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Magnetoelastic coupling in helimagnets: A molecular-field theory of the 4 lock-in phase
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A free energy formulated within the molecular-field treatment of a Heisenberg-like Hamiltonian
serves as the basis for a model of the recently reported wave-vector lock-in at Q= 4c

* in the incom-

mensurate hexagonal helimagnet Ho. Variation of the exchange integral with interionic distance is
shown to provide a mechanism for the observed decrease of Q as the temperature is lowered below

Tz ——-131 K. Umklapp terms of the form 64+0 are then responsible for stabilizing the 4 commensurate

phase over a narrow temperature region around 96 K. A crucial ingredient of the model is a symmetry-
breaking term, which distorts the polarization of the spin density from helical to elliptical. Such an in-

teraction can arise from the basal-plane component of an applied magnetic Geld or of uniaxial stress.
Agreement between the model and experimental results for a wide range of magnetic properties is
demonstrated using numerical estimates for a relatively small number of exchange parameters.

I. INTRODUCTION

Although the magnetic properties of heavy rare-earth
metals have been the subject of intense research for more
than 30 years, ' interesting phenomena associated with
these hexagonal helimagnets continue to be discovered.
Recent attention has focused mainly on the magnetic or-
dering process of holmium and has revealed surprisingly
complex low-temperature spin structures and
magnetic-Geld effects. ' This work is an attempt to fur-
ther understand the behavior of the magnetic wave vector
Q(~~c), which characterizes the periodicity of the helical
spin structure, at temperatures not too far below the Neel
temperature (Ttv—= 131 K). In this regime, Q is incom-
mensurable with the lattice periodicity and decreases as
the temperature is lowered. " Of particular interest is the
recent observation, ' ' in a magnetic field applied along
the e axis, of a wave vector lockin to a commensurate
value Q= —,

'c* over a narrow temperature range of a few

degrees Kelvin near 96 K. It is shown here that a free en-
ergy derived within the molecular-Geld approximation,
which includes magnetoelastic coupling through the vari-
ation of Heisenberg exchange interactions with interionic
distance, can account for the temperature dependence of
Q and that umklapp terms of the form 6«G are then re-
sponsible for stabilizing the 4 commensurate phase. An
essential requirement of the model is a mechanism that
distorts the polarization of the spin density from helical
to elliptical. The in-plane component of an applied mag-
netic field or of uniaxial stress can provide the necessary
symmetry-breaking term. A brief account of a complete-
ly phenomenological version of the present theory has
been published' (referred to as I).

Apart from the early work of Elliott and Wedgwood'
based on the Ruderman-Kittel-Kasuya-Yosida (RKKY)
model (and low-temperature treatments of single-chain
models' ), theoretical investigation of the tetnperature
dependence associated with helimagnet periodicities has

received little attention. The model discussed in this
work was inspired by the early observation of large mag-
netoelastic coupling in the heavy rare-earth metals '
and recent data' on Ho showing lattice distortions asso-
ciated with the lock-in, as well as by the exchange magne-
tostriction model of Lee. ' Magnetic-coupling-induced
relaxation of the lattice is known to give rise to nonlocal
biquadratic exchange contributions to the usual Heisen-
berg Hamiltonian. ' Within the context of a Landau-
type expansion of the free energy derived within
molecular-field theory, this relaxation introduces a nonlo-
cal fourth-order term. As discussed in I, such nonlocality
leads to a temperature dependence of the wave vector Q.

Lockin phenomena have been studied for a wide
variety of systems, ' ' including helically modulated spin
structures. Commensurability effects in Ho due to
magnetoelastic coupling, which differ from those investi-
gated here, have been discussed by Vigren. A conse-
quence of expressing the Landau-type free energy as a
function of Fourier components of the spin density, S&, is
the appearance of umklapp terms of the form
(S& S&) 64& o. Low-order terms (in S&) determine the
magnetic ordering process at temperatures not too far
below T& so that a commensurate phase, if it occurs, can
be expected with periodicity four. In the case of hcp lat-
tice structures (such as Ho), close-neighbor exchange in-
teractions stabilize a (frustration-induced) incommensura-
bility. '~ It is accidental in Ho that Q (T) passes through
a value —,'e, allowing for the possibility of umklapp-
induced lock-in. Note that helical polarization may be
described by taking S&=~S&~(x+iy)/&2, in which
case the umklapp terms are zero. It is for this reason that
a distorting mechanism is essential to the present theory.
A similar conclusion has been made by Harris, Rastell,
and Tassi in their analysis of lock-in effects associated
with helimagnets at low temperatures.

