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Correlation length and free energy of the S= —' XXZ chain in a magnetic field
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The correlation length and the free energy of the S =
—,
' XXZ chain in a magnetic field in the z direc-

tion are calculated with use of a set of equations for a series of infinite numbers. These are derived by
the Bethe-ansatz method for the quantum transfer matrix. The equations for free energy should be
equivalent to the thermodynamic Bethe-ansatz nonlinear integral equations. A numerical method that
calculates precisely the free energy and the correlation length is given.

I. INTRODUCTION

In a previous paper' the author proposed a set of equa-
tions that calculates the free energy and correlation
length of the S =

—,
' XYZ chain in zero magnetic field at

arbitrary temperatures. Here a set of equations is given
that calculates the free energy and correlation length of
the S =

—,
' XXZ chain in a magnetic field in the z direc-

tion. The Hamiltonian is as follows:

j=i
N—2h, g S;, J&0, ~&b& —~ .

j=i
About 20 years ago the thermodynamic Bethe-ansatz in-
tegral equations had been proposed for the free energy of
this system. Using these equations, the thermodynamic
properties of this system were investigated in subsequent
papers.

The quantum transfer matrix of this model is
equivalent to the diagonal-to-diagonal transfer matrix of
the six-vertex model. The properties of the diagonal-to-
diagonal transfer matrix were investigated by Truong and
Schotte. This is a special case of the inhomogeneous
six-vertex model. Koma and Yamada obtained the
free energy and the correlation length for the 6=1 and
h, =0 case by taking the limit of the infinite Trotter num-
ber numerically. In this paper we give a set of equations
by taking the limit of the infinite Trotter number analyti-
cally. So the equations become simpler than those for the
finite Trotter number. The numerical method that is pro-
posed in this paper is efficient in accurate calculations of
the free energy and the correlation length at given tem-
perature T, anisotropy 6, and magnetic field h, . The free
energy and correlation length are given by a set of equa-
tions in an infinite number of unknowns. The set of equa-
tions for free energy should be equivalent to the set of
nonlinear thermodynamic integral equations, which was

given in the 1970's. In the problem of the XYZ chain'
the unknown numbers are all real numbers. But for the
XXZ model in a nonzero magnetic field, the unknown
numbers are complex numbers. Then the numerical
iteration method is not as simple as for the XYZ model.

In Sec. II we consider the transfer matrix of the XXZ
model in a magnetic field. We find that there are two
correlation lengths g„and g„. We derive the equations
for the free energy and g„ in the limit of the infinite
Trotter number. In Sec. III we show that our equations
are solved exactly in some special cases such as the Ising
limit (b, —+Do ), the XY limit (b, =O), and the h, =T=O
case. In Sec. IV we give the numerical method, which is
used to calculate our equations at given 6, h„and tem-
perature. We compare our results with experimental re-
sults on the organic ferromagnet p-NPNN. In Sec. V we
consider g„ in the

~
b,

~

& I and h, =0 case. We discuss the
relation with the correlation length of the XYZ model in
Ref. 1.

II. FUNDAMENTAL EQUATIONS
OF THE S = —'XXZ CHAIN IN A MAGNETIC FIELD

A. Quantum transfer matrix

The partition function Z of the XXZ model described
by (l) is approximated as follows:

Z =TrI exp[ —&&/(MT) ] exp[ &2I(MT) ]I—
J [ S,"S,+, +Sf S~~+, + b,S~'S;+, I

J =Odd

+h, (S'+S'+, ),
J I

S'S".+, +SfS~~+, + b,S;S~'+ ) I

g =even

+h, (S;+S'+, ) .

This is the same with the partition function of the six-
vertex model with 2M XXbonds
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Here cri, (l = 1,2, . . . , 2M, m = 1,2, . . . , i1i) denotes the direction of bonds and takes values + 1 or —1. B is given by
the 4X4 matrix:

b 0 0 c
0 0 a 0»ll)=0 o o
c 0 0 b'

a =exp( Ji3/—4MT) sinh(J/2MT), b =exp[(JE+4h, )/4MT],

b'=exp[(Jb, —4h, )/4MT], c =exp( Jb, /4M— T) cosh(J/2MT) .
(3)

If we put o i ~( —1)™Ilo i, Z is given by

N M
~ (~2i j+j~ i 2+j +1,j&~2i+j j +1~2i+j+1,j+1)t ( 1 2& 1 2~

Io.
I
j=l i =1

a 0 0 0
0 c b' 0
0 b c 0
0 0 0 a

(4)

Then in the case X =2M Xinteger, Z is given by the
transfer matrix

N ~ f I IZ=TrT ) T(e,)o2, . . . , o2M;~„~2, . . . )~2M)

~ (~1~2~~2M~1)

X ~ (~3~4&~2~3 ~ (~2M —1~2M~~2M —2~2M —1)

This 2 X 2 matrix is the diagonal-to-diagonal transfer
matrix of the six-vertex model and different from the con-
ventional row-to-row transfer matrix. Truong and
Schotte and Koma treated the eigenvalue problem using
the Bethe ansatz. The eigenvalue problem of this transfer
matrix is the special case of the inhomogeneous six-vertex
model on the square lattice, which was treated by
Baxter.

