)

+ (co —1)z)a (2P—K)Nga —2coz)(co —1) (az —2KP)g3 ] +z)(2a„—KP)g& /co

(5O)

This second-harmonic radiation in the —1 diffraction order is the strongest second-harmonic radiation.

B. Second-harmonic radiation in the specular direction

The second-harmonic radiation fields in the specular direction is of the O(5 ) with the phase dependence
exp[i2[(P —K)zo coto]].—It is also the next strongest second-harmonic radiation. The bulk contribution to this radia-
tion field comes from the nonlinear mixing of the first-order fields having the phase dependence exp[i (Pzo coto)] wit—h
the third-order fields having the phase factor expIi [(P—2K)zo coto]—], and the wave mixing among the second-order
fields having the phase dependence expIi [(/3 —K)zo coto]].—The surface contribution comes from the scattering of the
third-order fields having the phase factor expIi [(2/3 —K)zo 2coto]]. Th—e magnetic fiux density and the z component of
the electric field having the phase factor expI i2[(/3 —K)zo coto]] are d—etermined from Eqs. (16) and (18) with s =4 to
have the following form:

and

B~~ =Nf A 4,exp(i2k, ixo )exp I i2[(/3 —K)zo coto]] +c.c.,—

k, )
Nf A 4 exp( i2k„xo )exp [i 2 [ (p K)zo coto ] j

—+—c.c.,
CO

(51)

(52)

[a (P—2K) —a z/3][4K(/3 K)+az z
—a—z

] N a A 3 zexp[(a +a z)xo]expI i2[(/3 —K)zo coto]]-
2co(co —1) [(a +a z) —4(P—K) +4co —1]

Em
z4

+A~, exp(azm zxo)expIi2[(P —K)zo coto]]+c.c-. ,

i [a (/3 —2K) —a zP] [(a z
—a )(a +a z) —az z(a z

—a ) ]
(co' —1)'[(a +a~ z)' —azm —z]

(53)

2i (/3 —K)
(4co —1)(co —1)

N a A3zexp[(a +a z)xp]

i (p —K) z
'2coazm —z

g, exp(2a, xo )+ A 4, exp(az zxo ) exp [i2[(/3 —K)zo coto]] +c.c. —
(4co —1)(co —1) 4cu —1

(54)

in the vacuum and metal, respectively, where A 3 2 is given in Appendix 0, and

a z z=[4(/3 K) 4co +1]'i— — (55)

The normalization constant is chosen as Nf so that
~ A4, ~

is the x component of the Poynting vector of the second-
harmonic radiation in the specular direction. The O(5 ) boundary conditions given by Eqs. (26a) and (26b) provide the
relation between the amplitude of the second-harmonic radiation in the specular direction [A4, A4 ] and (a;,a )
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through the terms having the phase factor expI i2[(P—K)zo c—oto] I:

[a (P 2—K) a— P][4K (P—K)+a2
2
—a2 ] '9~2m — '9 O'Zm

232% a +34,+ A3 )+ g3
2'(co —1) [(a +a 2) —a2 2]

l gkv2 9 +v
=Nf A4, + A3, + f2,

i [a (P—2K) —a P] 4K (P—K)+a~ 2
—a

A32Ngttg (a 2
—a ) —(a +a 2)(4' —1)(co —1) ' (a +a 2) —a2

(56)

i 2(p K)—Ngag; (t3 K) 2
i2coa2

(4' —1)(co —1) ' (4' —1)(co —1)2 2 32 2 2 g~ 2 4s4' 1

i qco[a2 K(2p——K)] i q(a +a ~)(2p —K)[a a
~ 13(p —K)j-

+ g, + X g,4' 1 2(4' —1)(co —1)

[a (13—K)—a,f3]K+(co'—l)(a +a, )

2(4' —1)(co —1)

i2) a (K —p) iq coa2 (a2 KI3)—
+

2 2 %gag+ 2 g32(4' —1)(to —1) 46k 1

k„ ig[k, 2+K(2p —K)] i' a, (KI3 a, )—
CO 4' 26)

(57)

From Eqs. (56) and (57) we determine the amplitude of the second-harmonic radiation in vacuum in the specular direc-
tion as

