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The correlation length and the free energy of the S =% XXZ chain in a magnetic field in the z direc-

tion are calculated with use of a set of equations for a series of infinite numbers. These are derived by
the Bethe-ansatz method for the quantum transfer matrix. The equations for free energy should be
equivalent to the thermodynamic Bethe-ansatz nonlinear integral equations. A numerical method that
calculates precisely the free energy and the correlation length is given.

I. INTRODUCTION

In a previous paper! the author proposed a set of equa-
tions that calculates the free energy and correlation
length of the S =1 XYZ chain in zero magnetic field at
arbitrary temperatures. Here a set of equations is given
that calculates the free energy and correlation length of
the S =1 XXZ chain in a magnetic field in the z direc-
tion. The Hamiltonian is as follows:

N
H=—J 3 (SISF, +S7S7, +ASST, )
j=1

N
—2hZESf, J>0, ©o>A>— . (1)
j=1

About 20 years ago the thermodynamic Bethe-ansatz in-
tegral equations® had been proposed for the free energy of
this system. Using these equations, the thermodynamic
properties of this system were investigated in subsequent
papers.> >

The quantum transfer matrix of this model is
equivalent to the diagonal-to-diagonal transfer matrix of
the six-vertex model. The properties of the diagonal-to-
diagonal transfer matrix were investigated by Truong and
Schotte.® This is a special case of the inhomogeneous
six-vertex model.” Koma® and Yamada® obtained the
free energy and the correlation length for the A=1 and
h,=0 case by taking the limit of the infinite Trotter num-
ber numerically. In this paper we give a set of equations
by taking the limit of the infinite Trotter number analyti-
cally. So the equations become simpler than those for the
finite Trotter number. The numerical method that is pro-
posed in this paper is efficient in accurate calculations of
the free energy and the correlation length at given tem-
perature T, anisotropy A, and magnetic field 4,. The free
energy and correlation length are given by a set of equa-
tions in an infinite number of unknowns. The set of equa-
tions for free energy should be equivalent to the set of
nonlinear thermodynamic integral equations, which was

1

given in the 1970’s.2 In the problem of the XYZ chain'
the unknown numbers are all real numbers. But for the
XXZ model in a nonzero magnetic field, the unknown
numbers are complex numbers. Then the numerical
iteration method is not as simple as for the XYZ model.

In Sec. II we consider the transfer matrix of the XXZ
model in a magnetic field. We find that there are two
correlation lengths &, and £,,. We derive the equations
for the free energy and &,, in the limit of the infinite
Trotter number. In Sec. III we show that our equations
are solved exactly in some special cases such as the Ising
limit (A— o0 ), the XY limit (A=0), and the h,=T =0
case. In Sec. IV we give the numerical method, which is
used to calculate our equations at given A, 4,, and tem-
perature. We compare our results with experimental re-
sults on the organic ferromagnet p-NPNN. In Sec. V we
consider &,, in the |A| =1 and h, =0 case. We discuss the
relation with the correlation length of the XYZ model in
Ref. 1.

II. FUNDAMENTAL EQUATIONS
OFTHE S = %XXZ CHAIN IN A MAGNETIC FIELD
A. Quantum transfer matrix

The partition function Z of the XXZ model described
by (1) is approximated as follows:

Z =Tr{exp[ —%#,/(MT)]exp[ —F,/(MT)]}M |

Hy=— 3 J(SISF+SISI +ASISE )
j=odd
+h,(SF+S%,), 2)
Hy=— 3 J{S{SS +8)S) TASFST L}
Jj=even

+hy(SF+S7,,) .

This is the same with the partition function of the six-
vertex model with 2M X N bonds:!°

N M
Zz=3 11 HB(‘721+j,j02i+j+1,j§‘72i+j,j+102f+j+1,j+1)'

(o} j=1i=1
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Hereo,,,; I=12,...,2M,m=1,2,...,

the 4 X4 matrix:
b 0 0 ¢
L, 0 0a O
B(0,0,0105)= 0a0 0|
¢c 0 0 b’
a =exp(—JA/4MT)sinh(J /2MT),
b'=exp[(JA—4h,)/AMT], ¢ =-expl(
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N) denotes the direction of bonds and takes values +1 or —1. B is given by

b =exp[(JA+4h,)/4MT] ,
—JA/4MT) cosh(J /2MT) .

If we put alym—>(—1)l+'"+10 ms Z is given by
a 0 0O
N M 0 c b O
Z=[ : H1 HlA(02i+j,j02i+j+1,j;02i+j,j+102i+j+1,j+1)’ A(0,050705)= 0Ob ¢ O 4)
o} j=11i=
00 a

Then in the case N =2M Xinteger, Z is given by the
transfer matrix

— N R ’ ’
Z=TrT", T(0,05 ...,033;0 1502, +..,055)

=A(0,050501)

ot '
A(O oy 100303 —20 20 —1) -

(5)

X A(0oy045050%) -+

This 22X 22 matrix is the diagonal-to-diagonal transfer
matrix of the six-vertex model and different from the con-
ventional row-to-row transfer matrix. Truong and
Schotte® and Koma3 treated the eigenvalue problem using
the Bethe ansatz. The eigenvalue problem of this transfer
matrix is the special case of the inhomogeneous six-vertex
model on the square lattice, which was treated by
Baxter.’