The number of down spins k in one row in a conserved
quantity. A down spin behaves as a particle, and we can
construct an eigenfunction and its eigenvalue using k pa-
rameters.

For the largest eigenvalue, k is equal to M. We write
this eigenvalue as AM and corresponding eigenvector as
lo). The exact free energy per site is given by the limit-
ing value of AM as M~ co:

f = —T ln( lim AM) .
M —+ oo

Let us consider the two-point functions
S (n):—(Si"Si"+„) and S"(n)—:(Si'Si'+„). S (n)
—= (SEES|'+„) is the same with S "(n). These are written
as

( TN —nRnV R—nTnV
S""(n)=

TrT
Tr(TN "RnV R nTnV )S"(n)=

TrTN

2M

U, —:—,'o,5, + 5
cr), o) o., o. . '

J =2

R=5,6, 5
F2~

0'
) 0'3, cT2 ~j ~2m

R and transfer matrix I commute. So we put the corre-
sponding eigenvalue of R as exp(iK ) of the eigenstate

lj). K is the total momentum of the state j. It is given

by (2m /M) X integer. S (n) at n =even is given by

&OIU. IJ & &jlv. lo &

&olo& & Jlj &

A.
X

+M
exp( iK n/2)—, . (loa)

and at n =odd it is

S (n)= g
J

(olRU.R-'l j & & J lv. lo &

&olo)&jlj) A'

Xexp[ iKj(n ——1)/2] .

Here (ol and (jl are left eigenvectors corresponding
to lo) and

lj ). Then if Aj is the next
largest eigenvalue that satisfies (OlU l j)(jlU lo)%0 or
(OlRU R 'lj)( jlU lo)%0, the correlation length g' is

given by 1/ln(AM/lAj l
). g„ is determined by the larg-

est eigenvalue AM &
in the subspace k =M+1, because

the operator U changes the number of down arrows.
While g„ is determined by a second eigenvalue AM in

subspace k =M, because U, does not change the number

Here R is the shift operator, and U and U, are defined

by
2MU„:—

—,'5, + 5
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of down arrows,

lim ln(AM/lAM, l),~~ oo

lim ln(A /lA' l) .
JM~ oo

Without loss of generality, we can put k «M because
the case of k )M is reduced to k & M by reversing spin
direction and putting h, ~—h, . As the matrix T is
asymmetric, the eigenvalues are not necessarily real. But
the largest eigenvalues A~ and AM 1 are real and posi-
tive because all the elements of matrix T are non-
negative. At 6&1, A~ is not necessarily real. In this
case the correlation function S"(n) is oscillating depend-
ing on the phase of AM and damps exponentially
with the correlation length g„. We have

IAMI &IAM, I(g.„&g„)for lb, l
&1 case. On the con-

su%ciently small.

One can verify that this vector satisfies T(u)f =A(u)f
after cumbersome but straightforward calculations.

C. Transcendental equations

If we choose u1, p1, t, g, and u so that

and

a21 C21= 1, b21=b 21=0

u =0, u2, =i), p» =1/h (27)),

h,
v21 1=u1, t =exp

MT

(18a)

2/ —i a~ b2/ —i b~ b2/ —i b ~ c2/ —i c ~ (17)

the transfer matrices (5) and (12) are equivalent and ei-
genvalue problem of (5) is solved by the formula in Sec.
II B. These are satisfied if we write

B. Inhomogeneous six-vertex model

The inhomogeneous six-vertex model is defined as fol-
lows:

T=Tr[R, (o „/7', )R~(o2, o 2) R2M(o 2M azM )1

h(u, +rJ)
) cos2xj' =5

h (2i)) c '

a +bb' —c sinh( Jh/2MT)
2a V'bb ' sinh( J/2MT)

(18b)

R/(++ ) =
a1 0

R/(+ —) =
1

0 0
c, o

At b, ) 1 Eqs. (18b) are satisfied if we write

0 c1

0 0 R ( ——)=
b1 0

R/( —+)=
0 a,

Set h (x ) = sinx and assume that parameters a/, b/, b/', c/
are given by

a/=p/h ( —u+v/+i)), b/=tp/h ( —u +u/ —i)),
(13)

b,'=t 'p, h( u+u-, —q), c—, =p, h(2g) .