The present theory demonstrates that the —,
' lock-in ob-

served in Ho can be explained qualitatively by magnetoe-
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lastic coupling. This is illustrated by a reasonably suc-
cessful attempt to achieve agreement with experimental
data based on a low-order expansion of the free energy
and with only close-neighbor exchange interactions in-
cluded. The lock-in temperature is sufficiently far below
T~, however, and the exchange interactions involving
higher neighbors sufficiently large, ' that these approxi-
mations may be expected to limit any quantitative agree-
ment. In addition, although it can be argued that a
helical-symmetry-breaking mechanism likely exists, the
observed lock-in over a temperature range of 2 K can be
explained by the present model only if this term in the
free energy is rather large.

The remainder of this paper is organized as follows.
The molecular-field theory of a free energy expanded to
sixth order in the spin density, as well as an exchange
magnetostriction model of fourth-order nonlocality, are
presented in Sec. II. A parametrization of the spin densi-
ty appropriate for hcp holmium is discussed in Sec. III.
The temperature dependence of Q in the incommensurate
phase is described in Sec. IV and numerical estimates
made of low-order exchange and magnetoelastic coupling
interactions which correlate a wide variety of thermo-
dynamic data. Helical-symmetry breaking is introduced
in Sec. V, demonstrating that the theory of umklapp-
induced —, lock-in is in fair agreement with experimental
data. A discussion of these results and some conclusions
are made in Sec. VI.

b = {[(2j +1) —1]/(2j) I /45,
c =2[ [(2j+1) —1]/(2j) ] /945,

(6)

with j =8 for Ho. Note that only the second-order term
in the free energy (2) is nonlocal. Also note that the
Hamiltonian (1) omits anisotropy within the hexagonal
plane, which would make a contribution at sixth-order
in s. The possibility that such an interaction could effect
the lock-in process discussed below was investigated and
found not to be relevant at the (high) temperatures of in-
terest here.

Magnetoelastic coupling is accounted for within the
present model by allowing for variation of the exchange
interaction with interionic distance. ' This effect is de-
scribed by writing r=ro+u(ro) (where ro characterizes
equilibrium positions in the paramagnetic state), so that
to low order

J(r' —r) =J(ro —ro)+ [u(ro) —u(ro)].VJ(ro)+ .

With the expansion

(9)

heavy rare-earth metals) the total angular momentum j,
through the Brillouin function, and may be expressed by

a =3j /(j +1), b =ha, c =(3b a c—)a

II. MOLECULAR-FIELD THEORY
AND MAGNKTOKLASTIC COUPLING

A(r)=aksT5(r)+j J(r),
B =bk~T, C =ck~T, . . . .

(3)

(4)

The coefficients a, b, c, . . . depend on (in the case of the
I

The starting point of the present model is the well-
tested assumption of localized spins interacting through
Heisenberg exchange

&=
2 g J(JD(

lJ

where the configuration ale is stabilized by strong planar
anisotropy and J;.& 0 implies antiferromagnetic cou-
pling. The method for obtaining a Landau-type expan-
sion of the free energy derived wi. thin molecular-field
theory given by Bak and von Boehm is straightforward
to generalize for the present case (also see Ref. 29). The
result to sixth order in the spin density is

F, =(1/2V )f dr fdr'A(r)s(r) s(r')

+(8 /4 V)f d r[s(r) s(r) ]

+(C/6V) fdr[s(r) s(r)] + (2)

where s = (a ) characterizes long-range order, r=r' —r,
and

where O, =x,y, z and the summation convention is used,
relation (8) can be expressed as