The number of down spins k in one row in a conserved
quantity. A down spin behaves as a particle, and we can
construct an eigenfunction and its eigenvalue using k pa-
rameters.

For the largest eigenvalue, k is equal to M. We write
this eigenvalue as AS, and corresponding eigenvector as
|0). The exact free energy per site is given by the limit-

ing value of A, as M — oo
f=—TIn( lim A}). 6
M—w
Let us consider the two-point functions
S*™(n <S, S,) and S#n)=(S;Sf,,). S¥(n)
= (Sf'S,V+,, is the same with S*(n). These are written
as
Tr(TVN ~"R"U,R™"T"U, )
§*(n)= ¥ ) N
TrT
Tr(TY ""R"U,R™"T"U, )
S#(n)= (8)

Ty

Here R is the shift operator, and U, and U, are defined
by

2M
=1
U, =38, 118, >
j=2 AR
2M
=1
U,=1o8, 115, . ©)
=2 S

18 2R ' .
0201 03,0, %M

R? and transfer matrix T commute. So we put the corre-
sponding eigenvalue of R? as exp(iK ;) of the eigenstate
j). K ; is the total momentum of the state j. It is given
by (27 /M) Xinteger. S**(n) at n =even is given by

(olu,lj)jlu,lo)

Sao —_
= 2 010 <1
X |—~ | exp(—iK;n/2), (10a)
Ap
and at » =odd it is
() (O|RU,R![j){(jlU,l0) "
n)= T
r (0]0){jlj» AS,
Xexp[—iK;(n —1)/2] . (10b)

Here (0| and {j| are left eigenvectors corresponding
to |0) and [j). Then if A; is the next
largest eigenvalue that satisfies {0|U, Ij ) (jlU,l0)#0 or
(O|RU,RY|j )(]lU |0)=40, the correlation length £, is

given by 1/In(AY, / |A ). &, is determined by the larg-
est eigenvalue AY,_, in the subspace k =M *1, because
the operator U, changes the number of down arrows.
While &, is determmed by a second eigenvalue A}, in
subspace k =M, because U, does not change the number
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of down arrows,

§5<‘=M“i“w In(AS; /1A 1) s

(11)
g;lzﬁ}iinw In(AS, 7IAL D .

Without loss of generality, we can put kK <M because
the case of kK > M is reduced to kK <M by reversing spin
direction and putting h,——h,. As the matrix T is
asymmetric, the eigenvalues are not necessarily real. But
the largest eigenvalues A%, and AY,_, are real and posi-
tive because all the elements of matrix T are non-
negative. At A<1, A}, is not necessarily real. In this
case the correlation function S#(n) is oscillating depend-
ing on the phase of A}, and damps exponentially
with  the correlation length £,,. We have
(A <IAS, _\I(&, >E&,,) for |A| <1 case. On the con-
trary Al > A% _ (€ <E,) if |Al>1 and |h,| is
sufficiently small.

B. Inhomogeneous six-vertex model

The inhomogeneous six-vertex model’ is defined as fol-
lows:

T=Tr[R(0},01)R(05,0%) " - Ryp (001,051

a 0 00
R1(++): 0 bIl > R](+_): c 0 ’ (12)
0 ¢ b, 0

R(=+)1=1o o) Rl=7)= |9 g

Set h(x)=sinx and assume that parameters a;,b;,b/,c;
are given by

a;=ph(—v+v,+7), b=tph(—v+v,—7),
b=t ph(—v+v,—n), ¢, =ph(27).

In this case we can construct the Bethe-ansatz eigenvec-
tor of T(v):

k! k
f(yl’y27 P ’yk): 2 A (P) H ¢(ijyyj) ’
P j=1
h(w—v;,_{+7)
Slw,y) =12 ] —— 1217 (14)

j=y h(w—v,—n)
A(P)y=e(P) ]I

1<5j<m<k

h(wp; —wpy,, +27) .

Parameters w, . . . , w;, should satisfy

M h(w,, —v;+7) =—t2Mﬁ
=1 h(wm—UI—T[) j=1

’

h(w,, —w; +27)
h(w,, —w;—27)
m=12,...,k. (15)
The eigenvalue is

WM
I1 4

1=1

2M
IT &/

=1

tkﬁ h{v—w;+27)
=1 h(v—wj)
tkﬁ h(v—w;—27)

j=1

Alv)=

+ (16)

h(v-—wj)
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One can verify that this vector satisfies T(v)f =A(v)f
after cuambersome but straightforward calculations.