In this case we can construct the Bethe-ansatz eigenvec-
tor of T(u):

c2+= l cosh 6) p21 1 2i(b, —1)'

vi+i)=m —2a, 2a=i sinh '[a(b, —1)'~ /c] .

At b, & —1, Eqs. (18b) are satisfied if we write

C2r)= rt / cosh '( —b. ),—p2/ i(b, —1)'

ui+i=)2 a, 2a=i sinh '[a(b, —1)'~ /c] .

At 1 ) b, & —1 Eqs. (18b) are satisfied if we put

(19a)

(19b)

k'f k

f(3 i,y2, , 3k)= y ~(P) n y( pwJ, Jy),
P 1=1

h (w —v/, +i))
t)/(w, y) =t~ n h (w —v, —i))

2'g —cos ~) p21 —1

—1

)i j2

ui+i)=m —2a, 2a=sin '[a (1—6 )' /c] .
(14)

Then Eqs. (15) and (16) become

(19c)

A (P) =e(P)
1&j&m&k

h (wp, —wp +2i)) . Mtk n h(w )
(20)

m /
~M h (w —v +i))

/
h(w u/ i))

The eigenvalue is

h (w —wJ+2i))

, h (w —
w,

—2i))

I =1,2, . . . , k .

Parameters w„. . . , mk should satisfy h (w )h (w —v, +i))
h ( w —2i) )h ( w —v i

—i) )

The eigenvalue of R is

h (w —wj+2i1)

, h (w —
wJ

—2i))
(21)

~M „ / h (u —w. +2i))
A( )= n ~ "n

h(v —
w, )

k
iK t2k

h (w )h (w —u, +i))
, h ( w 2i) )h ( w,„——u, —i) )

(22)

&M / h (u —w —2i))+ nb' "n
,

/=i '=i h(u w/)
At 1 )6 )—1 we put h (x)=sinh(x), w ~iw

a~i+, g —+ig. The case 5=1 is special. In the limit
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6~1+, g, and a become zero if we use Eq. (19a). But
m 's also go to zero. Dividing all parameters by —2ig
we derive equations for the case 6 = 1. The case 6= —1

is also treated similarly. Putting m =x —a and using
Eqs. (20)—(22) we have the following equations:

M

Here

h (x)=sinx, r) =—sgn(b, ) cosh '(Ib, l),

a= —sinh '[a (b, —1)'~2/c],
(25a)

—iK/2 e p
JA
4T

h (2a)
h (2a+2q) for lgl ) 1,

h (xl+a+2r))h (xi —a —2r))

h (xI —a)h (xi+a)
l l J

h (x)=x, ri= —sgn(b, ), a= —tanh
2 2 2MT ' (25b)

h (xI —a)h (xi+a+2r))
h (xi+a)h (xI —a —2g)

for 5=+1, and

l
h (x) =sinhx, ri= —cos '(b, ),

l=1,2, . . . , k .

= —exp
2h, k h (xI —x +2q)
T . , h (xi —x —2q)

(24)

a= —sin '[a(1—b, )'r /c],
2

for
I
g

I
& 1.

(25c)

At k =M Eqs. (24) are written as

h (xi —a)h (x&+a+2g)h (xI —2r))
M In

h (x&+a)h (x& —a —2g)h (xI+2')
For the largest eigenvalue AM we have

D. Limit of M~00

2h, ~ h (xt —x, +2q)h (x( —2g)2' l ———i+ + g ln . (26a)
2 T ), h (xi —x —2')h (xI+2')

(26b)

h (yr
—a)h (yI+a+2g)h (y&

—2') 2h, h (2g —
y&)

M ln = —2mli + +ln
h (y&+a)h (yi a 2')h —(yi+—2') T h (2ri+yI )

Rex1) Rex2) . . )RexM, xI= —xM+1 I, l =1,2, . . . , M .
We put the solution of (26a) as yi s to discriminate from solutions of the largest eigenvalue. For A,M &

the correspond-
ing equation is

M —1 h (yr —y +2g)h (y&
—2g)

ln
h (y&

—
yi 2')h (yr—+2g) (27a)

Rey, ) )ReyM 1, y, = —yM, , l =1,2, . . . , M —1 . (27b)

Thus we can calculate A~ and AM, using these equations and Eq. (23). The correct eigenvalue is obtained in the
limit of infinite M. In the calculation of Koma and Yamada this limit is taken by the numerical extrapolation. In this
paper we take the limit of M~ co in Eqs. (23), (26) and (27) analytically. a is of the order of J/MT. Then in the limit
of M~ oo, Eqs. (26) become