A4, = — [i4co a2m 2k,2+(4' —1)[k„2+K(2P—K)]J A 3

2 2

[2' a2 2a, +(4' —1)(a„K/3)]f2—— [a2 (a2 —a2 2) —K(2p —K)]A 3

l'l7 CO 0,'2m i(p —K)~ 1'g a co(K P)
[a2 (a2m a2m —2) 4KP]g3+ 2 g 1 +

2 Ngttg
(co —1 )D 2(co —1 )D

+
2 2 (a 2

—a )[a (p —2K) —a p] —2(co2 —1)(p—K)

a [a (P—2K) —a zP][4K(fi—K)+a 2
—a ] Xa 332

(a +a 2) —a2 2

+
2 [(a +a, )(213—K)[a a, —p(p —K)]

2(co —1) D

+K [a (13—K) —a, i3]+(co —l)K(a +a, )]]N a g, , (58)

where

D =[k,)(4' —1)+i2co a2 2]Nf . (59)

There exists also second-harmonic radiation fields in the
+ 1 diffraction order, which are of the order 0 (6 ). Since
this second-harmonic radiation is considerably weaker
than that in the —1 diffraction order, it is not included
here.

VI. NUMERICAL RESULTS

Given the amplitude of incident fundamental fields

a, (z, t), the amplitudes of the second-harmonic radiation
mediated by the surface polariton in the —1 diffraction

I

order, A3 „and in the specular direction, A4„are
completely determined by Eqs. (50), (57), and (58), with
the help of Eqs. (38), (40), and (41) which govern the evo-
lution of the surface-polariton amplitude. Illustrative nu-
merical results of the enhancement factor and the beam
properties of the second-harmonic radiation in the steady
state (anat =0) are presented in this section.

A. Enhancement factor

We assume that the incident wave is a quasi-plane-
wave of the form

Nfa;exp(ik, &xo)exp[i [(P—K)zo ceto]] . —



SURFACE-ENHANCED SECOND-HARMONIC GENERATION OF. . . 1249

The quasi-plane-wave has a finite transverse extent which
intersects the z axis from z =0 to z =L. The second-'
harmonic reAection from a planar metal-vacuum inter-
face is determined as

10

10

(a)

By2 Nf B2U exp( i2k, &xo )

X exp I i2[(/3 K)—zo toto]—] +c.c. ,

where

(60a)
1Q

I

1Q

iNf(P K—)cocos /exp(i2$)
+2v- a;, (60b)

(1 —co )[k„,(1 4'—) i 2—roa2 2]
Q

2

O!I ICt)
y=tan

k„(1—ro )
(60c)

10 =

The normalization constant Xf is the same as for the in-
cident wave so that 82, gives the x component of the
Poynting vector for the second-harmonic radiation from
a planar metal-vacuum interface. The enhancement fac-
tors are defined as

1 I I—18.0 —1 6.0 —1 4.0
8;(deg)

—12.0

f la3, II'«

f IB,„I'«
gv 2d

0

f IB„I'dz

(61a)

(61b)

FIG. 2. Enhancement factor as a function of the angle of in-
cidence for the second-harmonic radiation in the —1 diffraction
order. Curves (a), (b), and (c) correspond to normalized incident
intensities of 10, 10, and 10, respectively. Solid lines are
for the lossless case; dashed lines are for the lossy case.

for the enhanced second-harmonic radiation in the —1

diffraction order and in the specular direction, respective-
ly.

We evaluate the enhancement factors for a silver-
vacuum interface. The plasma frequency co and the col-
lision frequency v of silver in rad/s are 1.2545X10' and
2.2734X10', respectively. ' The amplitude g and the
period 2m/K of the sinusoidal surface corrugation are 15
and, ', mm, respectively. We assume that the width of
the incident beam L is the same as the extent of the grat-
ing and is equal to the value that maximizes the excita-
tion of the linear surface polariton, that is,
L =1.2565/ReIC ].' The wavelength of the incident
He-Ne laser light is 632.8 nm. The incident wave ampli-
tude is of the form

imum enhancement factors occur change with the change
in the incident intensity. The intensity dependence of the
maximum enhancement factors and the optimum in-
cident angles are presented in Figs. 4 and 5 for the
second-harmonic radiation in the —1 diffraction order,
and in Figs. 6 and 7 for the second-harmonic radiation in
the specular direction. When the incident intensity is

