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Kinetic lattice-gas model: Time-dependent generalization of the grand-canonical ensemble
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The kinetic lattice-gas model for an open system of adsorbed particles is used to derive a hierarchy of
coupled equations that represent a time-dependent generalization of the grand-canonical ensemble. This
formulation is particularly useful to describe adsorption, desorption, and diffusion in inhomogeneous
systems, such as adsorbates with attractive lateral interactions within the coexistence regime.

I. INTRODUCTION

Adsorbates with attractive lateral interactions exhibit
coexistence of dilute and dense phases below the critical
point. Such systems can be described by an adaptation of
the lattice-gas model to adsorption phenomena in which
one assumes that adsorption of gas particles on the sur-
face of a solid takes place at localized adsorption sites.
One assigns occupation numbers n, = l or 0 depending on
whether a particle is adsorbed on site i or not. For sys-
tems in which nearest-neighbor interactions dominate,
the Hamiltonian is given by'

Thus the first term in (1) does not depend on the micro-
states, yet it should not be dropped, as its T dependence
is important for thermodynamic properties. The canoni-
cal partition function is given as usual by

Z&= g exp[ H[n(N)]/—ksT j,
n(N)

where the sum extends over all microstates
n(N) = (n „n2, . . . , n, ) satisfying (5). The chemical po-
tential is calculated from the Helmholtz free energy

I'(T, N, N, ) = —ks T lnZ&

H =E,g n;+ —,
' V2+ n; n (1) as

To arrive at this Hamiltonian, one must average over the
degrees of freedom associated with the motion of the ad-
sorbed particle in its surface-potential well. One can then
identify the single-particle energy in (1) as

E, = —Vo —kz T ln( q, q;„, ) . (2)

Here —Vo is the depth of the surface potential; q, is the
single-particle partition function for the center of mass of
an adsorbed particle, i.e.,

qs=qzqxy ~

where

q, =exp(hv, /2ktt T)/[exp(h v, /ks T) 1]—(4)

n;=N .

is its component for the motion perpendicular to the sur-
face. Likewise, q is the partition function for the
motion parallel to the surface, and q;„, accounts for the
internal degrees of freedom of a molecule, ie, for its vi-
brations and frustrated rotations.

Although we are primarily concerned in this paper
with the time evolution in such systems, it is worthwhile
to brieAy discuss the approaches for the calculation of
their equilibrium properties, as related problems will
show up in their nonequilibrium statistical mechanics.
To evaluate the equilibrium properties of a system con-
trolled by (1), we can employ the canonical ensemble by
imposing the condition that the number of particles in
the adsorbate is fixed, i.e., that

To get the isotherms or isobars we then observe that in
equilibrium the chemical potential of the adsorbate must
be equal to that of the gas phase above the surface given
by

exp(ps Iks T)=AtI, (P/ktt T)Z;„,',
where

A,,„=h /(2m mks T )'i

and Z;„, is the internal partition function for vibrations
and rotations if the particles under consideration are mol-
ecules. As long as the partition function is evaluated ex-
actly, it does not matter in which ensemble one works.
However, if approximations are invoked, such as mean-
field theory, the inherent assumption of homogeneity in-
troduces unphysical features in the canonical ensemble
such as van der Waals loops in the isotherms of adsor-
bates with attractive interactions. This is discussed at
length by Hill, who also points out that, to avoid such
artifacts, it is better to work in the grand-canonical en-
semble. Before we enter into that discussion, we would
like to point out that the van der Waals loop can be the
starting point of a model of metastability, albeit rather a
crude one due to the fact that mean-field theory does not
give a satisfactory description of critical phenomena.
One has therefore resorted to the construction of restrict-
ed ensembles, valid around the local minima of the meta-
stable states, in which one defines, e.g. , clusters of parti-
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cles, restricting each cluster to a maximum size.
The grand-canonical partition function is given by

:-=g exp —H(n) —pg n, . k~ T

where the sum is taken over all microstates n. Note that
(11)can also be written in the familiar form as

will then advance our approach based on a nonequilibri-
um generalization of the grand-canonical ensemble,
which is followed in Sec. IV by a discussion of possible
approximation schemes. In Sec. V we summarize our dis-
cussion and point out the work ahead.

