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We consider the critical transitions that occur as the force driving an interface through a random
medium is increased. The total displacement of the interface, and the incremental advance after
a small increase in force, diverge as the force approaches a critical depinning threshold. At the
critical force there is a power-law distribution of growth sizes. General scaling relations are derived
between the critical exponents associated with such transitions. These scaling relations are tested on
a model system —Auid invasion of a two-dimensional porous medium. Critical exponents are deter-
mined from simulations using finite-size-scaling techniques. Two universality classes are identified:
percolation and depinning. In both cases the calculated exponents obey the scaling relations.

I. INTRODUCTION

Two areas of great recent activity have been the study
of patterns formed by moving interfaces and of crit-
ical phenomena that occur at the onset of steady-state
motion. Models of interface motion describe growth
phenomena; including aggregation, deposition, crystal-
lization, magnetic-domain-wall motion, spreading, and
fluid invasion. Nonlinearities and randomness in these
growth processes lead to a rich variety of fractal growth
morphologies. Critical transitions occur at the onset of
motion in charge-density-wave (CDAV) conductors, flux
lat tices, fluid interfaces, magnetic domain walls,
model sandpiles, and earthquake faults. Unlike nor-
mal critical phenomena, no fine tuning of a parameter is

necessary to place these systems near their critical point
one need only drive them at a low rate. As discussed

by Bak and co-workers, ' many natural systems may be
in such "self-organized crit, ical" (SOC) st, ates.

In this paper we consider a class of models which com-
bines these two fields of interest: motion of an interface
driven by a force through a disordered medium. The
interface may separate magnetic domains with difI'erent

spin orientations or two diA'erent fluids or solids. The
driving force may be thermodynamic, as in the coarsen-
ing of supercooled magnetic or fluid domains. It may
also be external. In the case of fluid invasion, the exter-
nal force is the pressure driving the invading fluid into
the region of a porous medium which is occupied by the
displaced fluid. In magnetic systems, it would correspond
to an external field favoring one spin orientation over an-
other.

The idea that t, he onset of motion in a disordered sys-
tem could be a critical transition was first advanced by
Fisher in the context of CD'W conductors. The ba;
sic argument is readily extended to many othei cases,

including interfaces. If the spatial dimension is suFi-
ciently low, the interface will be distorted by the dis-
order until it reaches a local energy minimum. At zero
applied force there will be a rich hierarchy of metastable
states. The interface will initially be "pinned" in one lo-
cal minimum. As the force increases, that minimum may
become unstable, allowing the interface to advance to
the nearest metastable state. The number of metastable
states decreases with increasing force so that larger re-
arrangements of the interface are needed to reach a new
metastable state. It is natural to associate the scale of
rearrangements with a diverging coherence length. At a
critical depinning force, the last, state becomes unst, able
and the entire system evolves coherent, ly.

In the following sections we identify a number of crit-
ical quantities which describe the onset of interface mo-
tion as the critical force is approached from below. These
include the total advance of the interface, the incremental
advance after a small increase in force, and the distribu-
tion of incremental growths at the critical force. We then
develop general scaling relations between the associated
critical exponents. These results are applied to a specific
model system —fluid invasion of two-dimensional (2D)
porous media. Finite-size scaling techniques are used to
find the critical exponents for this system. Two univer-
sality classes are identified, percolation and depinning.
The exponents for both classes satisfy our scaling rela-
tions. Before presenting these results we briefly review
related work.

Substantial progress has been made in describing the
critical dynamics of CDW conductors. In contrast, to
driven interfaces, the CDW is always aA'ected by all im-
purities. Both the CD' order parameter and t, he dis-
order are defined throughout, the conductor. This leads
to a unique dynamic state above the depinning transi-
tion. Simulations and general arguments iiidicate that
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this state must be periodic. ' ' Values for the critical
exponents have been derived In mean-field theory and
through simulations. ' Measurements confirm that
depinning is a critical phenomenon, and in some
cases give exponents which agree with simulations. '"-'
However, thermal excitations and variations in CD&
amplitude appear to complicate the behavior in other
cases.

A driven interface interacts with a lower dimensional
subset of the disordered system at each instant. This sub-
set changes as the interface advances, and there can be no
periodic state at the onset of flow. There are several dif-
ferent classes of moving interfaces, depending on the di-
mensions of the interface and of t, he disordered region. In
magnetic domain wall motion' ' and fluid invasion
or segregation, the interface is initially d —1 dimen-
sional and moves through a syst, em wit, h disorder in all
d dimensions. In spreading, the disorder is confined to
the d —1 = 2 dimensional substrate and the fiuid in-
terface only intersects the disordered medium along the
one-dimensional "contact line. " The problem can be re-
duced to motion of the 1D contact lirie over the 2D sub-
strate. However, the elastic spectrum of the contact line
is aA'ected by deformations of the interface away from
the contact line. This may lead to a new universality
class. Other interesting possibilities include pinning of
dislocation lines or individual vortices where a (d —2)-
dimensional object moves through a d-dimensional disor-
dered system.

Bruinsma and Aeppli and Koplik and Levine have
independently considered a continuum model of a driven
magnetic domain wall. The interface was represented by
a single-valued function, f(x), giving the height above a
point x in the reference plane. The equation of motion
1s

= F + I'9' f + g r)(x, t),
dt

where F is the applied force, I' is an eAective elastic con-
stant, g is a random field with b-function correlations in
space or time, and g characterizes the efI'ective strength
of the disorder. Koplik and Levine noted that, this equa-
tion might, also describe fluid invasion with t, he two-spin
domains corresponding to the invading and displaced flu-
ids. This analogy is discussed further below.

Bruinsma and Aeppli used a scaling approach to study
Eq. (1). They concluded that disorder could pin the in-
terface for d ( 5. Koplik and Levine applied mean-field
theory, perturbation techniques, and numerical integra-
tion and reached difI'erent conclusions. In particular, they
found no pinning for d ) 3. They also found difI'erent
scaling for the interface width and for the force needed
to initiate motion in lower dimensions. Neither of these
papers considered the possibility of a critical transition
at the onset of interface motion.