C. Transcendental equations
If we choose v, p;, t, 17, and v so that
ay=cy=1, by=by=0
and
ay,_;=a, by _;=b, by _=b', ¢yy_;=c, 17)

the transfer matrices (5) and (12) are equivalent and ei-
genvalue problem of (5) is solved by the formula in Sec.
IIB. These are satisfied if we write

v=0, vy=m, py=1/h(27),

(18a)
U2171“‘U1, t—exp MT ,
hvi+n) 4 _
—_— = 2n=A,
R () . oS
) ) . (18b)
A= bbb —c” _ sinh(JA/2MT)
~ 2aV'bb’ sinh(J /2MT)
At A>1 Egs. (18b) are satisfied if we write
2n=icosh™'A, - =..—C' >
n P2 —1 i(Az_l)l/z
. - (19a)
v, +n=m—2a, 2a=isinh"[a(A*—1)"%/c].
At A < —1, Egs. (18b) are satisfied if we write
2p=m—icosh™}(—A), =S
K Ty R
_ (19b)
v,+n=2a, 2a=isinh~[a(A*—1)"%/c].
At 1> A > —1 Eqgs. (18b) are satisfied if we put
. c
2n=cos™ A, Pa—1= T xmi
_ (19¢)
v +n=7—2a, 2a=sin"'[a(1—A%)"2/c].
Then Egs. (15) and (16) become
k h(w;—2n)
A=aMk [ —F——, (20)
R | Syerey
h(w, )k (w,, —v,+7) ™
h(w,, —2n)h(w,, —v,—n)
k h(w, —w,;+27)
=M1 e Bl @21

The eigenvalue of R? is

, k h(w,,)h(w, —v,+n)
K — 2k
e =711 h(w,, —2nh(w, —v,—7) 22)

m=1

At 1>A>—1 we put h(x)=sinh(x), w,,—iw,,,
a—ia, n—i7n. The case A=1 is special. In the limit
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A—1+, 7, and a become zero if we use Eq. (19a). But  Here

w,,’s also go to zero. Dividing all parameters by —2i7 )

we derive equations for the case A=1. The case A= —1 h(x)=sinx, 7= Lsgn(A) cosh™1(|A]),
is also treated similarly. Putting w,, =x,, —a and using

Egs. (20)—(22) we have the following equations: a=isinh‘l[a (B2 1)1 ] (25a)
2 b
—i JA h(2a)
Ae —K/2= JAa 1| ntea)
€ P4 | | h2a+2n) for |Al>1,
% k hix;+a+2n)h(x;—a—2n) 172 . . 7
i i
el h(x,—a)h(x;+a) ’ h(x)=x, 17=Esgn(A), a=5tanhm s (25b)
(23)
M for A==+1, and
h(x;—a)h(x;+a+2n)
h(x;Fa)h(x,—a=27) h (x)=sinhx, n=%cos‘l(z~k) ,
_ 2h, ko h(x;—x;+27) ; _ (25¢)
= —exp jl;[l m > a=Esin‘l[a(1—~A2)1/2/c] )
(24)
1=12,...,k. for |A| < 1.

D. Limit of M —
At k =M Eqgs. (24) are written as

h(x;—a)h (x;+a+29)h(x;,—27)
h(x;+a)h(x;—a—2m)h(x;+27)

2h“Jer
7 T2

j=1

h(x;—x;+2n)h(x;—27)
h(x;—x;—=2n)h (x;+27)

1
! 2

M In =27 i+ (26a)

For the largest eigenvalue A?” we have
Rex;>Rex, > - >Rexy, X;=—Xp 41— [=1,2,...,M . (26b)

We put the solution of (26a) as y,’s to discriminate from solutions of the largest eigenvalue. For A%, _, the correspond-
ing equation is

h(y;—a)h(y;+a+2n)h(y,—27) 2 h(2n—y;)
Min |2 TET AN A i T g | 2
h(y;+a)h(y;—a—2n)h(y;+27) T h(2n+y;)
M1 h(y;—y;+29)h(y;—27)
+S In | WA (27a)
= h(y;—y;—2n)h(y;+27)
Rey,> - >Reypy—1y Vi=—IVy—-p 1=1,2,... . M—1. (27b)

Thus we can calculate A%, and A, _, using these equations and Eq. (23). The correct eigenvalue is obtained in the
limit of infinite M. In the calculation of Koma® and Yamada® this limit is taken by the numerical extrapolation. In this
paper we take the limit of M — o in Eqgs. (23), (26) and (27) analytically. a is of the order of J/MT. Then in the limit
of M — o, Egs. (26) become
1

=3

2h,i -

+T+% 2 In[f(xpx)f (x;, —%)], 1=1,2,... @®
j=

s

T

g(x,):277'

for the largest eigenvalue AS,. Equations (27) become
M- £q

2y =2 2 L | B e =0 1=1,2.3
T g\y;)=z2m T i n h(277_y1) jgl n[f ylayjfylr yj ] ) 14,0, ... (29)
for AY,_,. Here
(A2—1)% for |A]|>1
J = for |A|=1 ) (30)

~(1—A»)2 for |Al <1,

N N Y
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cotx—asT;glitm for |A]>1

L TE Ry TrEs iy T i e L o
cothx*ﬁ% for |Al <1,

f(x,y)zh(x —y —2n)h(x +27) (32)

T hix —y+2ph(x —27n)
In the limit M — o, A is A. Using Egs. (25) we have

cosh™'A for A>1
2n=iH, 0= cos !A for 1>A>—1
—cosh™!'(—A) for A<—1.
Infinite series {x;} and {y,} are determined by Eqs. (28) and (29). These series converge to zero.