2J, 1 2h i
g(xI)=2' 1 ——+ +—g ln[f (xi,x )f (xI, —X~)], l =1,2, . . . (28)

j=1
for the largest eigenvalue AM. Equations (27) become

T

2J, 2h, i 1 h (2g+yl )
g(yl)=2vrl+ + —. ln + g ln[f (y&,y )f(y&, —y )], l =1,2, 3, . . .T i h 2g —

y&)

for +M 1
Here

(29)

J =.
S

(30)
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sin2xcotx-
cosh20 —cos2x

h'(x) 1 h'(x +Zi)) 1 h'(x —Zi)) 1 x
h(x) 2 h(x+Zi)) 2 h(x —Zi)) x x2+1

for l~l &1

(31)

f (x,y)= h (x —
y

—Zr))h (x +Zil)
h (x —y +Zi) )h (x —Zi) )

In the limit M ~ oo, 5 is b, . Using Eqs. (25) we have

cothx — for lhl &1,sinh2x
cosh 2x —cos20

(32)

2g=i 0,

cosh '5 for 5) 1

0= . cos '6 for 1&h& —1

—cosh '( —b, ) for b, & —1 .

Infinite series Ix& I and Iyi I are determined by Eqs. (28) and (29). These series converge to zero.
When M becomes large, a becomes small as O(J/(4MT)). Then the form of Eq. (23) is not appropriate for taking

the limit M~ ~. For this purpose the following equations are useful:

h (
—Zi)) h (Zi))+Zah'(Zi))h' —Zi) +

20!

M
h (Zi))

2A

M

'M

M (33)
h (2~)+Z~h (2~)

1=2

l 0,' cot
~l

5I ———io. cot (34)

Using these we rewrite Eq. (23) as follows:

M h (x, —a —
Zil )h (xi+a+Zi))

A =CD+
i = i h (xi —a )h (xi + a ) [h '( —Zij ) + h {—Zi) ) /{5J+ —a ) ]2

M —1

Momentum K is zero for these states. Here we set
M

h (Za )[h (Zi) ) +Zuh '(Zi) ) ]
Zah (Zi)+Za)

h (Zi))
h (Zi))+Zo.h'(Zi))

p CD h (yi —a ZTI)h (y&+—a+2'))
h'( —Zi))

I i, h (yi —a)h (y, +a)[h'( —Zi))+h (
—Zi))/(5& —a)]

(35)

(37)

(38)

In Eq. (35) the product of the lth and (M+1 —I)th terms is 1+0(l ) at M/2~1~ 1. In the limit of infinite M, Eq.
(35) becomes

lh (Zg —x )h (Zg+x ) l J,'
A =2 cosh(JA/4T) Q—

(=i h (xI )h(xi)lh (Zi))l [[Tir(l —
—,')] +(JA/4) j

(39)

Using coshx = 11/ i (1+ Ix /[ir(l —,'
) ]]~), we have

h (Zi) —x, )h (Zil+x, ) [ J,
h (xi)h (Zi)) T~(l —

—,')

In the same way, Eq. (36) becomes

2

(4O)
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h (2g —
y& )h (2g+y& )A~, =2-M i 4 ~~ h2( )h2(2

(41)

Equations (28) and (29), and (40) and (41) do not contain the Trotter number M, and these are simpler than (26) and
(27), and (23).

If we set

pI = ' tan2g/tanxt qI
= ' tan2g/tany

pI =+I/XI, q( =+I/yI for /=+1,
p&

= i t—anh2g/tanhx„qI = i tan—h2q/tanhyr for
~
b,

~
(1,

Eqs. (28) and (29) become

(42)

JA
G(pi) = 2h, i I 1+2m I ——+—g ln[L(p&, p )L(p&, —p )j,

j=1
2h, i qI l

G (q, ) = +2m.l+ —ln
2T ' T q, +i

where

+ g ln[L (q&, qJ )L (q&,
—

qJ )]
j=l

(44)

G(x):—x—,L (x,y) —=x iy +[1—b /(1 —ix)] x +1—b, ixh —+iy(1+x )

x +1 —iy +[1—6 /(1+ix)] x +1—6 +ixb, —iy(1+x )

Equations (40) and (41) become

2

Ao =2 + [(p, +1)(p, +1)]'
4~T (1 —1/2)

2

4T I, 4~Tl

(45)

(47)

These equations are convenient for numerical calculations. In the 5 (1 and h, =0 case, Eqs. (44) and (47) are

equivalent to those for Ai of the XYZ model if we put J =J, =J, Jb, =J in Eqs. (40) and (41) of Ref. 1.