10

a, =a,oexp(ihz), (62)

where the adjustable parameter h ((I/3 —Kl is used to
vary the incident angle 0, as given by 0;= tan ' [(P—K +h ) /co ]. The enhancement factors E
and E, are plotted as functions of the incident angle 0;
in Figs. 2 and 3, respectively, with the incident intensity
as a parameter. Both the lossless (solid line) and the lossy
(dashed line) cases are included. The resonant behavior
of the enhancement factors clearly shows that when the
surface polariton is excited the second-harmonic radia-
tion intensifies. The losses in the metal reduce the
enhancement factors without significant changes in the
resonant behavior. The enhancement factors depend also
on the intensity of the incident wave. The maximum
enhancement factors decrease as the incident intensity in-
crease. The optimum incident angles at which the max-

10 —)

1 0 2

1
—30 I I I I I I I I—18.0 —1 6.0 —1 4.0 —1 2.0

8, (deg)

FIG. 3. Enhancement factor as a function of the incident an-

gle for the second-harmonic radiation in the specular direction.
Other parameters are the same as in Fig. 2.
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1 0 2

10

10—

10

10 l—4
l—2

I—4

»K&o (I~ oI )

I—3
I—2

FIG. 4. The maximum enhancement factor as a function of
the logarithm of the incident intensity for the second-harmonic
radiation in the —1 diffraction order. Solid line is for the loss-
less case; dashed line is for the lossy case.

small, the nonlinear efFects are very weak. The excitation
of the surface polariton is very efficient as a result of the
choice of the extent of the grating L. For the enhanced
second-harmonic radiation in the —1 difFraction order,
the enhancement factors in the linear limit are approxi-
mately 3X10 and 8X 10 for the lossless and lossy cases,
respectively. For the enhanced second-harmonic radia-

—13—

FIG. 6. Same as Fig. 4 for the second-harmonic radiation in
the specular direction.

tion in the specular direction, the enhancement factors in
the linear limit are approximation 60.0 and 15.0 for the
lossless and lossy cases, respectively. These results are in
good qualitative agreement with the experimental result
obtained by Quail and Simon. ' The width of the reso-
nance curve is larger than that obtained by Quail and
Simon, where the incident wave is assumed to be a plane
wave and the method of reduced Rayleigh equations was
used. The Inaximum enhancement factors decrease
sharply as the incident intensity exceeds a critical value
of about 0.001 (normalized), accompanied by correspond-
ing changes in the optimum incident angles.

U
—14—

A

D —15-

O

—16
—5

I—4

»slo (I~ oI')

FIG. 5. The intensity dependence of the optimum incident
angle at which the maximum enhancement factor for the
second-harmonic radiation in the —1 diffraction order (Fig. 4)
is achieved. Solid line is for the lossless case; dashed line is for
the lossy case.

»aio (Io ol )

FIG. 7. Same as Fig. 5 for the second-harmonic radiation in
the specular direction.



1251COND-HARMONIC GENERATION OF. . .SURFACE-ENHANCED SECO

B. Beam properties 1.00—

examine some of the beam p pearn ro erties of theNext, we exam'
'

n. The eometry for

d
' ' . h 'd t 1't ded to be infinite. i e inci e

rofil The width [se Ea slowl varying Gaussian pro e. e
sian rofile is L [optimum extent of the

h f o1for the linear excitation of t e sur ace
r L =52.7 pm (physical units)]L =2202. 2 (normalized) or = . p

so that a, is now described by

LLI

4
D
0~ 0.50—

Z
2

; =0;Oexp (63)

the eak amplitude) of theThe profiles (normalized by e p
second-harmonic radiation in t eenhanced secon-

der and in the specu ar1 direction are verydiffraction orde
he —1 diffraction or-nce onl the results for t e — i

ted
'

d b rofiles of thented. The normalize earn pp
second-harmonic radiradiation in the — i rac