When M becomes large, a becomes small as O(J /(4MT)). Then the form of Eq. (23) is not appropriate for taking
the limit M — . For this purpose the following equations are useful:

M
M h(—27) h(2m)+2ah'(27) h(27)
o — + ,
,l;_Il hi(=2m)+ Sf—a 2a 2a
M M (33)
v "o h(—=27) | _ | AQ2n)+2ah’'(2y) h(27m)
h'( Zn)[rzlz h'(—2m)+ 5 —a Ya 2ot )
m(l—1)
8,+E—iacot —M—Z}, 8, =—iacot % (34)
Using these we rewrite Eq. (23) as follows:
M h(x;—a—2n)h(x;+a+27) 12
Ay =CD " |T] : L (35)
1=1 h(x,—a)h(x1+a)[h'(—277)+h(—2‘r])/(8, —a)]
o cp- (M- hiy,—a—2n)h(y,+a+2n) 12
AM71:71’—(:T) II - — 5 . (36)
m | = h(y,;—a)h(y,+a)[h'(—20)+h(—2n) /(8 —a)]
Momentum K is zero for these states. Here we set
_ h(2a)[h (21)+2ah’'(2n)]
C =/ A/AT
¢ 2ah (29 +2a) ’ 37
pic e h(2) l (38)

h(2m)+2ah’'(27)

In Eq. (35) the product of the /th and (M +1—1[)th terms is 1+O(/"?) at M/2>[>1. In the limit of infinite M, Eq.
(35) becomes

o o |k (2n—x))h (2n+x)|J?
A% =2cosh(JA/4T) [ 5 5 5 (39)
1=1 h(x)h ()R Tr(1 =D+ (TA/4)%)
Using coshx = []7=, (14 {x /[7(I —1)]}?), we have
o | h(2n—x,)h(2n+X;) ' J, 2
AS, =2 . 40
M ]I=11 hz(xl)h2(277) | T?T(l_%) “o

In the same way, Eq. (36) becomes
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2
© | h(2n—y;)h (29+y,) J
A9, =2 J I 772 i . Ny s @1)
O h2(y,)h*(2m) Tnl

Equations (28) and (29), and (40) and (41) do not contain the Trotter number M, and these are simpler than (26) and
(27), and (23).
If we set

p;= —itan27n/tanx;, q,=—itan27/tany, for |A|>1,
pi=x1/x;, q==*1/y, for A==%1, (42)
p;= —itanh27/tanhx,, q,= —itanh2n/tanhy, for |[Al<1,

Egs. (28) and (29) become

JA _ 2h,i 1 1 & _
—G(p,))= +2m |l == |+— ¥ Wn[L(p,p;,)L(p;,—p;)], (43)
2T 2 i 2 /
I8 =22 o L [ 270 4 S L (g1g) )L (g —7))] (44)
2T q T i q,+i = q91,9; q1 qj >
where
-2 i A2 /(1 — 241 A2 i A—2; 2
G(x)zx—Az x’ L(xyp)= 1y.+[1 A _g(l zx')] =x2+1 A—z l.xA_2+t.y(l+x2). 45)
x°+1 —iy+[1—AT*/(1+ix)] x*+1—A “+ixA *—iy(1+x°)
Equations (40) and (41) become
hd JA ’
0 — 2+1 —2+1) 1/2’ (46)
Av=2 I —172) [pi+ 1P +1)]
2
J JA 2 1/2
0o =2 |-L N 21)(g+1 : @7
Apy—1=2 aT 11;11 4n Tl [(g; )(g; )]

These equations are convenient for numerical calculations. In the |A| <1 and h,=0 case, Eqs. (44) and (47) are
equivalent to those for A, of the XYZ model if we put J =J,=J,, JA=J, in Egs. (40) and (41) of Ref. 1.

III. ANALYTICAL SOLUTIONS FOR SPECIAL CASES

A. Ising limit
In this limit we have
A—w, J=J,/A, A7250. (48)
Then Eq. (43) becomes
_4rTU—1/2)  (4h,—2TD)i

4 , (49a)
! JZ JZ
© (p:—i)(p;+i)
D= 1] B _TRTY (49b)
Substituting (49a) into (49b) we find that
oD cosh((J,—4h,+2TD)/(4T)] (50)
cosh[(J,+4h,—2TD)/(4T)] *
Solving this equation with respect to e? we have
172
J,+2h, h — h
eP=exp ——Z—ET— l sinh? | = |+e *’"| —sinh 72 (51)

Using this and Eqs. (46) and (48) we have AS, and free energy per site:
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172
] ] . (52)

This is the well-known result for the Ising chain in a magnetic field.