III. ANALYTICAL SOLUTIONS FOR SPECIAL CASKS

In this limit we have

h~ao, J —J /6, 6 ~0.
Then Eq. (43) becomes

4~7 (i 1/2) (4h, 2TD)i—

J, + J,
(p, —i)(P, +i)

, =i (PJ+i)(PJ —i)

pi=

D =ln

Substituting (49a) into (49b) we find that

cosh[( J,—4h, +2TD) /(4T) j
cosh[( J,+4h, —2TD) /(4T) ]

Solving this equation with respect to e we have

A. Ising limit

(48)

(49b)

(&0)

ca=exp
J, +2h,

2T
h

sinh +
1/2

h,—sinh
T

Using this and Eqs. (46) and (48) we have AM and free energy per site:
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J,f = —Tln exp 4T
hz hz J /7

cosh + sinh +e
T T

1/2

(52)

This is the well-known result for the Ising chain in a magnetic field.

B. 6=0 case (XYchain)

1

tanhxt

and therefore

From (25c) we have 2g=ni /2, h (x) =sinhx. Then all logarithms in (28) and (29) vanish. Equation (28) gives

4~T (l —
—,
'

) 4h, i—tanhxI = '+
J

2rrT(l ——')+2h, i

J +
2rrT(l —

—,
' )+2h, i

'2

J (53)

AM =2 exp g f dx ln 1+
, 2' o

L

Substituting this into Eq. (40) and using the identity in[a+(a —b )' ]=(2~) ' jo dx ln(2a+2b cosx) we have

(J cosx +2h, )

[2~T(l —
—,
' )]

1 2~=exp dx ln 2 cosh
2w 0

Then free energy is

J cosx +2h,
2T

(54)

T 2~ J cosx +2h,
dx ln 2 cosh

277 0 2T

In the same way we have

1

tanhyt

2~TI +2h, i
+J

2 1/2
2wTI +2h, i

+1

o 2'
AM &

= exp dx ln
2T 27T 0

The inverse of correlation length is

slilll[( J cosx +2h, )/2T]
(J cosx +2h, )/2T

f dx ln[coth
~
(J cosx +2h, ) /2T~ ],

277' 0

for 2~h, ~

(J and
1/2 '

.+ f dx ln[coth~(J cosx +2h, )/2T~],
27K 0

2h, 2h,
g „'=ln + —1

L

for 2~h, ~
)J. Results (55) and (56) agree with the known results. "

(56a)

(56b)

C. T =A, =0 case

At very small T, the distribution of xI's becomes dense. The mean distance is of the order of T/J, . At h, =0 a11 x&'s

are on the real axis. Assume that p(x) is the distribution function of xi s. Equation (28) becomes

vrT T & 1
p tdt+ —ln xy x, —y pydy=g x

J, x J, o 2i

Here K =w/2 for
~

b
~
) 1 and K = ~ for

~

6
~

( 1. We define function F (x) as

(57)

mT
p tdt atx)0

F(x)—:( J, x

F( —x) at x (0.—
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By the partial differentiation of the second integral in Eq. (57), we have

F(x)—J q (x y—)F(y)dy =g (x),

q(x)= 1 h '(x —2il )

2~i h (x —2' )

1 sinh28
m cosh249 —cos2x

h'(x +2i)) 1 sgn(b,
h (x+2')

fo, l~l. l
vr cosh2x —cos20

(60)

We define the Fourier transform of a function a (x) as follows:

n/2a(n)= J a(x)e '""d«or l~l) 1,—m/2

a(co):—I a (x)e '""dx for lb, l

~ 1 .

The Fourier transform of g (x) and q (x) are

g(n)= —
vari sgn(n)(1 —e ' "e') for lb, l

) 1,
g(co)= ni sg—n(co)(1 —e ~"~) for lhl =1,

(61a)

(61b)

&6)
g(co) = ~i c—oth

2
cosh(vr —20)co/2

sinh~co /2
for Ib,

l
&1, (61c)

q(n)=sgn(h)e ~
"

~ for lb,
l
)1,

q(co}=sgn(b, )e ~" for lAl =1,
sinh [(~—26 }co /2]qco=

sinh( neo /2 )

(62a)

(62b)

(62c)

The function g (x) has a pole at x =0. But we can define the Fourier integral by the principal part integral. One should
note that the Fourier transform becomes discrete at lhl ) 1 because the interval of integration is finite. Then we have
the analytic solution of Eq. (59):

F(n) = ni sgn(n), —F(x)=cotx for 6 ) 1;
=1F(co)= ni sgn(co), —F(x)=—for b, = 1;

X

(63a)

(63b)

(m —0)coF(co) = vari tanh—
2

F(x)= rr/(rr 0)—
sinh[7rx/(ir —8) ]

(63c)