J(r) =J(ro) +e;K—; (ro), (10)

where 4.= V/N is the unit-cell volume and the subscript
0 on position variables has been omitted for convenience.
The strain tensor at equilibrium is determined by
dF, /Be; =0 so that

e;=( —
—,'j /c-V )fdr f dr's;. K (7)s(r) s(r'), (13)

where s;. is the compliance tensor, s=C '. Insertin'g
this expression back into (12) demonstrates that the effect
of magnetoelastic coupling is a nonlocal contribution to
F [s(r) ] at fourth order (also see Ref. 30):

where i = 1 —6 in the Voigt notation, e; is the strain ten-
sor, and the symmetric magnetoelastic coupling
coefficients are given by

BJ BJK p(ro)= —,
' rp+ r

BI' BT

With the addition of the elastic energy, strain contribu-
tions to the free energy are thus given by (also see Ref.
26)

F, =( ,'j /V )fdr—fdr'K;(r)e, s(r) s(r')+ ,'~C,".e;ej. , —

(12)

Fx =( ,'j /~V )fdr, f dr2 fdr, f d—r4—K,(r, —r )s3, .K(r3 14)[s(r, ) s"(r2)][s(r3).s(r4)] . (14)
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This term is to be added to the free energy (2) with the
understanding that r denotes equilibrium positions with
respect to the paramagnetic phase, F =F, I rp] +Fx. I rp].
Note that the structure of (14) differs from the type of
nonlocality assumed in I. p (r) =S e'~'+ S*e

J (16)

with j = A, B and R =R&+w, where R& denotes hexago-
nal Bravais lattice sites, and with long-range order
characterized by

III. APPI. ICATI(ON TO hcp HQI.MIUM

s(r) =( V/2X)g gpj(r)5(r —R)
R) j

(15)

Following the notation in I, the hcp crystal structure of
Ho (P63/mmc) can be described by a simple hexagonal
lattice with a two-site basis labeled 3 and B with vectors
wz =0 and wz ——w= —,

' x+ —,'8y+ —,'~z, where ~ and c are
the lattice constants, 8=+3~/2, and xiyJ.z. The spin
density is assumed to have the form

S~ = S(cosPx+isi nPy)e'~ (17)

and S&=S&e'r, allowing for helical (P=m. /4), linear
(p=0 and p=vr/2), and elliptical (0&p&7r/2) polariza-
tions of the magnetic order. With this description of the
spin density, the free energy (2) simplifies to

As discussed in I, a sufficiently flexible parametrization of
the polarization vectors is expressed by

F, = ,'aTS +—,'j (Jr +—J&cosg)S +(B/16)S"[2+cos (2P)]+(C/16)S [23+cos (2P)]
—(1/16)S [(B+CS ) cos (2P) sin(2$) sin(2$)]b«G, (18)

where P =y' —y, g =P+ P', and

Fx =——
—,
' j (s33/~)[K&+K& cosp] S (20)

where K—:K„and with K& and K& defined as by (19).
Uniform strain along the e axis from (13) is determined
by

e3—= —
—,'j (S33/~)[KC +Kr cosp]S~ . (21)

Ferromagnetic exchange interactions in the basal plane
stabilize a configuration Q~~e so that the wave-vector
dependence is characterized by the interlayer turn angle
q= —,'Qe. It is then convenient to follow Stringfellow
et al. and write

J& =(2/X) g Jz„cos(2nq),
n=0

(22)

J& = ( I /N)g J(R+w)e
Rl

with J& similarly defined but with w=0. Note that the
umklapp term in (18) is zero for helical polarization and
also if the sublattice phase angle difference P is zero.

For hexagonal symmetry, only two independent mag-
netoelastic coupling constants occur7 K~z Eyy and K„.
Numerical estimates of these two parameters based on
the stress dependence of the Neel temperature ' of Ho
(also see below) reveals, however, that contributions to
the free energy from E„are much larger than those from
K „. The nonlocal terms (14) are thus well approximated
here by

are inc1uded in the following analysis. K& and K& simi-
larly defined, with Kp =0, K i

=——,
' cBJ(w) /Bz, and

K, = aJ( )/az.