IR

z

AT

f=—TIn|exp cosh | == |+ [sinh? | == |+e =7

B. A=0 case (XY chain)
From (25¢) we have 2n=1i /2, h (x)=sinhx. Then all logarithms in (28) and (29) vanish. Equation (28) gives
ArT(1—1%)  4h,i
+ )
J J

—tanhx;, =
tanhx; !

and therefore

! 2T (1 —1)+2h,i 2w —Y+2hi P ]2
= +1 (53)
tanhx, J J
Substituting this into Eq. (40) and using the identity In[a +(a>—52)'/?]=(27)"" [ 2"dx In(2a +2b cosx) we have
® 1 por (J cosx +2h,)?
A%, =2ex - dxln |1+ —————
. P Ex 27 fo (27T (1 —1))?
- J cosx +2h
=exp [51; foz dx In {2 cosh ———2?—4 } . (54)
Then free energy is
_ T pron J cosx +2h,
f==5_J TdxIn|2cosh | == | | . (55)
In the same way we have
1 [2nmi+2m,i 2Tl +2h, i 2+1 1
tanhy, J J ’
J 1 27 sinh[(J cosx +2h,)/2T)
0 - v . 1
Ab—1 27 | 2n fo dx In (J cosx +2h,)/2T
The inverse of correlation length is
__1_~_1' 2
=5 fo dx In[coth|(J cosx +2h,)/2T1], (56a)
for 2|h,| <J and
2 1/2
- 2h 2h 1 2
£.)=In JZ Tz —1 ] }+2—7r—f0 dx In[coth|(J cosx +2h,)/2TI] , (56b)

for 2|h,| > J. Results (55) and (56) agree with the known results."'

C. T=h,=0 case

At very small T, the distribution of x,’s becomes dense. The mean distance is of the order of T'/J;. At h,=0 all x;’s
are on the real axis. Assume that p(x) is the distribution function of x,’s. Equation (28) becomes

7T K T rk1
= [T= ~ = . 57
7 fx p(t)dt + 7 fo > In[ f (x,y)f (x, —y)]p(y)dy =g (x) (57

N

Here K = /2 for |A| > 1 and K =  for |A| <1. We define function F(x) as

7T
F(X)E Js
—F(—x) at x <0 .

pr(t)dt at x >0
x (58)
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By the partial differentiation of the second integral in Eq. (57), we have

F)= [* a(x—»F(idy =g (x), (59)
%ngh%% for |A|>1

q(x)E—z—lT; :I((;::zzg))—];ll((;ijg)) = %Sf;l—:_Al) for |Al=1 (60)
%#30;0529 for |[Al<1.

We define the Fourier transform of a function a (x) as follows:

am= [ a(x)e ¥™dx for |A|>1,

—m7/2

af(co)Ef°o a(x)e *dx for |A|<1.

The Fourier transform of g (x) and g (x) are

g(n)=—misgn(n)(1—e 270y for |A|>1, (61a)
g(w)=—misgn(w)(1—e ) for |A|=1, (61b)
2(0)=—mi |coth & — Cosh(m=20)0/2 | oo\ n| ’ 61c)
2 sinhmw /2
g(n)=sgn(A)e ~127¢ for |A|>1, (62a)
g(w)=sgn(A)e " '°l for |A|=1, (62b)
_ sinh[(7—26)w /2]
— ) 2

7(w) sinh(7e/2) for |Al <1 (62c)

The function g (x) has a pole at x =0. But we can define the Fourier integral by the principal part integral. One should
note that the Fourier transform becomes discrete at |A| > 1 because the interval of integration is finite. Then we have
the analytic solution of Eq. (59):

F(n)=—misgn(n), F(x)=cotx for A>1; (63a)
Flw)=—misgn(w), F(x)—_—% for A=1; (63b)
Flo)=—ri tanh | T=02 | p(x)= sinh?;if/(_ﬂe—)—m] for |Al<1; (63c)
F(w)=—mitanh(0/2), F(x)= Gnhoe orA=—1; (63d)
F(n)=—mitanhn|6|, F(x)= i 0 for A<—1. (63e)

sinh[70(x —n)]

n=-—o

From Eq. (40) the ground-state energy per site e is

J _
o= — lim TlnAﬁ{Z—stln h(2n—x)h(x +27)

F'(x)dx . (64)
T—0 T Yo FX(x)h*(x)h?*(2m)

Substituting Eq. (63), we have
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- i‘?‘ for A=1 (65a)
A 27172 © Sinh( 96())
—J|=+(1-A
L s TA=A [ sinh(7e) cosh[ (r—8)e] 2 | for 1al<1 (65b)
J(+—In2) for A=—1 (65¢)
J 7‘:——<A2—1)1/2 zle_z"'o'tanh}nel for A<—1. (65d)

These results coincide with the known exact ground state energy per site of the XXZ model in zero field'? as they
should.