F(co)= ~i tanh(co/2—), F(x)=
sinh~x

for 6= —1; (63d)

F(n)= ~i tanhnlOl, F—(x)= ~0
for 6& —1 .

sinh[m8(x —nm) j
(63e)

From Eq. (40) the ground-state energy per site e is

o Js lc h (2il —x)h (x +2i))e = —lim TlnAM= ln F'(x)dx .T-o m o F (x)h (x)h (2il)

Substituting Eq. (63), we have



12 390 MINORU TAKAHASHI

JA
for h~ 1 (65a)

—J —+(1—b )' f . den for ~b,
~
(1

4 o sinh(neo) cosh[(m —8)co]
(65b)

J ( —' —ln2) for 6= —1

J ——(g2 —1)' ~ g e 2~1&ltanh~n8~ for 6( —1 .

(65c)

(65d)

These results coincide with the known exact ground state energy per site of the XXZ model in zero Geld' as they
should.

IV. NUMERICAL CALCULATIONS

In Eqs. (43) and (44) it is possible to calculate each term of the sum. We must use the logarithmic function many
times because each term contains one. This procedure consumes a lot of computing time. It is very convenient if we
can take the logarithm of the product. The logarithm is a multivalued function. In actual numerical calculation the
imaginary part of Inx is fixed at [vr, —m. ], but there is no guarantee that this choice of branch is appropriate. So we
transform Eqs. (43) and (44) as follows:

r

4T h, i 1
p =V

JA T
+m.(l —I /2)+ —.InX

2$

(66a)
oo

& =exp [V '(pl) G(pl)] —/ L (p,pJ)L (p, pJ) ',
—

j=l

4T h, i 1
q =V +~l+ —lnY

JA T 2l

Y&=exp [V (q&)
—G(q&)]

Jhi ql
+. g L (qi, q, )L (ql, q, ) . —

ql + I

(66b)

In this transformation function V(x) is arbitrary if the branch of logarithm is taken appropriately. We choose function

2 ~ 2 ~ 21.
T/J=0. 419(J=4.3 K)

I.8—

l.6—

1.4—

0 ' 8
h,

0.6
V

0.4

0.2

.8K

.3K

.OK

I 1 I I I I I I I I I I t i I

0 5 10 15
T(K)

I I I I I I l I I I

20 25 30 Og 0.5 2 2.5

FIG-. 1. Zero-field magnetic susceptibility multiplied by the
temperature. The solid line is theoretical results for 6=1. The
circles are the experimental results on p-NPNN. We put
J =4.3 K.

FICx. 2. The magnetization curve of Heisenberg ferromagnet
6= 1. Solid lines are our theoretical results. Circles are experi-
mental results on p-NPNN at 1.8 K. Squares are those at 2.3 K.
Triangles are those at 4.0 K.
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TABLE I. Free energy, magnetization, and correlation length g„„ for different anisotropy parameters 6 and temperatures. The
zero-field magnetic susceptibility y:——8 f ( T, h, )/Bh,

~ „=0is also given.

f/J+6/4 2&s, ) f/J+b, /4 2&s, &

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

b, = 1.5 T/J =0.2
—0.013 75
—0.200 43
—0.400 05
—0.60001
—0.80000
—1.000 00
—1.20000
—1.40000
—1.60000
—1.80000
—2.00000

Jy =82.269
0.0
0.9955
0.9994
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.1644
0.7990
0.6782
0.6060
0.5563
0.5195
0.4909
0.4677
0.4486
0.4324
0.4185

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

—0.088 74
—0.214 93
—0.404 56
—0.601 59
—0.800 57
—1.000 21
—1.200 08
—1.400 03
—1.60001
—1.80000
—2.000 00

0.0
0.9001
0.9751
0.9918
0.9971
0.9989
0.9996
0.9999
0.9999
1.0000
1.0000

6= 1.5 T/J =0.4 Jy= 10.6370
0.9813
0.8100
0.6818
0.6070
0.5566
0.5196
0.4909
0.4677
0.4486
0.4324
0.4185

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

6=1.0 T/J =0.2
—0.064 96
—0.205 27
—0.400 68
—0.600 09
—0.800 01
—1.000 00
—1.200 00
—1.400 00
—1.600 00
—1.800 00
—2.000 00

Jy = 14. 1799
0.0
0.9441
0.9932
0.9991
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.9713
1.1394
0.8375
0.7015
0.6213
0.5673
0.5278
0.4974
0.4731
0.4531
0.4362

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

—0.162 63
—0.247 26
—0.415 56
—0.605 50
—0.801 99
—1.000 73
—1.200 27
—1.400 10
—1.600 04
—1.800 01
—2.000 01

