
PHYSICAL REVIEW B VOLUME 44, NUMBER 22 1 DECEMBER 1991-II

Domain scaling and glassy dynamics in a one-dimensional Kawasaki Ising model

Stephen J. Cornell*
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

Kimmo Kaski
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

and Tampere University of Technology, P.O. Box 527, SF 3310-1 Tampere, Finland

Robin B. Stinchcombe
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

(Received 14 May 1991)
The one-dimensional spin-exchange kinetic Ising model is studied using approximations based on the

motion of single spins. This model exhibits domain-scaling behavior after a deep quench to low temper-
atures, with the same scaling exponent ( 3 ) as in higher dimensions. Under slow cooling, the kink densi-

ty of this system is predicted to freeze at a value proportional to ~ ' ', where r is the inverse cooling rate
and z is the dynamic critical exponent (=5) for "natural" cooling programs. The results of Monte Carlo
simulations are found to compare favorably with these predictions. The residual temporal behavior in a
frozen nonequilibrium state is studied in the short- and long-time regimes, approaching asymptotically a
stretched-exponential form.

I. INTRODUCTION

There is much physical interest in the behavior of sys-
tems when not close to thermodynamic equilibrium. One
example of such a situation is the domain scaling ob-
served in many systems, such as binary fluids or magnetic
systems, after rapid cooling, where a characteristic length
scales with time to some exponent. ' Another example is
the departure from equilibrium and freezing of a none-
quilibrium state when a liquid is cooled at a finite rate.
The characteristics of the "glassy" state formed by such a
process depend strongly on the history of the system, in
particular upon the cooling rate, and exhibit anomalous
behavior such as stretched-exponential (Kohlrausch-
Williams-Watts) response functions and non-Arrhenius
(Vogel-Tamman-Fulcher) divergence of relaxation times.
Very few analytic results exist in this area due to the
technical difticulty in treating such liquid systems.

Just as the Ising model has helped our understanding
of static critical behavior, studies of kinetic Ising models
have been very fruitful in describing dynamic phenome-
na. However, while exact analytic results exist for the
one-dimensional single-spin-flip (Glauber) (Ref. 3) model
for domain scaling ' and freezing, ' as well as for dy-
namic critical behavior, the equations of motion may not
be solved either for dimension d ~ 2, for a system in a
magnetic field, or for the case of spin-exchange
(Kawasaki) (Ref. 8) dynamics. No reliable approximation
schemes exist in many cases, either, so the interest in Is-
ing models has most recently been due to their suitability
for Monte Carlo simulations.

In this paper, we consider domain scaling and glassy
dynamics in the one-dimensional kinetic Ising model with
Kawasaki dynamics. We use approximations based upon
consideration of the most important physical processes,
which were first used to reproduce the dynamic critical
exponent, and we compare the predictions with Monte
Carlo simulations. This model corresponds to model B in
the terminology of Hohenberg and Halperin. ' The

domain-scaling exponent of model 8 has recently been
disputed, but a renormalization-group (RG) argument by
Bray" has predicted a value of —,'. This argument as-
sumes the existence of a scaling form and the validity of
an underlying RG transformation. The value of —,

' for the
scaling exponent is explained physically for d ~ 2 by sur-
face dynamical arguments. ' ' However, in one dimen-
sion, the inapplicability of such a physical picture and the
lack of a finite-temperature critical fixed point means that
di6'erent behavior might be expected.

The Kawasaki model is appropriate as a lattice model
of a binary Quid. For ferromagnetic coupling values, it
possesses an energy barrier at low temperatures, and so it
might be expected to display some characteristics of a
glass transition when cooled.

The structure of this paper is as follows. After defining
the Hamiltonian and dynamics for the model, we develop
an approximate equation of motion based on spin-motion
arguments. We apply this equation to the case of an in-
stantaneous quench and to slow cooling. We then com-
pare the predictions with the results of Monte Carlo
simulations. Finally, we consider the dynamical proper-
ties of a far-from-equilibrium state at low temperatures.

II. THE MODEL

The model system is a one-dimensional Ising chain
with uniform nearest-neighbor coupling constants, de-
scribed by the Hamiltonian

X Ji~i+1

The system is subject to spin-exchange dynamics, where
the only process that can occur is the exchange of two an-
tiparallel nearest-neighbor spins. The order parameter of
the system does not change under such conditions. Such
dynamics is appropriate for the Ising system to be a mod-
el of lattice gases and binary alloys.