II. MASTER EQUATION

N

N =0 n(N)

where

N=O

A, =exp(p/k~ T )

g exp[ —H(n)/k~T]= g Z~A~, (12)

(13)

To set up a theory of time-dependent phenomena on
surfaces, we assume that the relevant processes, such as
adsorption, desorption, and diffusion, are Markovian.
We define the probability P(n;t) that the microstate n is
realized at time t. It satisfies a master equation

is the fugacity. We can then calculate the average cover-
age as

8=NIN, =k&TN, 'Bln=/Bp=N, 'gNP (N), (14)

where

Pp(N)=A, g exp[ H(n—)/k~T]/:-
n(N)

(15)

is the probability that a system of N particles is realized
at a given temperature and pressure. We note that within
the coexistence region of an adsorbate with attractive in-
teractions, Pp(N) will exhibit two peaks characterizing
the densities of the coexisting dilute and dense phases
even if ZN is evaluated in some approximation, such as
mean field. It is therefore suggestive that a generalization
of (15) to a time-dependent probability function is a good
starting point for a kinetic theory of adsorption, desorp-
tion, and diffusion on surfaces, in particular for inhomo-
geneous adsorbates, e.g. , in the two-phase regime. In this
paper we will follow this approach.

In the next section we will start with formulating the
master equation that controls adsorption, desorption, and
diffusion, and then discuss earlier attempts at solving it
either by straightforward Monte Carlo techniques or by
deriving, and suitably truncating, a hierarchy of equa-
tions of motion for correlation functions. In Sec. III we

I

dP(n; t ) Idt =g[ W(n;n')P(n'; t )
—W(n';n)P(n; t )],

n'

(16)

where W(n', n) is the probability per unit time that the
system undergoes a transition from a microstate n to n'.
In principle, it should be calculated from a Hamiltonian
that includes, in addition to the terms in (1), the coupling
of adsorbed particles to the vibrational and electronic de-
grees of freedom of the substrate. This has been done for
phonon-mediated adsorption and desorption of phy-
sisorbed particles. Following a heuristic approach, we
have recently examined a number of choices for
W(n', n), all subject to the demands of detailed balance:

W(n;n')Pp(n')= W(n', n)Pp(n) . (17)

Assuming that the residence time of an adsorbed particle
in an adsorption site is much longer than the transition
time into or out of that site, we can write W(n', n) as a
sum of terms accounting for individual processes of ad-
sorption, desorption, and diffusion, i.e.,

W'(n', n) = W, d(n', n)+ Wd;t(n', n) .

The simplest choice is what we have termed Langmuir ki-
netics, for which we assume that adsorption into a site i

takes place provided that site is empty, irrespective of
whether neighboring sites are occupied. We then get

W, d(n', n)= Wpg 1 n;+Cp—n; 1+C,gn;+, +Czgn;+, n;+, .+
a, a'

where a and a enumerate the neighbors of site i. Similarly, we write for diffusion

5(n, 1 n;) + 5(nI', n&—),
(wi)

Wd's(n 'n)= Jpgn, .( 1 n, +, ) 1+C& g— n;+&+ . 5(n, 1 n; )5(n +„1 n; +, )
—f—f 5(nt, nl )

i, a b (Wa) I (Wi, i +a)
(20)

where

Cp =exp(E, /k~ T),

C„=[exp( Vz Ik~ T ) 1]". —
(21)

(22)

S(8)=Sp(1 —0) . (23)

Langumuir kinetics, in particular, results in a sticking
coefBcient

Other choices and their physical or unphysical implica-
tions have been discussed in Ref. 2. As long as the mas-
ter equation (16) is used in Monte Carlo simulations sole-
ly to determine the equilibrium properties of the system,
it does not matter what choices are made for the transi-
tion probabilities W(n';n) as long as they satisfy detailed
balance (17). However, if we are interested in the adsorp-
tion, desorption, and diffusion kinetics of a particular
physical system, the choice of transition probabilities
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(n, ) =gn;P( nt), (24)

(n, n ) =gn, n P(n;t), (25)

W(n', n) is rather narrowed as discussed in Ref. 2. We
adopt the choices (19)—(22) in the subsequent discussion,
leaving the specification of the rate constants Wo and Jo
ti11 later.