IV. NUMERICAL CALCULATIONS

In Egs. (43) and (44) it is possible to calculate each term of the sum. We must use the logarithmic function many
times because each term contains one. This procedure consumes a lot of computing time. It is very convenient if we
can take the logarithm of the product. The logarithm is a multivalued function. In actual numerical calculation the
imaginary part of Inx is fixed at [, —], but there is no guarantee that this choice of branch is appropriate. So we
transform Egs. (43) and (44) as follows:

h,i
p,=V;—£ T+7T(l—1/2)+%lnX,] ,
(66a)
_ JAI i _
X;=exp _2T[V (p)—=G(p)] | IT L(ps,p;)L(p;,—P;) ;
j=1
4T | hii 1
q,= TA T+7Tl+2—ilnY1 ,
. (66b)
JAI q,—1 ad
Y =exp | o0 [V gy — : —7,).
;| =exp 2T[V (g;)—G(q;)] o jIzllL(ql,q])L(ql, g;)

In this transformation function ¥ (x) is arbitrary if the branch of logarithm is taken appropriately. We choose function

2.2 e e 1.2 ———T——— T
r ] N T/J=0.419(J=4.3 K) 1
2 - — 1
1.8f - 0.8
C ] N ¥
1.6 - & 0.6
- N ] \ L
- 4 (o] =
1.2} ] 0.2 ]
[ TSR I S S S R 0....IA.‘,I.,..J,...l,,.“
0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5
T (K) h./T
FIG. 1. Zero-field magnetic susceptibility multiplied by the FIG. 2. The magnetization curve of Heisenberg ferromagnet
temperature. The solid line is theoretical results for A=1. The A=1. Solid lines are our theoretical results. Circles are experi-

circles are the experimental results on p-NPNN. We put mental results on p-NPNN at 1.8 K. Squares are those at 2.3 K.
J=4.3K. Triangles are those at 4.0 K.
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TABLE 1. Free energy, magnetization, and correlation length £,, for different anisotropy parameters A and temperatures. The
zero-field magnetic susceptibility y= —9>f (T, h,)/3h2| », =0 is also given.

h,/J f/I+A/4 2(S,> Eox h,/J f/I+A/4 2(S,) Exx
A=1.5 T/J=0.2 Jy=82.269 A=1.5 T/J=0.4 Jy=10.6370
0.0 —0.01375 0.0 1.1644 0.0 —0.088 74 0.0 0.9813
0.2 —0.20043 0.9955 0.7990 0.2 —0.21493 0.9001 0.8100
0.4 —0.400 05 0.9994 0.6782 0.4 —0.404 56 0.9751 0.6818
0.6 —0.60001 0.9999 0.6060 0.6 —0.601 59 0.9918 0.6070
0.8 —0.800 00 1.0000 0.5563 0.8 —0.80057 0.9971 0.5566
1.0 —1.00000 1.0000 0.5195 1.0 —1.00021 0.9989 0.5196
1.2 —1.20000 1.0000 0.4909 1.2 —1.20008 0.9996 0.4909
1.4 —1.40000 1.0000 0.4677 1.4 —1.40003 0.9999 0.4677
1.6 —1.600 00 1.0000 0.4486 1.6 —1.60001 0.9999 0.4486
1.8 —1.80000 1.0000 0.4324 1.8 —1.80000 1.0000 0.4324
2.0 —2.00000 1.0000 0.4185 2.0 —2.00000 1.0000 0.4185
A=1.0 T/J=0.2 Jx=14.1799 A=1.0 T/J=0.4 Jx=5.11605
0.0 —0.064 96 0.0 1.9713 0.0 —0.162 63 0.0 1.1753
0.2 —0.20527 0.9441 1.1394 0.2 —0.24726 0.7225 1.0073
0.4 —0.400 68 0.9932 0.8375 0.4 —0.41556 0.9172 0.8155
0.6 —0.600 09 0.9991 0.7015 0.6 —0.605 50 0.9719 0.6965
0.8 —0.80001 0.9999 0.6213 0.8 —0.80199 0.9899 0.6200
1.0 —1.000 00 1.0000 0.5673 1.0 —1.00073 0.9963 0.5669
1.2 —1.200 00 1.0000 0.5278 1.2 —1.20027 0.9987 0.5277
1.4 —1.400 00 1.0000 0.4974 1.4 —1.400 10 0.9995 0.4974
1.6 —1.600 00 1.0000 0.4731 1.6 —1.600 04 0.9998 0.4731
1.8 —1.80000 1.0000 0.4531 1.8 —1.80001 0.9999 0.4531
2.0 —2.000 00 1.0000 0.4362 2.0 —2.00001 1.0000 0.4362
A=0.5 T/J=0.2 Jxy=3.30478 A=0.5 T/J=0.4 Jxy=2.09440
0.0 —0.18357 0.0 2.7389 0.0 —0.27143 0.0 1.3525
0.2 —0.247 60 0.6154 1.9890 0.2 —0.32073 0.4728 1.2297
0.4 —0.407 87 0.9243 1.2145 0.4 —0.448 34 0.7709 1.0089
0.6 —0.601 10 0.9890 0.8839 0.6 —0.618 39 0.9099 0.8330
0.8 —0.80015 0.9985 0.7279 0.8 —0.806 85 0.9660 0.7144
1.0 —1.00002 0.9998 0.6382 1.0 —1.002 53 0.9874 0.6344
1.2 —1.20000 1.0000 0.5791 1.2 —1.20093 0.9953 0.5780
1.4 —1.400 00 1.0000 0.5367 1.4 —1.400 34 0.9983 0.5363
1.6 —1.600 00 1.0000 0.5044 1.6 —1.600 13 0.9994 0.5042
1.8 —1.80000 1.0000 0.4787 1.8 —1.80005 0.9998 0.4787
2.0 —2.000 00 1.0000 0.4577 2.0 —2.00002 0.9999 0.4577
A=—0.5 T/J=0.2 Jx=0.77726 A=—0.5 T/J=0.4 Jxy=0.85689
0.0 —0.516 83 0.0 3.0885 0.0 —0.57283 0.0 1.5343
0.2 —0.53256 0.1592 2.9956 0.2 —0.590 08 0.1736 1.4973
0.4 —0.58216 0.3434 2.6793 0.4 —0.643 08 0.3589 1.3894
0.6 —0.673 81 0.5847 2.0949 0.6 —0.73453 0.5565 1.2269
0.8 —0.818 19 0.8485 1.4289 0.8 —0.864 90 0.7417 1.0445
1.0 —1.00292 0.9718 1.0036 1.0 —1.027 68 0.8754 0.8815
1.2 —1.20041 0.9960 0.7924 1.2 —1.21090 0.9478 0.7566
1.4 —1.400 06 0.9994 0.6776 1.4 —1.404 12 0.9797 0.6670
1.6 —1.60001 0.9999 0.6060 1.6 —1.60153 0.9924 0.6027
1.8 —1.80000 1.0000 0.5563 1.8 —1.80057 0.9972 0.5553