Equations of mot, ion very similar to Eq. (1) have
been used in modeling growth. One of the most
widely studied is that of Kardar, Parisi, and Zhang
(KPZ). Their equation has an additional term propor-
tional to ~V'f

~

which represents a correction for lateral
growth. In addition, the disorder is annealed rather than

quenched —it is a random function of time rather than
of position. For annealed disorder there is no pinning
and thus no critical transition. The average force on the
interface is unimportant and may be removed from the
equations.

There are several ways in which Eq. (1) and the I(PZ
equation provide an incomplete description of fiuid inva;
sion or magnetic domain wall motion. The first is that
the interface shape is approximat, ed by a single-valued
function. Experiments show that, the interfaces are not,
single valued, 2 ' A related problem is that growth is
directed along a fixed vertical axis rat, her than along the
local surface normal. Finally, it is unclear whether con-
tinuum models produce the same dynamics as that for
discrete spins or pores. ' Indeed, Koplik and Levine
found an ultraviolet singularity in their model. Similar
divergences occur in CDAV's and fluid spreading.

The most widely studied model of fluid invasion, per-
colation (IP), ' overcomes these deficiencies. The pore
space is divided into larger regions called "pores" and
smaller "throats" which connect them. Segments of the
interface in each throat or pore are assumed to be inde-
pendent. If the invading Huid is nonwetting, a higher cap-
illary pressure is needed to penetrate narrower throats.
At a given pressure, some fraction of the throats will be
invadable, and the remainder will not. The statistics of
invadable throats is analogous to that of connected bonds
in bond percolation models. At a critical pressure P„
the fraction of invadable bonds reaches the percolation
probability and there is a connected path of passable
throats spanning the system. No further displacement
will occur because there is a continuous path of the invad-

ing Quid. It was argued that the same picture should de-
scribe wetting invasion, with the pores replacing throats
as the barriers to interface motion.

The fractal patterns with pore scale fingers predicted
by the IP model have been observed in many experiments
on nonwetting invasion. However, studies of wetting
invasion show coherent growt, h. The first indication
of when and why the IP model breaks down came from
experiments on square network models of porous media
by Lenormand and co-workers. They showed that in-
vasion by perfectly nonwetting fluids was consistent with
the IP model —each throat was invaded independently.
However, invasion by wetting fiuids occurred through dif-
ferent mechanisms, and invasion of neighboring pores was
not independent. The correla. tions tended to smooth the
interface, and the pattern did not appear fractal.

Recently, we have completed detailed studies of the
changes in the invaded pattern with the wetting prop-
erties of the invading fiuid. The lat, t, er are described
by the contact angle 0 at which a static quid interface
intersects the solid. By convention, the invading fluid
is loosely called nonwett, ing when 0 is near 180' and wet-
ting when 0 is near 0 . The generic phase diagram for
this system is illust, rated in I'"ig. 1. Vor each 0 there
is a critical pressure P, at which the invading fluid will
first span an infinite syst, em. There is a. critica, l cont, act,

angle, 0„which depends on t, he geomet, ry of the pore
space. For 0 ) 0, (invading fluid less wetting), there
is a percolation transition with increasing P and the in-
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FIG. 1. Typical (8, P) phase diagram for quasistatic inva-
sion. Solid (dashed) lines indicate P, for percolation (depin-
ning). A solid circle indicates 8, . Results are symmetric for
P: .- —P and 8: - 180 —I9 which corresponds to reversing
both flow direction and fluids.

vaded pattern is a self-similar fractal. Invasion for 0 ( 0,
is completely diFerent. The invaded region is compact,
and its boundary is a self-afFine fractal. The calculated
roughness exponent, 0 = 0.81, is consistent with re-
cent, experiments on wetting invasion. The change
in morphology for 0 & 0, is related to the presence of
an eFective macroscopic surface tension which controls
the motion of curved sections of the interface. An anal-
ogous quantity had been assumed in theories of viscous
fingerwidths in porous media 8' ' ' and by Koplik and
Levine [Eq. (I)j. However, there had been no micro-
scopic theory for its origin in wetting invasion, or for its
absence in nonwetting invasion.

The above studies also revealed divergences in the total
and incremental invaded volumes ' as P was increased to
P, . The behavior in wet ting and nonwet ting invasion was
markedly diFerent, but it was not possible to obtain accu-
rate critical exponents from dat, a for a single system size.
This lead us to develop the finite-size scaling approach
which is one main focus of this paper.

The outline of the paper is as follows. Section II de-
scribes the model porous media used, the growth algo-
rithm, and the critical quantities and exponents. The
following section contains derivations of general scaling
relations for interface motion. In Sec. IV finite-size scal-
ing techniques are used to determine critical exponents
for invasion percolation and depinning. In both cases, the
exponents satisfy the scaling relations. The final section
presents a summary and conclusions.

is 0, 49, and the phase diagram is shown in Fig. 1.
Other systems studied in Ref. 36 showed similar behav-
ior. The only exception is that a. direct transition from
percolation to faceted growth was observed in saiTiples
with little disorder (small range of radii). This transi-
tion is closely related t, o that found in recent work on
magnetic systems. 9

Since we are interested in the quasistat, ic advance of the
interface at pressures below P„viscous pressure drops
may be neglected. The advance of the interface is con-
trolled by the capillary pressure P = pK, where p is the
surface tension and K the curvature of the interface. We
model quasistatic invasion as a stepwise process where
each unstable section of the interface moves to the next
stable or nearly stable configuration in turn. The growth
algorithm is briefIy outlined below and described in det, ail
in Ref. 36.