To solve the master equation (16), Monte Carlo tech-
niques have been invoked as reviewed in Refs. 9—11. The
renormalization group has also been used successful-
ly. ' ' Likewise, one can derive a hierarchy of coupled
equations of motion for average occupations and correla-
tion functions. ' ' ' To this end we define

and obtained from (16)

d (n; ) Idt = Wo(1 —( n; ) )

—rV, C, (n, )+C, y(n, n, .)+ .

(26)

and similar equations for the higher-order correlation
functions. This hierarchy is obviously exact. To solve it,
approximations must be invoked; in particular, the
hierarchy must be truncated, e.g. , by invoking the Kirk-
wood closure approximation, which states that

(n;n . n )=(n;n )(ntnk) (n&n )/(n;)(n~)(nz) . . (n ), (27)

or similar closures at the level of triple or higher correlations. This leaves us with N, equations for the average occupa-
tion functions and yet more equations for correlation functions. To reduce this set further, one then assumes homo-
geneity in the adsorbate, so that the average occupation functions are all equal to the coverage, i.e.,

(n, )=8 (28)

for all sites i In th.e simplest (Kirkwood) approximation, one thus is left with two coupled equations for 8 and for the
average correlation function

q=(n, n, +, ) .

They read for a square lattice

d8/dt = 8'0[1—8—CO8(I+C, Q/8) ],
dfldt =28"0[8—g —Co(C, +1)1((1+C,Q/8) ]

—2JO(l+C, f/8) [3(C,+1)Q(l —Q/8)+(Q /8 —8 )(1+C,f/8)
—28 +2(1—C, )g /8+2C, Q /8 ]

I

(29)

(30)

(31)

p, (t) =N, 'g gn, +(1 n;+, )P(n;t ), —
i n a

and the probability to find dimers as

(32)

We note that the equilibrium solution of these equations
yields, at least in the absence of the diffusional terms, the
quasichemical approximation to the isotherms, i.e., a van
der Waals loop in the coexistence region. This is not
surprising because the assumption of homogeneity is
clearly not justified here. In a similar vein, the time-
dependent equations give a reasonable description of ad-
sorption and desorption phenomena for repulsive interac-
tions and above the critical point for attractive interac-
tions.

We stress again that for systems with attractive lateral
interactions that exhibit coexistence of two phases below
the critical point, the set of equations of motion for corre-
lation functions (26), etc. , is not very practical because
the inhomogeneity of such systems forces one to consider
the site dependence of these functions, preempting the
use of the simplifying assumption of homogeneity. One
way out of this difficulty is to define physical clusters of
particles and derive equations of motion for their time
evolution; e.g. , we can define the probability to find
single-particle clusters on the surface at time t as

III. TINIE-DEPENDENT
GRAND-CANONICAL ENSEMBLE

To describe time-dependent phenomena in two-phase
adsorbates, we now reformulate the theory in terms of
the time-dependent generalization of (15). It is obtained
as

P(N;t)= QP(n;t),
n(N)

(34)

where the sum is again over all microstates n satisfying
(5). Its equation of motion is obtained from (16). In the

p2(t)=N, 'ggn, n;~, + (1 n, +,.)—
i a n a' (Wa)

X(1 n; +.
—..) P( nt) .

(33)
Obviously it becomes increasingly more difficult to define
probability functions for clusters of many particles due to
the fact that an exact theory should also take their shapes
into account. Such a theory is very much akin to cluster
theories of nucleation; ""' see, e.g. , Zinsmeister's
adaptation2o, 2& of the Becker-Doring theory to surface
kj
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absence of interactions, i.e., V2 =0, it reads for
%=0,1, . . . , X,

dP(N; t ) /dt =g (N —1 )P (N —1;t ) —rp(N)P(N; t )

g(—N)P(N; t)+ rp(N +1)P(N +1;t),

desorbs from a system with N + 1 particles (fourth term).
The probability to find X particles in a subsystem de-
creases because a particle desorbs (second term) or ad-
sorbs (third term).