'

for both the lossless an ynd loss cases are s own in
10 for eak intensities ( ~a;o of 1

res
'

. 1 ls of incident intensityres ectively. At low eve s o
h file of the second-harmonic

'd lhbroadening or
f th beam profile is shift-for the lossy caase. The center o t e earn

ro a ation of the surface po-ed in the direction of the propagation o e
e amount of the shift is compara e o

fil Th 1 1 h'f'width of the incident Gaussian pro
or the lossless case than or e omore pronou ced

case at low incident intensities. The pro e o

't .00—

0.00
/

II f I ) I I 5 ) I I

2000 4000 6000 8000
NORMALIZED DISTANCE

FIG. 9. Same as Fig. 8 for the peak intensity of 10

ion ro ressively deviates fromsecond-harmonic radiation prog
Atincident intensity increases.the Gaussian form as the incid

els of the incident intensities (Fig. , or
le) as mmetries in the beam pro e eve

he amount of the lateral shift decreasespoo g

increase in the incident intensity. At ig eve s

is uite different from the Gaussian shape. T e pea am-

before the incident amplitude reac es i s
h' h i id i i 1 1,um. This is because at ig inci e

-p
trates t e ph hase-matching condition be ore e i

LLJ

O
CL o.vo—

1.00—

W

C3

~ o.ro—

/
I

I ('

I

l ')

0.00
/

I I f ) I I I

2000 4000 6000 8000
NORMALIZED DISTANCE

of the second-harmonic radi-FICx. 8. Profile of the amplitude o
t..e incident wave as an in the —1 diftraction order when t e

'

o
' =2202 0 (normalized) (short-dashed

10 T}1 t t of th
file of width L = . n

)- p cident intensity is
d to be infinite. Solid line is or egrating is assume o

case long-dashed line is for the lossy case.

I I I I I I I I I I I

2000 4000 6000 8000
NORMALIZED DISTANCE

FIR. 10. Same as Fig. 8 for the peak intensity of 10
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500-

LJJI—

I—4

ionia (l~iol )

FIG. 11. The lateral shift of the beam profile of the second-
harmonic radiation in the —1 diffraction order as a function of
the peak intensity of the Gaussian profile of the incident beam
of width L =2202.0 (normalized). Solid line is for the lossless
case; dashed line is for the lossy case.

amplitude reaches its maximum. Thus, at the peak am-
plitude of the incident wave, the efficiency of excitation of
the surface polariton is very low. For the range of the in-
cident intensity for which the rejected second-harmonic
radiation has approximately the Gaussian profile, we
have plotted in Fig. 11 the lateral shift and in Fig. 12 the
FWHM as functions of the peak incident intensity for

2500—

2000—

+ i500—

both the lossless and the lossy cases. At low intensity lev-
els, the lateral shift for the lossless case is considerably
larger than for the lossy case. There exists an intensity
level at which the lateral shifts are the same for the loss-
less and the lossy cases. Beyond that intensity level the
lateral shift for the lossy case is larger than that for the
lossless case. Similar behavior in the FWHM is also ob-
served as Fig. 12 shows.

VII. CONCLUDING REMARKS

Surface-enhanced second-harmonic generation is a
nonlinear process. To study the spatiotemporal behavior
(dynamics of beams) of this process, the method of
decomposition of the incident pulsed beam into an in-
tegral of plane waves fails because the principle of super-
position is invalid. Further complication arises due to
the fact that (a) the amplitude of the surface polariton ex-
periences self-phase modulation, and (b) the efficiency of
excitation of the surface polariton depends on the in-
cident intensity due to the nonlinearity in the metal. We
have investigated the characteristics of the surface-
enhanced second-harmonic generation of pulsed beams,
using a singular perturbation procedure employing multi-
ple space and time scales. For smooth pulsed beams, the
slow variation of the wave amplitude is expressed by
derivatives on long space and time scales (rather than in-
tegrals), enabling us to linearize the problem in each or-
der of the perturbation. In so doing, the effects of the
self-phase modulation and the nonlinear excitation of the
surface polariton on the enhanced second-harmonic gen-
eration are successfully taken into account.