IV. INCOMMENSURATE PHASE

Analysis of the free energy for the incommensurate
(IC) phase demonstrates the magnetoelastic-induced tem-
perature dependence of Q and allows for estimates to be
made of low-order exchange and magnetostriction cou-
pling constants by comparison with a variety of experi-
mental data. In this case F, given by (18) plus (20), is
minimized with a helical polarization P=vr/4 and a sub-
lattice phase angle difference /=0, so that to fourth or-
der in S

Fic= 2&TS + ,'J (J—g+ Jg)S2—+,'BS4-
—

—,
' j (S~3/U)(K&+K&)~S4 . (24)

~ith only close-neighbor coupling included (as described
above), the equilibrium condition c}F/BQ =0 yields the
relation

Ji+4Jz cosq —j (s33/~)

X[K, cosq+K2 cos(2q)][K, +K2 cosq]S =0 (25)

where temperature dependence enters through
S —T& —T. Numerical results for q(T) are presented in
the next section. At values of T close to T&, where S is
small, (25) simplifies to

Jq =(2/X) y J,„+,cos[(2n + 1)q],
n=0

(23) COSq =Cp+ 4j (S33/mJ2)

where J„represents all coupling between magnetic ions
separated by n layers. For simplicity, only the lowest-
order interactions Jp =—3J(cz), Ji =3J(w), and Jz —=J(c)

X [Kl +4CpK2 ][cpK i
—K2+ 2C pK2 ]S (26)

where co = —J& /4J2. Using the estimated values of ex-
change parameters given below, this relation illustrates
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that q decreases as the temperature is lowered. Note that
the result cosq =co at Tz is well known.

Estimates of the exchange parameters Jo, J&, and J2
were made as follows. For J, , the value determined from
the spin-wave data of Nicklow et al. at 48 K is used
(accounting for the factor of —2 difference between Ham-
iltonians). (It should be noted that there is a wide range
of estimates for this parameter. ' ) The above expres-
sion for cosq at T~, with" q =50', can then be used to
estimate J2. Finally, the Neel temperature for the
present model is given by (see, e.g., Coqblin')

4-

~2
D

0

T~=(j /a)[2J~ —2JO+ J) /(4J~)] (27) -4-
so that an estimate for Jo may then be made. This
analysis yields the values Jo= 1 ~ 05 J]= —2.37, and
J2=0.922 K. The in-plane order is ferromagnetic and,
within the framework of this close-neighbor model, the
helical modulation along the c axis is stabilized by the
frustration characteristic of antiferromagnetic next-
nearest-neighbor interactions. As noted in the Introduc-
tion, higher-neighbor exchange interactions are not negli-
gible so that Jo and J2 as estimated above may be con-
sidered as effective coupling constants, which are renor-
malized by the longer-range interactions not explicitly in-
cluded in the model. The Curie temperature,

Tc= —2(j /a)(Jc+J, +J2),
calculated with these parameters is 60 K, in fair agree-
ment with the experimental estimate of 80 K.

Crude estimates of the magnetoelastic coupling param-
eters K, and K2 were made based on a comparison of ex-
pression (21) for the c-axis strain and experimental data
for Ac/c (Ref. 35), s33 (Ref. 36), q and S ( Ref. 11) at 95
K and 120 K. Note that neutron-scattering intensity is
proportional to S and that S =2 at T =0. This analysis
yields the estimates Kt = —23 K and K2 = —30 K. As a
check on these values, they may be used to estimate the
pressure dependence of the Neel temperature, with the
result BT&/Bp-=—0.33 K/kbar. This value is in good
agreement with the experimental estimates -0.48, -0.33,
and -0.40 K/kbar. Nate that the term involving Kz in
the free energy (20) appears as K2 cos(2q) so that in the
temperature range of interest (where q —= rr/4), magneto-
elastic effects are relatively insensitive to its value. In the
analysis of the wave-vector lock-in that follows, the value
of Kz is adjusted to best reproduce the observed q ( T).