We note that the equilibrium solution of (35), properly
normalized, is given by

where

(35) N, ! —X
Pp(N)=Cp (1+Cp ')

N!(N, —N)!
(39)

g (N) = Wp(N, —N ),
rp(N) = WpCpN,

g( —1)=g(N, )=rp(0)=rp(N, +1)=0 .

(36)

(37)

(38)

This is the master equation for a "birth and death" or
linear one-step process, as discussed at length by van
Kampen. To interpret this set of equations we adopt
Landau's picture of the grand-canonical ensemble to the
present situation of the time evolution of an adsorbate.
We imagine that the surface of the solid is subdivided
into a large number of subsystems, each of which is still
of macroscopic size. P(N;t) then gives the probability
that at time t one of these subsystems has X particles.
Alternately, we can interpret P(N;t) as the fraction of
the surface with a homogeneous coverage N/N, . The
probability of finding a system with X particles then in-
creases in time according to (35) because a particle ad-
sorbs into a system with N —1 particles (first term) or

in agreement with (15).
To obtain the rate equation for the coverage, we multi-

ply (35) with N/N, and sum over all N to get

d0/dt = Wp(l —8+Cp8) .

This allows us the identification

Wp =Spa, P(2vrmk~ T)

(40)

(41)

X (Z;„,/q;„, )exp( —Vp/kti T) . (42)

In the presence of nearest-neighbor interactions, the tran-
sition probabilities (19) and (20) lead to a modification of
the equations (35), namely

where So is the sticking coefficient at zero coverage, a, is
the area of an adsorption cell, and P is the pressure of the
gas phase above the surface at temperature T. With (21)
we thus get the desorption rate constant

WpCp =Spa ( kti T/h A, th)Q

dP(N;t)Idt=g(N —1)P(N —1;t)—WpCp[NP(N;t)+C, P2„(N;t)+C2P3„(N;t)+ . .
]

—g(N)P(N;t)+ WpCpr(N+1)P(N+1;t)+C, P2„(N+1;t)+C2P3„(N+1;t)+ . . ],
where we defined correlation functions

P2„(N;t)=g g n;n, +,P(n;t),
i, a n(N)

P3„(N;t)=g g gn;n;+, n;+, P(n;t) .
i, a a' (Wa) n(N)

(43)

(44)

(45)

These functions are subject to equations similar to (43), generating an exact hierarchy, equivalent in its contents to (26),
etc. ; e.g. , we get

dP2„(N; t)Idt =S,(N —1) Sd(N) S,'(N—)+Sd(N—+1)+Sd;t(N),

where the adsorption terms are given by

S,(N —1)=Wpr2c(N —1)P(N —1;t)+(N, N 1)P2„(N ——1;t)]-,
S,'(N) = Wp(N, N)P2„(N; t), —

with c being the coordination number of the two-dimensional lattice. For the desorption terms we get

(46)

(47)

Sd(N)=WpCp NP2„(N;t)+C& g gn, n, +,gn n +bP(n;t)+
n(N) i, a j, b

Sd (N + 1)= WpCp (N —1)P~„(N+ 1; t) 2C, P3„(N +—1;t) 2C, P2„(N + 1—; t)

(48)

+C& g gn;n;+, gn n +bP(n;t)+ . .
n(N+1)i, a j,b
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and for the diffusion term

Sz;&(N) =2JOIcN(N —1)P(N;t)
—N, (C, +1)P~„(N;t)+ ], (49)

The master equation now reads

dP(N; t) ldt = W oP(N —1; t )
—r a (N)P(N; t)

—WOP(N; t )+ raw(N +1)P(N +1;t ),
where terms involving higher-order correlations have
been omitted. Note that the diffusional part of the transi-
tion probabilities (20) does not appear in (43) because
hopping across the surface does not change the coverage.
Diffusion, however, affects the correlation functions.

In closing, we note that in equilibrium there is a simple
relation for the nearest-neighbor correlation function,
namely

P~„(N) = —2kii TB in(Z~)/i) V~ . (50)

P~„=c [N (N —I ) /N, ]Po(N),

where c is the number of nearest neighbors.