The resonant behavior of the enhancement factor with
respect to the incident angle for an incident plane wave of
infinite width has been presented previously. '" Comple-
menting those results, we have presented here the reso-
nant behavior for an incident quasi-plane-wave of finite
width. Moreover, the intensity dependence of the
enhancement factor and the optimum incident angle for a
quasi-plane-wave are included. These intensity depen-
dences are expected for nonlinear processes. When the
incident wave has a Gaussian profile, lateral shift of the
second-harmonic radiation, which is the nonlinear coun-
terpart of the well-known Goos-Haenchen shift, is pre-
dicted. This lateral shift is quite pronounced in the near-
linear regime of the incident intensity and should be ob-
servable in experiments.

1000—
APPENDIX A: THE SOURCE TERMS

500 I—4

»aio (l~,ol')

I—3

The following are source terms for the second-order
fields.

U 0
USiq = B",+ E'i — E,'i,

Bti y Bzi Ox'

FIG. 12. The full width at half maximum of the profile of the
second-harmonic radiation in the —1 diffraction order as a
function of the peak intensity of the incident Gaussian beam of
width L =2202.0 (normalized). Solid line is for the lossless
case; dashed line is for the lossy case.

a ~ a
S22 = —

~
E~ i

—
~

By'
t] z ]

a
S32 Ezi + By

(A2)

(A3)
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a
S42 By& + Exl Ezat, y az, ax,

a a
Sq2= — E„l +Nl v 1

— B 1,atl az,

(A4)

(A5)

S53 =—

(A14)

a a a
&xz —

~
Exi+Ni Vx2+N2 Vxi

~ &ye
Bt& Bt2 Z 1

a
yl

Z2

a a
S62= — E, l +N1V, 1+ B 1,atl ax 1

(A6)
a - a a

63 z2 z 1 1 z2 2 z 1 y2at, at2 ax,

a a a
S7~= — N, — (N, V, )

— V„at 1 aXp aX 1

a a
(NiN, i)—

ZQ Z 1

a a
S82= — V 1

—V 1 V 1
—Vl V 1at, ax az

(A7)

a+ By1,ax 2

a a a
73 N2 — N, — (N2V~i+N, V„2)

axp

a a a
(N2 V i+N, Vz) —

~
V„2—

~
V~,

ZQ ax 1 ax 2

(A15)

S92

+V,1B 1,
a a a

V, l
—V 1 V, l

—V, l „ V, lat 1 axp azp

—V 1Byl ~

(A8)

(A9)

a a a
V, ~

— V„— (N, V, )
Zl Z2 X 1

a
(N, V„),

Z 1

a a
Vxl

—Vxl

(A16)

The following are source terms for the third-order fields:a, a . a, a, a
13 y2 y 1 x2 a x 1 a z2at, y at, y az, az,

a a
V 2

—V. l .
a

zl
X2

a
23 2 a x 1 a y2 a y 1
'= a,

'

a ~ a ~ a
S33 = Ez2 Ez, 1 + By"2 + By

(A10)

(A11)

(A12)

Vz2 Vx1 + VzlBy2 + Vz2By
Zp

[( V„,+ V„)V„,],
2 tp

a a a a
S93 V 2

—„V,l
—V, l V,2

—V, l „V,lat, at2 azp azl

a a
V 2 V 1 V" 1 V 2 V. l a

V 1
ZQ axp ax 1

(A17)

m
zl

X2
(A13)

a a a a a
S43 = By2 + Byi + Ex2 + Ex 1 Ezat, ~ at, ~ az, az, ax,

m m
Vx2 a Vz 1 Vx 1By2 Vx2By 1

Xp

1 a 2 2[(V„+V„)V„] .
2 atp

(A18)