V. 4 LOCK-IN

o;, A = —j kot(s&t —s,z), where k is a magnetoelastic
coupling coefficient (k «K). For the analysis that fol-
lows, A is treated as a phenomenological parameter.
The results presented in this section were obtained by
direct numerical minimization of the free energy (18),
(20), and (28), F =F, +Fz+F„, as a function of the vari-
ables S, P, P, . . . . Due to the umklapp term in (18), the
IC and commensurate (C) cases must be treated separate-
ly: Ftc =F(S,P, P, g, q) and F, =F(S,P, P, Q) with

q =m/4. The relative stability of IC and C phases can
then be checked by comparing F,c and Fc as a function
of temperature.

Computations were performed using the previously de-
scribed values for Jo, J&, J2, and E &. K2 was treated as a
fitting parameter so that q(T*)=m/4 in the IC phase,
where T*=96 K, and A was adjusted to reproduce the
temperature width of the lock-in, about 2K. Reasonable
results were obtained using the values Kz= —18.3 and
A =7. Note that this value for K2 gives a result for the
pressure dependence' of Tz, BT~/Bp = —0.45 K/kbar,

0.28-
~ ~

0.26-

0.25-

FIG. 1. Numerically determined relative free energy
difference f =(F&c Fc)/F—&c showing the stability of the com-
mensurate phase for 95.04 K ~ T 5 97.00 K.

As emphasized in I and in the Introduction, the ob-
served wave-vector lock-in at q =m/4 is obtained12

within the present formalism only if a helical-symmetry-
breaking term is added to the free energy. The simplest
type of interaction, which achieves this effect, is of the
form

0.24-

85 IO0 II5 I30

F~ = A~S cos P, (28)

which could arise from an in-plane component of the uni-
form magnetization m, A = 4Am', or uniaxial stress

FIG. 2. Calculated results (solid curve) and experimental
data of Ref. 12 (dotted curve) showing the temperature depen-
dence of the interlayer turn angle q = —'Q and the lock-in at

q =m. /4.
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90
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FIG. 3. Effects of the lock-in on the c-axis strain e3.

VI. DISCUSSION AND CONCLUSIONS

This work has demonstrated that magnetoelastic cou-
pling due to the variation of the exchange integral with
interionic separation leads to a temperature dependence
of the incommensurate wave vector associated with hel-
imagnets. The observed data for q(T) of Ho is well ac-
counted for by this model using a relatively small number
of exchange and magnetoelastic coupling parameters,
which correlate a wide variety of experimental results. A
helical-symmetry breaking term is required, however, to
account for the umklapp-assisted —,

' commensurate lock-
in. A weak point of the theory is that the size of the
coefficient A of this term required to reproduce the data

within the range of experimental estimates. The relative
free energy difference between the two phases shown in
Fig. 1 demonstrates that Ec & F&c in a temperature inter-
val T, & T & T„where T& =—95.04 K and T2 =—97.00 K,
and that the transitions at T& and T2 are first order. Re-
sults for q ( T) shown in Fig. 2 illustrate further the stabil-
ity of the —,

' commensurate phase and that the magnetoe-
lastic coupling model can reasonably account for thermal
effects on the interlayer turn angle of this helimagnet.
The discrepancy at low temperatures is likely a conse-
quence of retaining only low-order terms J„and E„as
well as in the s expansion of the free energy. Finally, the
effects of the lock-in on the c-axis strain shown in Fig. 3
are consistent with the large anomalies recently reported
by Tindall et al. ' in Be3/'BT.

The principle effect of the symmetry-breaking term F
is to distort the polarization of the spin density from heli-
cal to elliptical (in both IC and C phases), with P-=0.27~
at T near T*. For T close to T&, however, the result of
this term to stabilize a linearly polarized state, P=m. /2
(for A~ )0). The elliptical-linear transition is second or-
der and in the present case occurs at T&—= 124 K. The
possibility that such a transition takes place in Ho has al-
ready been proposed. ' Also note that the phase angle
sum g takes a value ~/4 for both IC and C order, and
that / =0 in the IC phase, whereas P 2 0 in the C phase.

of Ref. 12 is rather large. It can be shown using the ex-
pressions for 2 after (28) [and m ~