IV. APPROXIMATIONS

(51)

Such relations might be useful in finding truncation
schemes for the hierarchy of equations. In particular, for
noninteracting particles in equilibrium we get

(56)

where

(N) = Wo CON /(N, —N + 1)

X exp I
—

( N —
—,
'

)c Vz /ks TN, ] . (57)

A similar set of equations has been used for the discus-
sion of the kinetics of magnetic phase transitions within
the mean-field theory of Weiss. '

Before we present numerical examples, we would like
to briefiy discuss the relevance of (56). It can certainly
serve as a model for the kinetics of systems that undergo
phase transitions. However, its physical significance is
rather limited due to the fact that diffusion has complete-
ly dropped out of the theory. We know, however, that in
most adsorption systems diffusion rates are typically
much faster than desorption rates; i.e., if we write the
diffusion rate constant in the Arrhenius form

N,
Po(N)= 3 N Co exp( cV~N /2k' T—N, ), (52)

where

To use the equations of motion for P(N;t) and the
correlation functions, we need a truncation scheme ex-
pressing higher-order correlations in terms of lower ones,
similar to Eq. (27). In our first such attempt we will
reduce the theory to involve P(N;t) only. This is most
easily done by starting at the very beginning, i.e., with
the conditions of detailed balance (17). In such a pro-
cedure we have to specify an approximation equilibrium
distribution, which we take for simplicity to be given by
the Bragg-Williams (BW) or mean-field approximation,
~ 3i.e.,

Jo vg iexp( —Q /ks T ) (5&)

then one typically finds that the activation barrier for
diffusion Q is about a fifth of the surface binding energy
Vo with prefactors being comparable. Exceptions are
weakly bound physisorbed systems such as the lighter
rare gases on metals, where diffusion and desorption
occur on similar time scales at desorption temperatures.
Another class of systems where difFusion might in fact be
totally inoperative due to steric hindrance are monolayer
films of large organic molecules.

We have used (56) to study desorption kinetics. Thus
we assume that initially an adsorbate is present with cov-
erage Oo=g (t =0) maintained at temperature T. For
times t )0 we drop the adsorption terms in (56) by reduc-
ing the pressure significantly by rapid pumping, and cal-
culate the isothermal desorption rate as

exp( cV,N'/2k' TN, ) .—
N

(53) d 8/dt = —gr(N)P(N; t) .

XexpI(N —
—,')cV~/kii TN, ] . (55)

%'e have made the assumption of a constant sticking
coefficient, rather than one linearly decreasing as in (23),
because of its appropriateness for many adsorption sys-
tems, such as metals on metals, for which it is also known
experimentally that desorption is a zeroth-order process
within the coexistence region, a point to which we
will return shortly.

Inserted into (17) and assuming that adsorption proceeds
with a constant sticking coefFicient, the adsorption term
is given by the constant (41), i.e.,

W,q(N+1, N)= Wo,

and the desorption term reads

Wq„(N —1,N) = WOCON/(N, —N + 1)

We have evaluated (59) for a typical system for tempera-
tures below critical starting from various initial coverages
above and within the coexistence region. In Fig. I we
plot the isothermal desorption rate as a function of the
remaining coverage. It should not be surprising that the
rate depends strongly on the initial coverage because, in
the absence of diffusion, desorption evolves far from local
equilibrium. This is also demonstrated in Figs. 2 and 3,
where we plot the time evolution of P(N; t), depicted not
as a function of time, but of the coverage 8(t) remaining
at time t. Note that we have excluded P(N =0;t) from
these plots, as this function increases in a trivial way by
accumulating all desorbing particles. Starting in Fig. 2
from an initial coverage of 0.5, P(N;t =0) exhibits the
two-peak structure typical for the coexistence region. As
time evolves, particles desorb first from the dense phase.
In addition, some particles from the dense phase are also
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schemes above is useful. Rather, one must return to the

functions (43)—(48). To make it the basis for a study of
surface inetics, we rnuk ', ust devise a truncation scheme,
e.g. , one similar to the Kirkwood approximation (27) at
the level of two-particle correlation functions, w ic
leaves one with two sets of coupled equations for P(N;t)

d P (N t). To make connection with what was saian
between Eqs. (27) and (31), we note that

gP, „(N;r)=cN, Q(r) .
N

(66)

FICz. 4. Time evo1ution of P(N;t) from (56) but with the ad-
sorbate maintained in quasiequilibrium as for the open squares
in Fig. 1.