The following are source terms for the fourth-order fields:

a, a, a, a, a, a . a, a, a
at, ~ at, ~ at, ~ az, az, " a, ax, ' ax,

a
24 a x3 a x2 a xl a y3 a y2 a yltl t2 t3 Zl Z2 Z3

a . a, a . a, a, a
S34 =

z3 z2 Ez 1 + By 3 + By2 + By
tl t2 t3 Xl X2 X3

a . a . a a . a . a . a a
t3 Zl Z2 Z3 Xl X2 X3

a a m a m a mS54: Ex3 Ex2 Ex 1 +Nl Vx3+N2 Vx2+N3 Vx 1 By3 By2 By&at at " at Zl Z2 Z3

a a - a a a a
S64 = Ez3 Ez2 Ez 1 +N 1 Vz3+ N2 Vz2+ N3 Vz 1 + By3 y2 a yat at ' at ax 1 ax2 ax3

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)
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S74 = — N3 — N2 — N )
— (N3 V„,+N2 V,3+N, V, 3 )

— (N, VX3+N2 Vx )+ VX3 )

(N) V„,+ V„2)— V„,— (N) V,2+N2 V,)+ V,3)— (N) V,)+ V,P)
—

~

a
(N3 V ]+N2 V 2+N) V 3)

ZQ
(A25)

S84= — V„, +V„+ [ V„3+—,'( V„, + V„)V„,]
BxP BZQ Bt)

8 8 8 8 8+V ) +V 2 +V, ) +V2 V„2
Bt2 Bx

&
BxQ Bz

&
BZQ

a a a a a a+ V J + V 2 + V 3 + V $
+ V 2 + V 3

clt3 Bx2 Bx ] BxP Bzg Bz ] BzP
V)

[2 V~|+V~~ V»+ V»V»+ V»V» V»]+V~~ 33+V» 32+V»B3»
0

(A26)

S94V ]+V]+ [V 3+ —,'(V„+V„)V„]
Bxp Bzp Bt i

8 8 8 c3+V ) +V2 +V, ) +V2 V2
Bt2 Bx ) BX0 Bz ) BzQ

a a a a a a+V ) +V 2 +V 3 +V) +V2 +V3
t3 X2 X

& XQ Z2 Z] ZQ
V, )

[T~( Vx, + V, ) ) V,2+( V„,VX2+ V„v,~) V„] VX,Byq V~2BY2 VX3 y (A27)

APPENDIX 8: FIRST-ORDER FIELDS; THE SURFACE POLARITON

B",=Nga~exP( —a,xp )exP[i (Pzp cotp )]+c.—c, , (B&)

E„",=—N~a exp( —a,xp)exp[i(13zp cotp)]+C.—C. , (B2)

l CXU

E,", = — Ngagexp( a,xp)exp[i—(Pzp cotp)]+c.c. ,
—

CO
(B3)

B,=N a exp(a xp)exp[i(Pzp ct)tp)]+c.c., (B4)

E, = N a exp(a xp)exp[i(Pzp cotp)]+C. C. , —
co 1

(85)

l COCXmE7= N a exp(a xp)exp[i(Pzp —cotp)]+c.c.,
co 1

(B6)

l
2

N a exp(a xp)exp[i(Pzp cotp)]+c. c. ,
—

eo 1

~m
V, &=

2 N~agexp(a xp)exp[i(/3zp totp]+C. C. , —
co' —1

(B7)

(BS)

N, =O.
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APPENDIX C: SECOND-ORDER FIELDS

B~z = — + + Ã~azxoexp( —a,xo)exp[i(/3zo c—otp)]
l /3 c} $ co c}

BX& CX, BZ& CX, Bt&

+[a;exp( i—k„,xo}+b„exp(ik„xp)]Xfexp{i[(P K—)zp coto] j

+f, exp( —a„zxo )exp {i[(/3+K)zo co—to] j +fzexp( —2a, xo )exp[i2(/3zp cot—o ) j+c.c.,

l Pxo p coE' =—i/3xx2, 0 + —1+— + ——+
CO I ~X l CXU BZ ] 63

L

/3xo
Xgagexp( —a,xp)exp[i (/3zp cot—p)]

CX, Bt,
—K

[a;exp( —ik„xo}+b„exp(ik„xp)]Xfexp{i[(/3 E)zp —cotp]j

+ f, exp( —
a„zxo )exp {i[(/3+K)zp coto ] I +——fzexp( —2a, xp )exp[i 2(/3zp coto

—
)]+c.c. ,

P+K

(C1)