A fixed pressure drop P is applied across the interface,
which consists of a sequence of circular arcs connecting
pairs of disks (Fig. 2). Stable arcs must have radius p/P
and intersect the disks at 0. Three types of instability are
identified: "burst, " —no arc with radius y/P intersects
both disks at 0, "touch" —an arc connecting two disks
intersects a third, and "overlap" —arcs between succes-
sive pairs of disks intersect, . As 0 decreases, the dominant
instability changes from bursts to overlaps. Bursts and
touches are local mechanisms which can be included in

percolation models. In co&at, iast, , overlap depends on
the configuration of adjacent arcs. As can be seen from
Fig. 2, overlap becomes more likely as the bond angle o.

between successive disks decreases. Sharp bends in the
interface are likely to become unst, able due to overlaps.
Thus overlaps smooth the interface and lead to coopera-
tive motion.

For the results described below, growth was initi-
ated from a fIat interface at the bottom of the system.
We checked that there was no anisotropy by growing
from interfaces with inequivalent orientations, and also
checked that starting from a self-affine interface (a one-
dimensional random walk ) gave the same statistics.

The pressure was adjusted so that a single segment of
the initial interface became unstable. This segment, of

$180 -u

II. APPLICATION TO 2D FLUID INVASION

Simple model 2D porous media were constructed by
placing disks of random radii r on a triangular lattice
with lattice constant a. Results below are for a highly
disordered system with r/a uniformly distributed be-
tween 0.05 and 0,49. The critical angle for this system

FIG. 2. Arcs between successive disks on an interface are
shown. The invading fluid is below the interface and 8 and
a are measured as indicated. For this case o = 120'. De-
creasing a or 8 increases the probability of overlaps. A touch
instability would occur if one of the arcs intersected the upper
left, disk before overlapping wit, h the ot, her are.
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the interface was advanced. Any resulting instabilities
were advanced in turn until a new stable interface was
reached. The value of P was then increased again until
a single segment of the new interface became unstable,
and the process was repeated until the system was filled.
The pressure at which the interface first spanned the sys-
tem was cakulated for each realization of the random
medium. In the limit L ~ oo this pressure approaches
the critical pressure P, .

Growth was characterized by the total invaded vol-
ume V&, the total external interfacial area S, , and the
volume and shape of regions invaded after each incre-
ment in P. Figure 3 shows examples of these individual
growths at (a) 0 = 25' and (b) 0 = 90', which are be-
low and above 0„respectively. In each case, the lower
interface was stable at a pressure about 1% below P, .

The black region shows the volume V invaded after a
single segment of the interface became unstable. Note
the dramatic change with 0 in the struct, ure of invaded
regions. For small 0, an entire segment of the interface
advances coherently. At large 0, each segment of the
interface advances independently forming a fractal pat-
tern characteristic of percolation. In many places the
invading fluid completely surrounds regions of the dis-
placed fluid. Such "trapped" regions were not allowed to
shrink further, since the displaced fluid is assumed to be
incompressible.

At any 0, the entire system must be spanned by the
invaded pattern at P, . We find a power-law divergence
of Vg asP~P, :

Vi oc (P, —P)

There is a related divergence iii the iiiean volume of in-

dividualal

growths:

8=25

~ $
' L

g 8=90
CQ
CO J

140a--

(V) oc (P, —P)

where the angular brackets denote an average over
growths in a range of pressures about P F.or fractal
growth the external interfacial area also diverges:

S, oc(P, —P) (4)

For compact growth S, remains of order the system size.
A measure of the degree of coherence, A, was defined as

the Cartesian width of the continuous segment of the in-
terface around the initial instability which advanced [Fig.
3(a)j. For 8 ) O„A saturates at a characteristic finger-
width as P ~ P, : Beyond this scale growth is uncorre-
lated. As 0 decreases to 0„ the fingerwidth diverges.
For all 0 & 0, the value of A diverges at P„—as expected
for a depinning transition, the entire interface advances
coherently. We show below that

where d is the Euclidean dimension.
The divergences of V~, S„(V &, and ( A & are

cut ofI' in systems of finite size, In the following section
we describe a finite-size scaling ansatz that allows us to
determine critical exponents from collapses of results for
difI'erent I. onto universal curves.

III. FINITE-SIZE SCALING ANSATZ AND
SCALING RELATIONS

A. Divergences as I' —+ P

In the last section we identified several lengths, areas,
and volumes that characterize the growth of the invaded
pattern. While they are expected to diverge at P, in an
infinite system, their values must saturate at some power
of the system size in a finite system. Figure 4 shows an
example of this saturat, ion for (V) at 0 = 25'. Results for
the largest system sizes follow the asymptotic power-law
divergence until typical growths are of order I . Then
they begin to fall below the asymptotic curve. All re-
sults for the smallest system, I = 30, are afI'ected by
finite size. The saturation illustrated in Fig. 4 makes it
diFicult to determine the critical pressure and exponents
accurately. In this section we introduce a finite-size scal-
ing ansatz to overcome this difhculty, and derive a set, of
scaling laws between critical expoiients. These relations
are summarized in Table I.

Our approach closely follows t, echniques used for equi-
librium critical phenomena and for other critical phenom-
ena such as percolation. The central idea is that the
only relevant length scales in the critical region near P,
are the system size and a single correlation length (,
which diverges as

FIG. 3. Volume V invaded (black) when a single arc be-
came unstable at the indicated 8 and (P —P)/P, ~ 0.01.
The length A is the Cartesian width of the advancing inter-
face segment [distance between arrows in (a)j. Both plots
show sections of L = 1000 systems.

Thus, appropriately normalized quantities should only
depend on the ratio of L to g. This ratio is usually
expressed " in terms of a scaling parameter



12 298 NICOS MARTYS, MARK O. ROBBINS, AND MAREK CIEPLAK

4—
V

O
hQ0

0.3

8=25

0.4

~ ~

~ 0

1"
l

lie o
o

t;o
I o
gO

gd' ..
~ Ii ~~ ~

I

0.5

I I

l
L= 1000

0.6

area, L" . This scaling requires g(z) ~z~
"I ~ "+'~

at large negative z. Substituting t, his expression into Eq.
(8), we find Vi oc L (P, —P)"'~+' "l. This equa;
tion and Eq. (2) provide our first scaling relation (Table
I): i/ = v(Dy + 1 —d). The physical meaning of our
result for V& is made clear by reexpressing it in terms
of (: Vi oc (L/() ( ~. Thus for fractal growth, V& is
the sum of (L/f)4 i independent growths with size of
order ( &. For compact growth (D/ ——d), Vt oc L( and
it = v. In either case, ( is a measure of the tot, al forward
advance of the interface, Not surprisingly, finite-size ef-
fects enter when the interface has advanced by a distance
comparable to the system size.