0.0
0.7225
0.9172
0.9719
0.9899
0.9963
0.9987
0.9995
0.9998
0.9999
1.0000

6= 1.0 T/J =0.4 Jy=5. 11605
1.1753
1.0073
0.8155
0.6965
0.6200
0.5669
0.5277
0.4974
0.4731
0.4531
0.4362

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

6=0.5 T/J =0.2
—0.183 57
—0.247 60
—0.407 87
—0.601 10
—0.800 15
—1.000 02
—1.20000
—1.400 00
—1.600 00
—1.800 00
—2.000 00

Jy =3.304 78
0.0
0.6154
0.9243
0.9890
0.9985
0.9998
1.OOOO

1.0000
1.0000
1.0000
1.0000

2.7389
1.9890
1.2145
0.8839
0.7279
0.6382
0.5791
0.5367
0.5044
0.4787
0.4577

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

—0.271 43
—0.320 73
—0.448 34
—0.618 39
—0.806 85
—1.002 S3
—1.200 93
—1.400 34
—1.600 13
—1.800 05
—2.000 02

0.0
0.4728
0.7709
0.9099
0.9660
0.9874
0.9953
0.9983
0.9994
0.9998
0.9999

5=0.5 T/J =0.4 Jy=2. 09440
1.3525
1.2297
1.0089
0.8330
0.7144
0.6344
0.5780
0.5363
0.5042
0.4787
0.4577

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

4= —0.5 T/J =0.2
—0.516 83
—0.532 56
—0.582 16
—0.673 81
—0.818 19
—1.002 92
—1.200 41
—1.400 06
—1.600 01
—1.800 00
—2.000 00

Jy=0. 777 26
0.0
0.1592
0.3434
0.5847
0.8485
0.9718
0.9960
0.9994
0.9999
1.0000
1.0000

3.0885
2.9956
2.6793
2.0949
1.4289
1.0036
0.7924
0.6776
0.6060
0.5563
0.5195

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

4= —0.5 T/J =0.4
—0.572 83
—0.590 08
—0.643 08
—0.734 53
—0.864 90
—1.027 68
—1.210 90
—1.404 12
—1.601 53
—1.800 57
—2.000 21

Jy =0.856 89
0.0
0.1736
0.3589
0.5565
0.7417
0.8754
0.9478
0.9797
0.9924
0.9972
0.9990

1.S343
1.4973
1.3894
1.2269
1.0445
0.8815
0.7566
0.6670
0.6027
0.5553
0.5192
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TABLE I. (Continued).

h, /J f /J+5 /4 2(S, & f/J+6/4 2&S, &

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

6= —1.0 T/J =0.2
—0.706 96
—0.71676
—0.747 58
—0.803 47
—0.892 39
—1.026 69
—1.204 70
—1.400 67
—1.600 09
—1.800 01
—2.00000

JL=0.484 12
0.0
0.0993
0.2122
0.3532
0.5476
0.7971
0.9556
0.9934
0.9991
0.9999
1.0000

2.9481
2.9323
2.8511
2.6247
2.1708
1.5540
1.0801
0.8323
0.7009
0.6213
0.5673

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

4= —1.0 T/J =0.4
—0.752 87
—0.764 01
—0.798 48
—0.859 36
—0.951 04
—1.076 76
—1.234 11
—1.413 74
—1.605 25
—1.801 96
—2.000 73

JL=0.552 56
0.0
0.1123
0.2351
0.3776
0.5423
0.7131
0.8520
0.9353
0.9743
0.9903
0.9964

1.5358
1.5192
1.4663
1.3707
1.2322
1.0678
0.9093
0.7805
0.6853
0.6164
0.5657

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

5= —1.5 T/J =0.2
—0.909 45
—0.915 54
—0.935 17
—0.971 44
—1.028 58
—1.11344
—1.237 85
—1.407 46
—1.601 09
—1.800 15
—2.000 02

JL=0.298 12
0.0
0.0622
0.1368
0.2293
0.3474
0.5115
0.7413
0.9318
0.9892
0.9985
0.9998

2.6684
2.6931
2.7350
2.7244
2.5855
2.2388
1.6831
1.1694
0.8788
0.7273
0.6381

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

6= —1.5 T/J =0.4
—0.947 32
—0.954 73
—0.977 77
—1.018 72
—1.081 33
—1.17046
—1.290 58
—1.441 85
—1.617 29
—1.806 69
—2.002 51

JL=0.367 63
0.0
0.0748
0.1574
0.2552
0.3750
0.5204
0.6813
0.8252
0.9201
0.9676
0.9876

1.4922
1.4873
1.4691
1.4285
1.3541
1.2392
1.0919
0.9383
0.8060
0.7049
0.6311

V(x) as follows:

V(x) = V '(x) =x for b. ~ 1; (67a)

V(x) = tan8/tanh sinh
vr 8. )

—
m

m. —8 x

V '(x) =
sinh[[~/m —8)] tanh '(tan8/x)]

(67b)

V(x) =sr/sinh '(m/x), V '(x) =sr/sinh(vr/x) for 6= —1; (67c)

V(x) =tanh8/tanh tn
2K (g)

2E(g)x '

V '(x) = m/2K

tn[(m /2') tanh '(tanh
~
8( /x), g]

Z [(1—g') '"]/e (g) =18I /~ for b, (—1 .