(C2)

i ' c} i/3 c} . /3E,"z =—a,xo + (1—a,xp) +i
CO BX ) CXU BZ i COCXU

—coxo A~a~exp( —a,xo)exp[i(/3zp coto)—]Bt,

k, )+ [a,exp{ ik, &x—p) —b„exp(ik, &xo)]Xfexp{i [(P—K)zp cotp] I

iCX l CXf&exp( a.zxo} xp{' [(/3+K}zo coto] j
— fzexp( —2a.xo)exp[i2(Pzo cotp)]+c. c. , (C3)

c} i/3 c} l CO

Ngagxpexp(a~xo)exp[i(/3zo tco)o]+—g, e px( a, x)eopx{i [{/3—K)zo cotp]]-
CX Bt&

+gzexp(a zxo)exp{i [(/3+K)zo coto] j+—g3exp(az xo)exp[i2{/3zp coto) j+—c.c. ,

co/3x p ij

CO 1 c)X
~

2
i CO c} i/3 co +1 co xo

CO 1 BZ ] CO 1 CO 1 CXm

2 2
cx %a

X exp(a xo )exp[i (/3zp coto ) ]—— exp(2a xo)exp[i2(/3zo cotp )]-
(co —1 )(4co —1 )

xo1+ 1V a

a /v,'la, l'
co(/3 K)—

exp(2a xo ) + g, exp(a, xo )exp {i[(/3 K)zo coto—]]—
(co —1)(2co —1) CO 1

co(/3+ K) 4co/3+ gzexp(a zxo)exp{i [(/3+K)zp coto) I + g—3exp(az xp)exp[i2(/3zp cotp)]—+c.c. ,
CO 1 4CO 1

(C4)

(C5)

i coa xo g co/3(1+ a xp )—+- +
2 2co —1 c}x) (co —1)a») (co —1)(2co —1)a

CO Xp
2

+ A a
CO

—1

i/3/t/g a
X exp(a xo)exp[i (/3zo coto)] — — -exp(2a xo)exp[i2(/3zo —coto)]

(co —1)(4co —1)
'COCXm i l COCXm2+ g, exp(a, xo)exp{i [(P K)zo co—to] I+ — gzexp(a zxo)exp{i [(/3K+)zo coto]I—
CO 1 CO 1

V 2=

l 2COCX2m+ g3exp(az xo )exp[i2(/3zp coto ) ]+c.c. , —
4CO 1

'/ xo c} 1 /3 xo c} 2co/3 /3xo

(co —1) &x& co —1 a»i (co —1) (co —l)a c}t&
2

'+
2 2+ X a

i2cocx X a
X exp(a xp )exp[& (/3zp coto ))+ z . z exp(2a xo )exp[i2(/3zo coto )]-

(co —1)(4co —1)

(C6)

i (/3 —K) i (/3+K)
g, exp(am, xo)exp{i [(/3 K)zo coto—] j

——— gzexp(a zxo)exp{i [(/3+K)zo cotoj]—
1 CO 1

l2
g3exp(az xo)exp[i2(/3zo coto) ]+c.c., —

4CO 1
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~m&o
V

co 1

i/3(1+a xo) +
(co —1)a

lCO

(co —1)(1—2co )a

l Cc)X p

2co/3' ctz
Xexp(a xo)exp[i (/3zo cot—o ) ]— exp(2a xo )exp[i2(Pzo c—oto ) ]

(co —1)(4co —1)

+m& ~mr+
z g& exp(a &x 0)exp[i [(/3 —K)zo cot—o]}+ gzexp(a~zxo )exp [i [(/3+K)zo cot—o ] j

(co —1) co 1

0'zm+
~ g3 exp( a~ xo )exp [i 2(Pzo co—to ) ]+c.c. ,

46) 1

2
N~ = —

z Nba~exp(2a xo)exp[i2(Pzp cotp)] .
4a)' —1

(C8)

(C9)

APPENDIX D: THIRD-ORDER FIELDS

The third-order fields that are needed in obtaining the enhanced second-harmonic specular reAection are given by