Analogous arguments can be used to determine the
scaling of the total surface area 5, of the external inter-
face of the invaded region: ~

FIG. 4. Plot of (V) vs P for 8 = 25', showing the finite-
size saturation at different system sizes. In order of increasing
height, L=30, 60, 120, 240, 480, and 1000. The dashed line
shows the power-law divergence for an infinite system.

so that functions are analyt, ic in P,
We begin by considering the form of the equation which

relates the total volume invaded to the pressure and sys-
tem size. At P, the invaded region will span the system.
The volume should then scale as I f, where Oy is the
fractal dimension characterizing the invaded region. For
nonwetting invasion this is t, he fractal dimension of in-
vasion percolation. " For wettirig invasion, growth
is compact and Dy must equal the Euclidean' dimension
d. The expected scaling of the mean invaded volume wit, h

I at P, will automatically be satisfied if

V, (P, L) = L 'g(L' "(P —P, )/P, ),

S,(p, L) = L 'g (L'/" (P —P, )/P, ),

where D, is the fractal dimension of the external in-
terface. As above, the asymptotic form of gg for
Li/ (P —P, )/P, « —1 can be determined by noting
that S, must scale with L" in this regime. This re-
quires gs(z) oc ~z~ f + "). In conjunction with Eq.
(4) we find a second scaling relation, cu = v(D, + 1 —d).
For fractal growth at low pressures, S, oc (L/()"—the sum of contributions from (L/()" i independent
growths with scale (. For compact growth with a faceted
or self-aFine interface, D, = d —1. Thus gg is constant
and S, oc I"

We next define a susceptibility y = L "dV, /dp, the
growth in response to a small change in pressure normal-
ized by the size of the boundary. Diff'erentiating Eq. (8)
we find

X(p L) = L "f(L' "(P —P )/P )

where g is a universal function whose argument vanishes
at P, .

The asymptotic form of g can be determined from sim-
ple arguments. For L /'(P —P, )/P, « —1 the charac-
teristic scale of forward growths should be of order (,
which is much less than L. If growth is started from a
d —1 dimensional boundary of the system, the tot, al in-
vaded volume at small P will scale with the boundary's

TABLE I. General scaling laws obeyed by critical expo-
nents for invasion and specialized forms for compact growth
where Dy ——d and D, = d —l.

where the exponent Bx —
D~ + 1 —d+ 1/v and f(z) =

P, dg/dz From the fo.rm of g in the limit Li/" (P
P,)/P, « —1, one finds f(z) ~z~

" . This guarantees
that y is independent of system size, and implies that in
the limit I ~ oo

x(p) —(p —p)

with P~ = vB„.
A'e now have a relation bet, ween the exponent, s charac-

terizing the divergences of the tot, al volume and suscep-
tibility. However, in our simulatiorss we are concer ised
with the scaling properties of the mean size of individual
growths (V). This quantity can be related to ii in the
following way. First note tha. t

General

@ = v(Dy + 1 —d)
~ = v(D, +1 —d)

P = vB = v(Dg —D )+1
Pz ——vBX = v(Dy + 1 —d) + 1

B = Dg ~1/v —D,
Bx = B+D, +1 —d

B ( Bd/DJ
r'Dy ——Dg + D, —1/v

Compact growth

P = 1+ v

P„= 1+v
B = 1 + 1/v

Bx=B
B=B

r'd = 2d —1 —1/v

I." ,(P, L) = "-' = Z V/ Z P
dP

=N(V)/Dp, (12)

where N is the number of growths in a pressure rarsge
[P —AP/2, P + D, p/2I. This number can be written as
N = 9, K P(dy/dP), where AP(dy/dp) is the cllange
in the fraction y of stable interface segments. Near P„
dy/dP is approximately constant and we may write
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LP dV] 1 dV] dP I"
N dP S, dP dy S, (13)

From Eq. (13) we see that (V) behaves like a different
type of susceptibility. It is proportional to the response
to a small change in pressure per unit interfacial area

Combining our scaling expressions for y and S, we find

(V) oc L h(L' "(P —P, )/P, ), (14)

(A ) = L hp(L'i'(P —P, )/P„).

where 8 = DI —D, + 1/v and h(z) = f(z)/gs(z).
When L ~"(P —P, )/P, && —1 we should find that (V) oc

(P, —P) & and is independent of L The .latter requires
h(z) oc ~z~ which is consistent with the asymptotic
forms for f and gs. Inserting this form into Eq. (14) we
find (V) oc (P, —P) D~. With Eq. (3) this expression
implies a scaling relation for p, p = Bv = v(DI —D, )+1.
For compact growth (wetting invasion), DI —D, = 1 so
that P = 1+v.

As noted above, the entire system advances coherently
at P, when growth is compact. The coherence length
A is a measure of the extent of growth along the inter-
face (Fig. 3). If all dimensions of growths diverge with
the same exponent, one expects that (A") oc (V) oc

(P, —P) ~ in the critical regime. Results for wetting
invasion show that (A") and (V) do indeed track each
other until they become comparable to the system size.
Given this proportionality, the two quantities must have
the same finite-size scaling form, implying

B. Distribution of growths at P
The divergence of quantities such as (A") and (V) at

P, is typically associated with a power-law distribution of
events in an infinite system. For example, the probability

p(V) of a growth of size V should scale as4s p(V) oc V
Such distributions are truncated in finite systems, and we
now consider finite-size scaling forms for them.