2.0 —2.00000 1.0000 0.5195 2.0 —2.00021 0.9990 0.5192
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TABLE 1. (Continued).
h,/J f/J+A/4 2(S,) Exx h,/J f/I+A/4 2(S,) Eix
A=—1.0 T/J=0.2 Jxy=0.48412 A=—1.0 T/J=0.4 Jy=0.55256
0.0 —0.706 96 0.0 2.9481 0.0 —0.752 87 0.0 1.5358
0.2 —0.716 76 0.0993 2.9323 0.2 —0.764 01 0.1123 1.5192
0.4 —0.747 58 0.2122 2.8511 0.4 —0.798 48 0.2351 1.4663
0.6 —0.80347 0.3532 2.6247 0.6 —0.859 36 0.3776 1.3707
0.8 —0.89239 0.5476 2.1708 0.8 —0.95104 0.5423 1.2322
1.0 —1.026 69 0.7971 1.5540 1.0 —1.07676 0.7131 1.0678
1.2 —1.20470 0.9556 1.0801 1.2 —1.23411 0.8520 0.9093
1.4 —1.400 67 0.9934 0.8323 1.4 —1.41374 0.9353 0.7805
1.6 —1.60009 0.9991 0.7009 1.6 —1.60525 0.9743 0.6853
1.8 —1.80001 0.9999 0.6213 1.8 —1.80196 0.9903 0.6164
2.0 —2.00000 1.0000 0.5673 2.0 —2.00073 0.9964 0.5657
=—1.5 T/J=0.2 Jy=0.29812 A=—1.5 T/J=0.4 Jy=0.36763
0.0 —0.909 45 0.0 2.6684 0.0 —0.947 32 0.0 1.4922
0.2 —0.91554 0.0622 2.6931 0.2 —0.95473 0.0748 1.4873
0.4 —0.93517 0.1368 2.7350 04 —0.97777 0.1574 1.4691
0.6 —0.97144 0.2293 2.7244 0.6 —1.01872 0.2552 1.4285
0.8 —1.028 58 0.3474 2.5855 0.8 —1.08133 0.3750 1.3541
1.0 —1.11344 0.5115 2.2388 1.0 —1.17046 0.5204 1.2392
1.2 —1.23785 0.7413 1.6831 1.2 —1.29058 0.6813 1.0919
1.4 —1.407 46 0.9318 1.1694 1.4 —1.44185 0.8252 0.9383
1.6 —1.60109 0.9892 0.8788 1.6 —1.61729 0.9201 0.8060
1.8 —1.80015 0.9985 0.7273 1.8 —1.806 69 0.9676 0.7049
2.0 —2.00002 0.9998 0.6381 2.0 —2.00251 0.9876 0.6311
V(x) as follows:
Vix)=V Yx)=x for A>1; (67a)
_ aT— 9 . —1 o
V(x)=tanf /tanh sinh ,
(m—0)x
y 0) (67b)
Vol =— T for [Al<1;
sinh{[7/m—@)]tanh™ '(tand/x)}
V(x)=w/sinh~N7/x), V Ux)=m/sinh(7/x) for A=—1; (67¢)
2K(g), — 1 T
V(x)=tanhf/tanh tn , ,
(x) T 2K (g)x &
Vo lix)= 7/2K (67d)