=y—H, with
' =a ( T& T—

o ) ] that an in-plane magnetic field of over
1 T or uniaxial stress of over 10 kbar, for example, would
be necessary to give a value A =7 K. Such distortions
are an order of magnitude larger than can be reasonably
expected from the experimental setup of Ref. 12, where a
magnetic field of 2.2 T was applied along the ~ axis. Heli-
cal symmetry is not broken in the case of HLS. A source
of this discrepancy may be the omission (for simplicity) of
longer-range exchange and magnetoelastic coupling in-
teractions in the model. In addition, the present model
omits effects arising from magnetoelastic-coupling-
induced inhomogeneous strain (see below). It is clear,
however, that the present theory contains the essential in-
gredients to explain —lock-in transitions in helimagnets.

Some additional support for the existence of a helical-
symmetry breaking mechanism can be found in recent
data' on Ho. Peaks in the neutron-scattering intensity
were observed at 2Q, with associated lock-in at 2q =~/2.
These data were taken in a magnetic field of 3 T applied
along the c axis. It has been shown by Walker that an
induced periodic lattice distortion characterized by a
wavevector 2Q is expected to be absent in the case of per-
fect helical polarization but that it should occur in associ-
ation with elliptical or linear polarization of the spin den-
sity wave. In these latter cases, a harmonic of the spin
density at 3Q is also expected. Further experiments to
determine more precisely the character of the magnetic
order in Ho are desirable.

Tote added. After the completion of this work, evi-
dence for a devil' s-staircase behavior in Ho was report-
ed to result from a magnetic field applied along the c
axis. A series of commensurate wavevector values were
observed at low temperatures, in a regime where a finite
Landau-type expansion of the free energy is likely to be
meaningless. There is no particular reason to suspect
that such effects are caused by magnetoelastic coupling;
rather, the model of Ref. 28 appears to be relevant.

Tote added. After the completion of this work, evi-
dence for a devil' s-staircase behavior in Ho was report-
ed to result from a magnetic field applied along the c
axis. A series of commensurate wavevector values were
observed at low temperatures, in a regime where a finite
Landau-type expansion of the free energy is likely to be
meaningless. There is no particular reason to suspect
that such effects are caused by magnetoelastic coupling;
rather, the model of Ref. 28 appears to be relevant.
Also, —,

' lock-in has recently been reported ' in Ho and
Hlc (with no observed anomaly for H~~c), as well as in the
field-induced conical phase of Er.

ACKNOWLEDGMENTS

I thank D. Tindall and M. Steinitz for stimulating dis-
cussion. This work was supported by NSERC of Canada
and FCAR du Quebec.



MAGNETOELASTIC COUPLING IN HELIMAGNETS: A. . . 12 381

T. Nagamiya, Solid State Physics (Academic, New York, 1967),
Vol. 2.

~R. J. Elliot, Magnetic Properties ofRare Earth Metals (Plenum,
London, 1972); B. Coqblin, The Electronic Structure of Rare-
Earth Metals and Alloys: The Magnetic Heavy Rare-Earths
(Academic, London, 1977)~

D. Gibbs, D. E. Moncton, K. L. D'Amico, J. Bohr, and B. H.
Grier, Phys. Rev. Lett. 55, 234 (1985).

4C. C. Larsen, J. Jensen, and A. R. Mackintosh, Phys. Rev.
Lett. 59, 712 (1987).

5R. A. Cowley and S. Bates, J. Phys. C 21, 4113 (1988).
S. Bates, C. Patterson, G. J. McIntyre, S. B. Palmer, A. Mayer,

R. A. Cowley, and R. Melville, J. Phys. C 21, 4125 (1988).
7M. O. Steinitz, M. Kahrizi, and D. A. Tindall, Phys. Rev. B 36,

783 (1987).
M. O. Steinitz, M. Kahrizi, D. A. Tindall, and N. Ali, Phys.