The distribution of growth volumes V in a system of
size L will be cut off at L ~. For growths much larger
than a lattice constant, the shape of the distribution
should only depend on the ratio of V to this cutoff. We
will show below that 7' ) l. In this case, the normaliza-
tion of p is dominated by small growths, and p(V, L) is
independent of L for V (( L ~. Thus

where p~ is a universal scaling function for the distribu-
tion of growths and the power of I multiplying p& is de-
termined by requiring that p(V) oc I o V ' for V « I

The exponent r' can be directly related to the expo-
nents describing the divergence of (V) as P ~ P, . Equa-
tion (17) implies that for P = P,

(V) = dV Vp(V/L I)

= L ' dyypi'(y),

where y = V/L 1. The scaling of (1') with L at P, is

also given by Eq. (14): (V) L . Equating exponents
we obtain

The universal funct, ion hp will not in general be the same
as h. However, it must have the same asymptotic behav-
ior for Li~" (P —P, )/P, && —1.

One can define analogous scaling relations for other
lengths which characterize individual growths such as the
radius of gyration, or the total width or height. We will
consider only one of these additional lengths, A, which
is the maximum Cartesian distance between points on
the initial interface which advance in a single growth.
This length differs from A because the growth need not
be contiguous. For example, a, fractal growth like t, hat
illustrated in Fig. 3 may wander back into contact with
the original interfa. ce. This gives a la.rge A, but A is small
because the interfa, ce did not a,dvance coherently. We
find that A diverges for bot, h percolat, ion and compact
growth, and that

DI(2 —r') = 8 = DI —D, + v (19)

or

r'Dg ——DJ + D, —v (20)

p(V) oc V ' exp( —V/( ').
Then we have

(21)

For compact growth, r'd = (2d. —1 —v ').
Equation (20) can be obtained in an alternative way,

where we use the distribution function p(V) for an infi-
nite system. In this case there must be a cutoff in p for
P & P, due to the finite correlation length (. The exact
form of the cutoff is unimportant and we use the common
assumption

(V) oc dV VV ' exp( —V/( ~) (22)
(A") = L h„(L'~"(P —P, )/P-, ).

gDg(2
—r') I

dy y exp( y) (23)

In compact growth, 8 = B and A cx A. For self-siiuilar
growth, A is bounded by the characteristic iadius of gyra. —

tion of the growths. From t, he definition of fractal scaling,
R~ oc V'~ ~ for individual growths. If (A") oc (R") then
8 = Bd/DI. In general, this is an upper bound for 8,
but we find the equality holds for the system discussed
in the next section. Note that, it holds in any case for
compact growt, h.

(p p) Dg v(2 —7 j (24)

From Eq. (3) we must have P = DI v(2 —r') Since.
P = Bv, we have 8 = DI(2 —r') as found above.

In the depinning regime (compact growth) we are inter-
ested in comparing lateral and forward growths. Hence
we also study the distribution of A". By the same argu-
ments we must have
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p(A", L) = L' p (A"/L").

with p(A") (A )
' when A « I. In principle, the

exponent 7' could be different for V and A". However,
we have noted above that (V) and (A") diverge with the
same exponent P. This combined with the scaling rela-
tion between r' and P guarantees that the distributions
have the same value of 7' in the system studied here.

The scaling relations derived in this section are sum-
marized in Table I. Note that at most three exponents are
needed to determine all others. These are most naturally
chosen as v and the bulk and surface fractal dimensions.
The latter are known for many growth processes, includ-
ing percolation and compact growth (Dg ——D, + I = d).
In such cases v is the only unknown exponent. We now
apply these scaling relations to wetting and nonwetting
invasion of 20 porous media.

IV. FINITE-SIZE SCALING RESULTS FOR
20 FLUID INVASION

In order to contrast wetting and nonwetting invasion,
we primarily examined growth for 0 = 25' and 179'
which are far below and above O„respectively. These
cases were compared to 0 = 40' and 90' to test for uni-
versality. For simulations at 0: 25 and 40 the sys-
tem's dimensions were La wide by +3La high, with
I = 30, 60, 120, 240, 480, and 1000. At 0 = 90' and 179',
the dimensions were I a x Io, with I = 30, 60, 120, 300,
and 600.

In the following sections, all lengths are expressed in

units of the lattice constant a, which is t, aken to be unIty.
Pressures are quoted in units of p/a. Values of P, and
all critical exponents are given in Table II. There and
below, error bars give the maximum range which is con-
sistent with the data. They do not include any estimate
of systematic errors.

A. Total volume invaded

A simultaneous fit of all scaling parameters is rat, her
complicated. Thus we began by finding values for P,
and Dg, using the fact that V~/L ~ is independent of
system size at P, [Eq. (8)). The value of v was then
found by collapsing data for all P and I, . We describe
this procedure for wetting invasion, and then quote the
results found in the same way for no@wetting invasion.

For the compact growth found in wetting invasion, Dg
should be equal to 2. Figure, 5 shows V~/L versus P for
0 = 25'. Note that the curves cross at the same pres-
sure, which thus corresponds t,o P, . Values of Dy below
1.95 gave noticeably poorer crossing of these curves, and
values of Oy & 2 are of course unphysical. From the In-
tersection of the curves wit, I1 D~ —2 we conclude t, hat,
P, = 0.4935+ 0.0005.

Enlargement, of Fig, 5 reveals that, results for the two
smallest systems (L=30 and 60) lie slightly below the in-
tersection of the other curves. Corrections to finite-size
scaling are needed to fit data for these small systems. As
seen in Fig. 4, results for L =30 and 60 begin to deviate
from the infinite system behavior at very low pressures.

TABLE II. Critical exponents from finite-size scaling fits for wetting and nonwetting invasion.
All values were determined independently except B~ which was calculated from Table I. The value
of D, was obtained from direct analysis of invaded patterns. Error bars indicate the maximum
range consistent with our data. Within these uncertainties, all exponents are consistent with the
scaling laws of Table I. Exact values for ordinary 2D percolation (Ref. 34) are also given, with @,
P, B, and r' calculated from Table I. Within our accuracy, exponents for nonwetting invasion equal
those for 2D percolation (Ref. 49).