(67d)

Here tn(x, g) —=sn(x, g)/cn(x, g) is an elliptic function. K(g) is a complete elliptic integral of the first kind with modulus
g. In this choice of V(x), the imaginary part of logarithm can be fixed at [m, n]i Funct—ion.s V. (x) and V (x) are ob-
tained from the distribution of roots (63) at zero temperature and zero field. In actual numerical calculation we treat pI
and q& at I I., where L, is a certain integer. The pj and q~ at j & L, are approximated by
p~ =4T~(j —1/2)/( Jb )+i Im(pL ) and q; =4Tmj /( Jh)+i Im(qL ). The products in Eqs. (66) are estimated accurately.

Iterative calculation of Eqs. (66) converges very rapidly for arbitrary h„b, , and T, and we get A~ and A~ &. The
magnetization and magnetic susceptibility are given by differentiations of free energy with respect to h, . So we need to
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calculate imp&/Bh, and 8 p&/Bh, . These are given by solutions of linear equations which are obtained by the
difFerentiation of Eqs. (43).

In Fig. 1 the calculation of magnetic susceptibility at 6= 1 is shown. The results are compared with the experimental
results on the y phase of p-NPNN (C,3Hi6N304), which is an organic quasi-one-dimensional ferromagnet with J =4.3
K.' It is made of only carbon, nitrogen, hydrogen, and oxygen. In Fig. 2 the calculation of magnetization at finite field
is compared with experimental result of this substance. The agreement is surprisingly good. The experimental details
were published in Ref. 13. Of course, these calculations are possible by using the method of Bethe-ansatz integral equa-
tions, but calculations become much simpler. In Table I, the free energy, g„„and magnetization are given for
several sets of temperature, 6 and h, .

V. CORRELATION LENGTH g'„

Here we consider g„,which is defined by Eq. (11). In the case
~
6

~
) 1 and li, =0, g„ is longer than g„„,and the prob-

lem is very simple. In Eq. (24) we put k =M and

for ~b ~
=1,

z2)z3 ' ' )zM, ZM+1 j= zj +1

, 2
h (2' z, )h (2—g+zi )

AMi =2
4 (=2 li (zi)h (2')

J,
Tm(l —1)

These are transformed as

We have the equation for z2, z3, . . . in the limit M ~ ~:

g(z&)=2'(l —1)+—lnf (z&,zi )+ g ln[f (z&,z )f (z&, —z )]
l 1=2

r

(68)

(69)

(70)

r) =0,
JA G(ri)=2'(/ —1)+—lnL(ri, 0)+ g ln[L(ri, rq)L(ri, rj)], 1=—2, 3, . . .1

J =2

(71)

4T (~~2 4m. T(l —1)
(72)

This eigenvalue is the same with A, in Eqs. (40) and (41)
of Ref. 1 at J, ~ J~=~J„~ if we set J=J~,
h=sgn(J„)J, /J». The generalization of these equations
to h, %0 or

~
b,

~

& 1 is not simple. In these cases, z, is also
variable, and AM is sometimes a complex number. Anal-
yses of A~ for these cases are remained in further investi-
gations.

VI. SUMMARY AND DISCUSSION

In this paper we derived transcendental equations with
an infinite number of unknowns, which give the free ener-

gy and correlation length g' „of the one-dimensional
XXZ model in a magnetic field. For this system the free
energy has already been given by the thermodynamic
nonlinear integral equations derived in the 1970*s. The
equations for free energy (6), (43), and (46) should be
equivalent to them, but the equations for the correlation

lengths (11), (43)—(47), and (71) and (72) are completely
diA'erent. One should note that the row-to-row transfer
matrix for the homogeneous six-vertex model cannot give
the transcendental equations for the finite-temperature
XXZ chain. One must solve the eigenvalue problem of
the diagonal-to-diagonal transfer matrix on a strip of
finite width. This is solved as a special case of the inho-
mogeneous six-vertex model.

Our theory is applied to the organic ferromagnet p-
NPNN. The agreement of magnetic susceptibility and
magnetization with experiment is very good.
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