Rev. B 40, 763 (1989).
N. Ali, F. Willis, M. O. Steinitz, M. Kahrizi, and D. A. Tin-

dall, Phys. Rev. B 40, 11414(1989).
I J. Jensen and A. R. Mackintosh, Phys. Rev. Lett. 64, 2699

(1990).
W. C. Koehler, J. W. Cable, M. K. Wilkinson, and E. O. Wol-
lan, Phys. Rev. 151,414 (1966).
D. R. Noakes, D. A. Tindall, M. O. Steinitz, and N. Ali, J.
Appl. Phys. 67, 5274 (1990)~

D. A. Tindall, M. O. Steinitz, M. Kahrizi, D. R. Noakes, and
N. Ali, J. Appl. Phys. 69, 5691 (1991);M. O. Steinitz, D. A.
Tindall, and M. Kahrizi, J. Magn. Magn. Mater. (to be pub-
lished).

~4M. L. Plumer, J. Appl. Phys. 67, 5280 (1990).
R. J. Elliott and F. A. Wedgwood, Proc. Phys. Soc. 84, 63
(1964).
I. Harada, J. Phys. Soc. Jpn. 53, 1643 (1984); E. Rastelli and
A. Tassi, J. Appl. Phys. 69, 5798 (1991).

~7S. Legvold, J. Alstad, and J. Rhyne, Phys. Rev. Lett. 10, 509
(1963).
E. W. Lee, Proc. Phys. Soc. 84, 693 (1964).
C. Kittel, Phys. Rev. 120, 335 (1960);A. Aharony, Phys. Rev.
B 8, 4314 (1973).

A. P. Levanyuk, in Incommensurate Phases in Di'electrics, edit-
ed by R. Blinc and A. P. Levanyuk (Elsevier, New York,
1986).

V. Heine, Phase Trans. 15, 311 (1989).
T. Garel and P. Pfeuty, J. Phys. C 9, L245 (1976).
G. Theodorou, J. Phys. C 15, 445 (1982).
A. B. Harris, E. Rastell, and A. Tassi, Phys. Rev. B 44, 2624
(1991).

25D. T. Vigren, Solid State Commun. 18, 1599 (1976).
M. L. Plumer and A. Caille, Phys. Rev. B 37, 7712 (1988).
R. M. Nicklow, H. A. Mook, H. G. Smith, R. E. Reed, and
M. K. Wilkinson, J. Appl. Phys. 40, 1452 (1969).
P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).
M. L. Plumer and A. Caille, Phys. Rev. B 42, 10388 (1990).
M. B.Walker, Phys. Rev. Lett. 44, 1261 (1980).
A. M. Simpson, M. H. Jericho, and W. A. Roger, Can. J.
Phys. 57, 385 (1979).
M. W. Stringfellow, T. M. Holden, B.M. Powell, and A. D. B.
Woods, J. Phys. C Suppl. 2, S189 (1970).
D. L. Strandburg, S. Legvold, and F. H. Spedding, Phys. Rev.
127, 2046 (1962).
J. J. Rhyne, S. Legvold, and E. T. Rodine, Phys. Rev. 154, 266
(1967).

35D. A. Tindall, M. O. Steinitz, and M. L. Plumer, J. Phys. F 7,
L263 (1977).
M. Rosen, D. Kalir, and H. Klimker, J. Phys. Chem. Solids
35, 1333 (1974).
D. B. McWhan and A. L. Stevens, Phys. Rev. 139, A682
(1965); H. Umebayashi, G. Shirane, B. C. Frazer, and W. B.
Daniels, Phys. Rev. 165, 688 (1968);T. Okamoto, H. Fujii, Y.
Hidaka, and E. Tatsumoto, J. Phys. Soc. Jpn. 24, 951 (1968).
M. L. Plumer and A. Caille, Phys. Rev. B 41, 2543 (1990).
M. B.Walker, Phys. Rev. B 22, 1338 (1980).
R. A. Cowley, D. A. Jehan, D. F. McMorrow, and G. J.
McIntyre, Phys. Rev. Lett. 66, 1521 (1991)~

A. M. Venter, P. de V. du Plessis, and E. Fawcett, Physica
B&C (to be published).
H. Lin, M. F. Collins, T. M. Holden, and W. Wei, J. Magn.
Magn. Mater. (to be published).