Exponent

Dg

D,

Wetting invasion
8 = 25'

P, = 0.4935 + 0.0005

1.30 + 0.05

1.75 + 0.10

1.75+ 0.10

1.75 + 0.10

1.30 + 0.05

2.30 + 0.05

1.125 + 0.025

Nonwet ting invasion
8 = 179'

P, = 5.62 6 0.02

1.88 + 0.04

1.32 + 0.02

1.32 + 0.07

1.30 + 0.10

1.3 + 0.1

1.62 + 0.10

1.16 + 0.10

1.72 + 0.20

0.42 + 0.05

1.30 + 0.05

Percolation

1.9048

1.33

1.33

1i3116

1.3813
—"=1.6548

4' = 1.1936

1.78

0.44

1 e3113
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FIG. 5. Plot of log, o(U, /L ) vs P at 8 = 25' for L =
30, 60, 120, 240, 480, and 1000, in order of decreasing height.
Ideally, all curves should intersect at P = P, .

FIG. 7. Plot of log, o(U, /L ~ ) vs L'~'(P —P, )/P for 8 =
179' (nonwetting regime) with L ranging from 60 to 600.

0—
8=25

P, =- 0.4935

O
O

D
0:Lr 1000

I'

—200

.L=480-

—100

L=240

L (P —P,)/P,

FIG. 6. Collapse of data from Fig. 5 onto a universal curve
obeying Eq. (8). Values of the exponents are given and L
ranges from 120 to 1000.

We will see below that the discreteness of the lattice is
important at these pressures (P ( 0.4). For this rea-
son, only data from the four largest system sizes (L=
120 to 1000) will be used to determine critical exponents.

With reasonable values of P, and DJ in hand, the only
remaining free parameter is v. In Fig. 6 we show V, /L~
versus z = L /'(P —P, )/P„where the value of v

1.3 has been chosen to collapse all results onto a single
universal curve [Eq. (8)] at small values of the scaling
parameter z. Depending on the value of P, (0.4935 6
0.0005), the best fit for v ranged from 1.25 to 1.35.

Note that the curves associated with diferent system
sizes do not overlap at early stages of growth [large neg-
ative L /" (P —P, )/P, ). At these smaller pressures the
total forward motion of the interface is of order a lattice
spacing (L t V, 1). The finite-size-scaling ansatz does
not work in this regime because it, does not take into ac-
count the discreteness of the lattice. As the size of the

invaded region increases, lattice efI'ects become unimpor-
tant. We find that all curves have converged onto the
universal scaling function g for P & 0.4. This gives one
limit on the size of the critical scaling region.

Another limit is provided by t, he range of pressures
over which the density of instabilit, ies (dy/dP) is approx-
imately constant, . Variations in dy/dP clearly modify
the ratio between y and (V) in Eq. (13). They also add
additional pressure dependence t, o t, he scaling of other
quantities. We find that, dy/dP is nearly constant, for
P ) 0.4, but changes rapidly at, lower pressures. Hence
this condition gives the same limit, for t, he scaling regime:
P ) 0.4. We will restrict the data, plotted in most, sub-
sequent, figures to t, he scaling region.

Results for nonwetting invasion (0 = 179') were an-
alyzed in a similar manner. In Fig. 7 we show plots of
Vq/LD& versus Lt/ (P —P, )/P, for P, = 5.62, Dg

4& 1.896, and v = 3. These values of Dg and v equal
those for ordinary 2D percolation, and provide a good
collapse of the data. As above, bounds on Dy were ob-
tained by examining plots of V&/LD& versus P and re-
quiring that all curves have a common intersection. This
gave Dg ——1.88 + 0.04, which is consistent with results
obtained by direct analysis of the invaded patterns. The
calculated fractal dimension of the external interfaces
of these pat terns was D, = 1.32 + 0.02.

Similar scaling fits were obtained for the tot, al inter-
facial area. For wetting invasion, the results were con-
sistent with ~ = 0 —the value of S, saturated as P
increased. For nonwet ting invasion, the tota. l interfa. cia)
area diverged. Data from all system sizes were collapsed
onto a single curve using the value of ~ obtained from
exact 2D percolation exponents (Table II). Values of ~
below 0.37 or above 0.47 were clearly inconsistent with
the data.

B. Mean growth size

The exponents describing t, he mean growt, h size were
obtained in the same way as exponents for the total in-
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FIG. 8. Finite-size scaling collapse of data for (V) at 8 =
25' [Eq. (14)]. Scaling parameters are indicated and L ranges
from 120 to 1000.

FIG. 10. Finite-size scaling collapse of data for (A )25' [Eq. (15)]. System sizes range from L = 120 to 1000 and
values of scaling parameters are shown.

As noted above, we find that (A ) and (V) scale with
the same exponent P for 8 ( 0, . This was tested by

0—

R.
W —2V

tg0

8 —179
P, —5.62

H =21/16
v 4/3

a,p M
~Sop

o
oo ooo

0 O~
o

vaded volume. Values of B and P, were determined by
plotting (V) /L versus P and tuning B until all curves
intersected at a common point, P, [Eq. (14)]. For wet-
ting invasion we found B = 1.75+0.10 and for nonwetting
invasion B = 1.30 + 0.10. Results for P, were the same
as those found from the scaling of Ui (Table II).

Figures 8 and 9 show the universal curves implied by
Eq. (14) for 0 = '25' and 179', respectively. The values of
the scaling exponents and P, are indicated. Note that the
values of v used to collapse data for V& also collapse data
for the mean growth size. As discussed further below,
these values of v and the values of B quoted above are
consistent with the scaling relations of Table I.