By3 Nf $
A 3,exp( ikuzx0 )exp [ ' [ ( 2~ K)zo 2coto ] }+ A 3 2 exp( iku zxo )e"p [ ' [(/3 —2K)zo —coto ] j +c.c. ,

2P —KE 3 Nf f A 3,exp( ik„zxo )exp [ i [ ( 2p —K)zo 2coto ]—}

P—2K+ A 3 pexp(ik, zxo)exp[i [(P 2K)zo coto]}+c.c.,
CO

k„~E 3 Nf '[ A 3,exp( ik, zx o )exp [i [ ( 2p —K)zo 2cotp ] j2'
k„

A 3 /exp(ik, zxo )exp [ i [(P—2K)zo coto ] j +c.—c. ,
CO

+y3 A 3,exp(am, xo )exp {i [(2P —K)zo —
2coto ] j

+ A 3 /exp(a zxo)exp[i [(P 2K)zo c—oto] j +c—.c.,

(Dl)

(D2)

(D4)

Em 1
x3 4' —1

[a (/3 K) —a,P]K—+(a +a, )(co —1)

(co —1)2 2

'
xgagg 1

Xexp[(a +a, )xo]+2co(2/3 K)A3, exp(a z
—xo) exp[i [(2/3 —K)zo 2coto]}—

co(/3 —2K)+
~

A 3 /exp(a zxo)exp[i [(/3 —2K)zo coto] j +c—.c.
~2

(D5)

Em 1

(4co —1)

i (2P —K)[/3(/3 —E)—a a
& ] +a

(co —1)

+i2coaz A3 —/exp(a z xo) exp[~ [(2/3 —K»0 —2cotol}

l Ct)CX~+
~

A 3 zexp(a zxo)exp[i [(p—2K)zo o to]}+e e. ~

1V„3= 4' —1

i2co[a (/3 K) —a )/3]K +(a—+a p)(co —1)

(co —1)
&a g&

X exp[(a +a &)xo] i (2p —K) A 3
—&exp(a z xo)

X exp[i [(2/3 K)zo 2coto] j
— —

z
— A 3 &exp(a~ zxo)exp[i [(/3 —2K)zo coto] }+c.c. , —i (P—2K)

co 1
(D7)
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1
V,3=

(4co —1)

2'(213—K)[P(13—K)—a a, ]
N a g, exp[(a +a, )xo](~2 1 )2

+a2m 33,exp(am2 —xo) exp [t [(213 K)zo 2toto] j

&m —2+
2

A 3 2exp(a~ 2xo)exp[i [(p—2K)zc rot—o] j +c.c.
co 1

(D8)

N3=
2 2 2 (a +a, )K[a (p —K)—a,p]

1

(to' —1 )'(4'' —1 )

+(a +a &) (P —a ) —(2)t3—K) [13(P—K) —a a, ] Nsasg,

X exp[(a +a t )xo]exp [i [(2P—K)zo 2coto ] j +
—c.c. (D9)

Here we have assumed that the fields with the phase factor exp[i [(P—2K)zo toto] j is —a propagating wave in vacuum.
Otherwise, K„2=[co —(p —2K) ]'i should be replaced by K„2=ia„2=i[(13—2K) —co ]'i . The wave amplitudes
A 3 &

and A 3, are given by Eqs. (50) and (48), respectively. The wave amplitudes A 3 2 and A 3 2 are given as

3 2 2 3 2 + 21 [4a g&
—[21(a —a„)Nsas ]—i4riNf k,

& C&as j /8+i tiNf k„,( 1 —C„„)a;I2
12 3 2

= ( [i2lro[K(p K) a—, ] l(t—o 1) j
—2)k—, a, /co)g,

2

(D10)

where

X [ 71k„2(a——a„)N i 4Nf k,—2k„,C„+i2)a, (2K13 a„)N-
8coD2

i 21 toa as(2K —a )
i4Nf [K—(p K) k„,—]C„—j+

& graf a,.
I k, 2k„,(1—C„„)+[K (13 K)+k„](—1+C„„)j,

2coD2
(D 1 1)

[(co —1 )k„+2i aco2
D~=

to(co —1)
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