* tn[(w/2K) tanh ™~ (tanh|6| /x),g]
K[(1—g®)'?1/K(g)=|6]/m for A<—1.

Here tn(x,g)=sn(x,g)/cn(x,g) is an elliptic function. K (g) is a complete elliptic integral of the first kind with modulus
g. In this choice of ¥ (x), the imaginary part of logarithm can be fixed at [7, —7]i. Functions ¥ (x) and ¥V ~!(x) are ob-
tained from the distribution of roots (63) at zero temperature and zero field. In actual numerical calculation we treat p,
and ¢; at /<L, where L is a certain integer. The p; and g¢; at j>L are approximated by
p;j=4Tw(j—1/2)/(JA)+ilIm(p,) and q;=4T7wj/(JA)+iIm(q; ). The products in Egs. (66) are estimated accurately.

Iterative calculation of Egs. (66) converges very rapidly for arbitrary A,, A, and 7, and we get A% and AS,_,. The
magnetization and magnetic susceptibility are given by differentiations of free energy with respect to 4,. So we need to
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calculate dp,/dh, and 3%p,/dh?. These are given by solutions of linear equations which are obtained by the

differentiation of Eqgs. (43).

In Fig. 1 the calculation of magnetic susceptibility at A=1 is shown. The results are compared with the experimental
results on the ¥ phase of p-NPNN (C;H,(N;0,), which is an organic quasi-one-dimensional ferromagnet with J =4.3
K.!? It is made of only carbon, nitrogen, hydrogen, and oxygen. In Fig. 2 the calculation of magnetization at finite field
is compared with experimental result of this substance. The agreement is surprisingly good. The experimental details
were published in Ref. 13. Of course, these calculations are possible by using the method of Bethe-ansatz integral equa-
tions, > but calculations become much simpler. In Table I, the free energy, £, and magnetization are given for

several sets of temperature, A and h,.

V. CORRELATION LENGTH &,

Here we consider £,,, which is defined by Eq. (11). In the case |A|>1and h,=0, £,, is longer than &, , and the prob-

lem is very simple. In Eq. (24) we put kK =M and

/2 for |A|>1
2 o for |Al=1,

(68)
Zy>23> 0 >Zy, Iy T Zjgg -
We have the equation for z,,z3, . . . in the limit M — o0:
s 1 hd
7 g(z,)=27r(l—1)+7 Inf(z;,z;)+ zzln[f(z,,zj)f(z,,—-zj)] , (69)
i=
2
© h(2n—z;)h(2n+z;) J,
Ay=2 |18 | AT : (70)
4 1=2 h (Z[)h (27]) Tﬂ(l-l)
These are transformed as
r, =0,
(71)
%G(r,):Zﬂ-(l—lH—% InL(r, 00+ 3 ln[L(r,,rj)L(r,,—rj)]], 1=23,...,
j=2
JA | £ JA ?
M=2 | ——— | (77 +1).
Aw=2\5r | IL 417T(l—1)](r' ) 72)

This eigenvalue is the same with A, in Egs. (40) and (41)
of Ref. 1 at J,2J,=J| if we set J=J,
A=sgn(J,)J,/J,. The generalization of these equations
to h,#0 or |A] <1 is not simple. In these cases, z, is also
variable, and A}w is sometimes a complex number. Anal-
yses of A}, for these cases are remained in further investi-
gations.

VI. SUMMARY AND DISCUSSION

In this paper we derived transcendental equations with
an infinite number of unknowns, which give the free ener-
gy and correlation length £,, of the one-dimensional
XXZ model in a magnetic field. For this system the free
energy has already been given by the thermodynamic
nonlinear integral equations derived in the 1970’s.2 The
equations for free energy (6), (43), and (46) should be
equivalent to them, but the equations for the correlation

lengths (11), (43)-(47), and (71) and (72) are completely
different. One should note that the row-to-row transfer
matrix for the homogeneous six-vertex model cannot give
the transcendental equations for the finite-temperature
XXZ chain. One must solve the eigenvalue problem of
the diagonal-to-diagonal transfer matrix on a strip of
finite width. This is solved as a special case of the inho-
mogeneous six-vertex model.

Our theory is applied to the organic ferromagnet p-
NPNN. The agreement of magnetic susceptibility and
magnetization with experiment is very good.
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