C. Coherence length A

I I
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~
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X
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~ 4
~Q

I

8=25
7'= 1.125—
v:—1.3

Ca
X

)Agg

X

plotting the ratio (A ) / (V) in the scaling region below
P, . At 0 = 25', the ratio is very constant until finite-
size effects enter. The value of (A ) is about seven times
larger than (V), indicating that, growt, h is anisotropic.
Cascades of growth instabilit, ies propagate more easily
along the interface than perpendicular to it. Since (A'")
is larger than (V), finite-size effects become important at
a slightly lower value of the scaling variable z.

Figure 10 shows a finite-size scaling collapse of data
for (A~) with system sizes ranging from L = 120 to 1000.
The values of P„B, and v are the same as those used

—40 —20 log»(V/L )

L (P —P,)/P,

FIG. 9. Collapse of data for (V) at 8 = 179' with L rang-
ing from 60 to 600. Values of scaling parameters are shown.

FIG. 11. Finite-size scaling collapse of results for p(V, L)
at 8 = 25' for I, = 120, 240, 480, and 1000. Growths were in a
range of L ~ (P —P,)/P, from (a) —1 to 1 and (b) —5 to —3.
The indicated scaling parameters were used for both panels.
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FIG. 12. Finite-size scaling collapse of results for p(A', L)
Data were obtained at 8 = 25' far I = 120, 240, 480, and
1000 and growths in the range L'~" ~P —P, ~/P, & 1. Scaling
parameters are indicated.

FIG. 13. I'inite-size scaling of distribution of growths,
p(V, L), for 8 = 179' and L = 30, 60, 120, 300, aud 600. Data
were taken from a range of L ~"(P —P,)/P, between —1 and
+1. Scaling parameters are indicated.

for (V) in Fig. 8. The fit, is very good, as expected from
the proportionality not, ed above.

For nonwetting invasion, the value of (A~) at P, is

finite and scales with the fingerwidth. However, we find
that A diverges. The results satisfy Eq. (16) with 8 =
1.3 + 0.1, and the same v and P, found for other scaling
quantities. We confirmed that B was larger than B by
verifying that the ratio (A2) /(V) increased as P ~ P, .
The increase was consistent with the difFerence between
B and B calculated from ordinary percolation exponents
(Table II).

D. Distributions of growths

We erst consider the wetting case, 0 = 25'. Distribu-
tions for each I. were averaged over the same range of the
scaling parameter I t/" (P —P, )/P„so that (/L was the
same. Figure ll(a) shows p(V, L) for L /" ~P —P, l/P, &
1. Here ( ) L and the distribution is only cut off by
the system size. As implied by Eq. (17), all results col-
lapse onto a universal curve with r' = 1.125+0.025. Note
that power-law scaling is observed over nearly 6 orders of
magnitude in V. Figure 11(b) shows data from a pressure
bin a little below P, [—5 & It/" (P —P, )/P, & —3]. Here

( & L, and the sharp downward bend for large volumes
reflects the cutoff of growths larger than (2.

Figure 12 shows the universal curve for the distribut, ion
of A when L'/" ~P —P, ~/P, & 1 and 7' = 1.125. The fit
is excellent, demonstrating that the distiibutions of A

and V have the same exponent. This is expected from
the result that both scale with the same values of B and
V.

Figure 13 shows the scaled dist, ribution of growths for
nonwetting invasion (0 = 179 ) when L /" jP —P,

~
& l.

Scaling is again observed over almost 6 orders of magni-
tude. For this angle we find 7' = 1.30 + 0.05, which is
slightly larger than the value for 0 = 25'.

The power-law distribution of volumes evident in Fig.

13 is related to the dynamic scaling behavior found in
previous simulations of invasion percolation. Since a
single instability allows large connected regions to ad-
vance, there will be correlations in the invasion of nearby
sites. The probability that sites invaded at times sep-
arated by t are a distance r apart obeys power-law
scaling. It should be possible to derive relations be-
tween the exponents describing this scaling and the ex-
ponents (Table I) describing the distribution of growth
sizes and the fractal structure of the patterns.

E. Test of scaling laws

Table II summarizes our results for the critical expo-
nents which describe wetting (0 = 25') and nonwetting
(0 = 179') invasion. Exponents and error bars were ob-
tained independently from separate fits for each quantity
as described above. The quoted error bars indicate es-
timates of the maximum range t, hat, could be consistent
with our data. They do not i n cl ude systematic ei i ors.
Also included in Table II are exponents from sta.ndard
2D percolation. The exponents g, P, 8, and 7' have
not been calculated previously. The quot, ed values were
computed from the scaling relations in Table I.

All fitted exponents for nonwet ting invasion are consis-
tent with standard percolation values and with the scal-
ing relat, ions in Table I. For this reason we have used the
exact percolation exponents to collapse data, for 0 = 179'
in all of our figures. These exponents collapse data for
several independent quantities with a single adjustable
parameter P, . Since the exponents @, P, 8, and 7' are
new, agreement between fitted and calculated values con-
stitutes a successful test of our scaling relations. Limited
results for 0 = 90' are consistent, with the same expo-
nents, indicating that they are universal.

Previous work has indicated that the fractal dimen-
sion of invaded patterns is nonuniversal and may be
smaller than that of a percolat, ion cluster because of
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trapped regions. Although it, is clear that, trapping re-
duces the invaded volume, this does not necessa. rily re-
duce Dy. Trapping cannot change the external fractal
dimension B, , and should not, affect v. Inserting the
smallest calculated value, DJ ——1.82, int, o our scal-
ing relations gives 7' = 1.32 and 8 = 1.30. These values
are within our error bars, but, do not, give as good a col-
lapse of the data as the values used in Figs. 7, 9, and
13. Moreover, all of our direct, determina. t, ions of DJ in-
dicate that it is close to the usual percolation value.
Thus trapping does not appear to lower Dy in our growt, h

model. It would be interesting to determine whether the
exponents characterizing growth in the invasion percola-
tion model are consistent with a smaller value of DJ.