In the spirit of (27) we are thus led to the following clo-
sure:

Figs. 2 and 3, which were obtained from the master equa-
tion (56), valid in the absence of diff'usion.

To study the influence of diffusion on the adsorption-
desorption ine ics, nk' t' either of the two approximation

I

P (N t) =— [P,„(N; r)]'/NN, P(N; t), 673n

and similar expressions for the higher-order correlation
functions. Equation (43) then reads

dP(N r)/dr =g (N 1 )P(N 1't) WOCONP(N' ) 1+C P (N;r)/NN, P(N;r)

+— [C,P2 (N;r)/NN P(N'r)] + g(N)P(N—;r)2n2 c

+ O'OCO(N + 1)P(N + 1; t ) 1+C,P2„(N + 1;t)/N, (N +1)P(N+ I;r)

+— [C,P2„(N+ I;t)/N, (N+1)P(N+ I;t)] +
2 c

(68)

Similarly we obtain from (46)

N 1)P (N——I;—r) —(N, N)P2„(¹t)]-dP (N t)/dt = Wo[2c(N —1)P(N —I;t)+(N, N-
2n

N(C +1)P (N t)+ — C, (C, +1)[P2„(¹t)]1 (c —1)
/NN P(N;t)+ .+ ~oCo

—[(N —1)P2„(N+I;t)+ ) o c. ] +2J [cN(N —1)P(N;t) —N, (C)+1)P2„(¹t)+ ] .

This set of 2N, coupled equations for P (N; r) and
P2„(N;t) then describes the time evolution of the adsor-
bate even if the density is inhomogeneous, as in the two-

Alth h still at the level of a mean-field
theory, the closure approximation (67) is the simp est
realistic scheme for the description of adsorption, desorp-
tion, and i usion ind d'ff '

in an inhomogeneous adsorbate. We
see in particular that for fast diffusion, i.e., large Jo, t e
last term in (69) ensures that P2„(N, )

remain in equilibrium at the remaining coverage, as anti-
d in the derivation of (64). On the other hand, in

ditionsthe absence of diffusion and under desorption con

I

P2&(N; t) develops accordmg to the second terterm in (69)
independently of P(N;t) but obviously affecting the evo-
lution of the latter in (68). If desorption and diffusion

d on comparable time scales, the set of equationsprocee on
(68) and (69) must be studied numencally, whic w
do in a future paper for particular systems, such as rare
gasases on metals and metals on metals.

V. OUTLOOK

Guided by the desire to develop an analytical theory of
the adsorption, desorption, and diffusion kinetics in inho-
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mogeneous adsorbates, we have reexamined the kinetic
lattice-gas model. We have proposed a time-dependent
generalization of the grand-canonical ensemble that leads
to a new hierarchy of coupled equations of motion for
probability functions (43)—(48). A simple closure approx-
imation (67) leads to two sets of equations (68) and (69)
that can be regarded as a generalization of the Becker-
Do ring droplet model. The limited usefulness of a
mean-field model (56) for surface kinetics is discussed.

It remains to study (68) and (69) numerically for partic-
ular systems, and to investigate better closure approxima-
tions than the one contained in (67). Furthermore, it
might be interesting to derive a set of coupled Fokker-
Planck equations from (68) and (69) to see whether one

can define an eff'ective (external) potential and a diffusion
coefficient, in analogy to (61) and (62), both most likely
time or state dependent.

It is known that next-nearest-neighbor and trio interac-
tions are important in most adsorbates. Furthermore,
for attractive interactions, second and third adsorption
layers start to grow before a monolayer is complete.
Such effects can be incorporated in the kinetic lattice-gas
model and should also be studied in this approach.
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