The exponents obtained for wett. ing invasion (Table II)
are also consistent with all scaling relat, ions. For instance,
the value of v would imply B = 1.77 + 0.06, while 7'
would give B = 1.75 + 0.05. Both values are in excellent
agreement with the value obtained directly.

A single optimum set of exponents for wetting inva-
sion was obtained by assuming that the scaling relations
are valid and varying the single parameter v to deter-
mine a best global fit. This gave v = 1.30. The re-
sulting exponents were used in all finite-size scaling plots
shown above. This single exponent fit, collapses data for
all quantities.

To test for universality in wetting invasion, data were
obtained for 0 = 40' and for different initial interfaces at
25' (inequivalent orientations and self-affine curves). All
results were consistent with the same set of exponents
used in the figures shown here. Thus it appears that, the
exponents for wetting invasion are also universal,

V. SUMMARY AND CONCLUSIONS

The results presented in the preceding section provide
a detailed picture of the critical behavior of advancing in-
terfaces in wetting and nonwetting invasion. The finite-
size scaling ansatz and scaling relations developed in Sec.
III allow data for all quantities and system sizes to be
collapsed onto universal curves given v, P„Dg, and D, .
Fitted values for DJ and D, agree well with exact results
for percolation and compact growth, and with values de-
termined directly from analysis of the invaded patterns.

Wetting and nonwetting invasion belong to diA'erent

universality classes. Nonwet ting invasion is well de-
scribed by critical exponents from ordinary percolation,
while the exponents for wetting invasion appear to be in
a new universality class. One obvious difference is in the
fractal dimensions of the invaded patterns, but struc-
tural differences affect other critical exponents as well.
For example, the value of P is smaller for nonwetting
invasion because trapping and overhangs tend to limit
growth (Fig. 3). Growths that start from a point in an
area where the displaced fluid is nearly surrounded by
the invading fluid are likely to hit a nearby section of the
interface before they can advance appreciably. The in-
fluence of morphology is directly reflected in the scaling
relations (Table I), which show that P —I is proportional
to the difference between bulk and external dimensions.

The real world is three dimensional and it is interest-

ing to ask how our results will change in higher dimen-
sions. Nonwetting invasion should still be described by
the invasion percolation model and percolat, iors critical
exponents. St,udies of invasion peicolat, ion in 3D show
that tra. pping is very unlikely and t, ha. t, t, he va. lire of' Dg
equals that, for ordinary pei'colation. '' Wetting invasion
has not been studied theoretically, but the higher connec-
tivity in 3D should favor coherent, growth and increase
0, . Indeed, recent experiments in glass bead packs ob-
serve an increase in 0, with t, he effective dimensional-
ity of the medium. "" Some insight, int, o 3D Huid invasion
may be provided by st, udies of the related problem of
driven magnetic domain wall motion. Work in progress
indicates that motion is characteristic of percolation for
strong disorder, and that there is a transition to compact
growth with a, self-a%ne interfa, ce as the disorder is weak-
ened. Preliminary data are consistent with the scaling
relations of Table I.

Another important extension of the work reported
here, would be to study t, he critical behavior for P greater
than P, where there is continuous How. Much of the
work on CDW conduction, " i5 i and some work on self-
organized critical phenomena, ' has focused on this
regime. Dynamic exponents can be identified which de-
scribe the divergence of a coherence length as P decreases
to P„or the relation bet, ween the excess pressure P —P,
and the mean flow velocity. It would be interesting to
establish the relation between these exponents and the
exponents for P ( P, listed in Table I. For example, by
analogy with equilibrium critical phenomena, one might
expect the exponent for the correlation length to be the
same above and below P, .

Note that percolation and compact invasion will ex-
hibit very different behavior above P, . The external in-
terface of a compact pattern is confined and can advance
in a steady manner. The external interface of a fractal
pattern spans the entire system at P, and can only ad-
vance by filling in disconnected regions. The behavior
above P, will depend on whether growth remains fractal
or becomes compact at large length scales. If t, he growth
remains fractal, the interfacial area increases continually
and there is no steady-state flow velocity. This situation
arises in invasion by a less viscous Quid, where viscous
fingering produces large-scale fractal structure character-
istic of diffusion limited aggregation. 6 If the invaded
pattern becomes compact at large scales, the width of
the interface and the mean flow rate will saturate at
steady-state values. This situation arises when the in-
vading Quid is more viscous so that long-range viscous
forces suppress Quctuations from a flat interface. In both
cases the fractal structure found at P, remains at short
length scales, and the new scaling behavior begins above
a crossover length, The crossover length must diverge as
P decreases to P„and should correspond to the dynamic
correlation length. The nonlocal nature of viscous effects
makes it difIicult to construct realistic models of fluid in-
vasion, but simpler models of the dynamics may provide
insight. Examples of such models are driven magnetic do-
main wall motion or related continuum equations, such
as Eq. (I) with quenched disorder.

We briefly mention one example of a possible connec-
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tion between invasion above and below P, . The observed
power-law spectrum of growths can naively be related to
temporal Quctuations. If we assume a constant Row rate
during invasion, the time T~ needed to invade a region of
volume V is proportional to V. The distribution of inva-
sion times scales simply as p(Tv) T ' . This implies
a power-law noise spectrum.

Power-law distributions of growths and noise are also
characteristic of self-organized critical phenomena. The
major difference is the presence of quenched disorder in
moving interface, CDW, and related systems. In SOC
models, disorder is produced dynamically from the ini-
tial conditions, randomness in dropping grains, etc. An
important open question is how the nature of the disorder
aH'ects the observed critical behavior.

Note added in proof The r.elation between 7', Df, D„
and v given at the bottom left of Table I has been derived
previously from very different arguments by Gouyet. 5s

We thank the author for bringing this work on invasion
in a gravational field to our attention. A minor difference
is in the quoted numerical values of 7'. Gouyet assumed
D, = 4, which gives v' ~ 1.53. Our simulations are
clearly inconsistent with these values of D, and 7', and
recent work by Birov}jev et al. confirms that D, = 3
for invasion percolation.
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