The master equation for the Kawasaki spin-exchange
dynamics is
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(b)

(2)

where I' is the probability of the system being in state

I cr } at time t, p; is the operator Gipping the ith spin, and
8', is the probability per unit time for the ith spin to ex-
change with the (i+1)th. The factor (1 cr, o—;+, ) en-
sures that the two spins are antiparallel.

The dynamics of this system is afFected qualitatively by
whether the couplings J are ferromagnetic or antiferro-
magnetic. If we perform a gauge transformation
cr; ~cr;'=( —1)'cr;, the dynamics allows nearest-neighbor
parallel pairs to Hip, and so, in the antiferromagnetic
case, the dynamics is no longer activated. An antiferro-
magnetic Kawasaki chain is in the same dynamic univer-
sality class as a Glauber chain. ' ' In this paper, we
shall consider the ferromagnetic case only.

The exchange rates 8'; are constrained by detailed bal-
ance, through this is not sufticient to constrain the rates
fully. We make the common choice

FIG. 1. (a) Condensation or evaporation and (b) spin
diffusion for a Kawasaki chain.

18'; =— 1 —tanh
2 2

(3)

III. SPIN-MOTION ARGUMENTS

for a process where energy changes by 4, in natural time
units.

Under these conditions, the equation of motion of the
spin-spin correlation function, obtained by multiplying
Eq. (2) by o Jerk and tracing over the spin configurations,
contains four-spin-correlation functions, as well as two-
spin functions. In general, the equation of motion for an
nth order correlation function involves (n +2)th -order
correlation functions, and so we have an infinite hierar-
chy of equations. This form occurs whatever choice is
made for the functions 8';. For this reason, the model is
not exactly solvable.

The origin of the higher-order correlation s is clear; the
dynamics proceeds through the motion of free spins
(three antiparallel spins), after evaporation (see below),
and so four-spin-correlation functions are needed to de-
scribe the growth of correlations.

Nevertheless, the dynamic critical exponent z has been
found by linear response' and real-space renormaliza-
tion. ' The conserved-order-parameter system obeys the
conventional theory of critical slowing down, ' although
the kinetic coefticient diverges in an Arhennius-like
way due to the activation energy, giving
z =3(conventional) +2(Arrhenius) =5.

gy. This spin then performs a random walk until it con-
denses with another single spin or a domain wall. This
we call spin diffusion (D).

We describe the relaxation towards equilibrium in
terms of these processes; in particular, we treat the
motion of single spins as interacting random walkers. '

Such arguments were used to reproduce successfully the
value of the dynamic critical exponent for the Kawasaki
chain by Cordery et al. In principle, the arguments
were thought to give a lower bound to the critical ex-
ponent, although, in fact, in the case of the G&auber
spin-Hip system, they reproduce the exact value in
numerous cases. ' However, in the case of a Kawasaki
chain with spatially modulated coupling constants, the
domain-wall arguments' obtain an exponent higher than
the result obtained by other methods. ' ' Thus, the va-
lidity of such arguments as approximations might be
called into question. The use of these arguments in our
context is a useful test of their validity.

We choose to characterize the system by its kink densi-
ty, which is a measure of the average inverse domain size.
In the thermodynamic limit, the constraint that the mag-
netization be constant does not afFect the static equilibri-
um behavior, and so the equilibrium kink density at low
temperatures is

K,q
=

—,
'

( 1 —( cr; o; + &
) ) = exp( —2PJ) .

Although the equation of motion for the correlation
function cannot be solved exactly, the underlying physi-
cal processes are very simple (see Fig. 1). The first type of
process is spin euaporation (E), where a spin with only one
antiparallel nearest neighbor splits ofF from its domain.
This requires an amount of energy 4J. The reverse pro-
cess is spin condensation (C). The other type of process is
where a spin with two antiparallel nearest neighbors ex-
changes with a nearest neighbor, with no change in ener-

When the spin-motion arguments were applied to criti-
cal dynamics, processes were considered that led to de-
struction of domains only. Since we are interested in the
slow departure of the system from equilibrium under
slow cooling, we need to know about the processes that
lead to domain creation as well. At low temperatures,
the system is in a state consisting of long domains. The
dynamics is mediated by single spins evaporating from a
domain wall and then performing a random walk. The
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density of such single spins at equilibrium is

((1—cr;o;+, )(1—o;+,o;+2) ) =g
while the domains are of length g, so there is an average
of I/g such single spins per domain. Most of the spins
that evaporate simply return to their original domain
wall ~ Some will reach the next domain wall, however,
and this leads to the original domain moving through one
lattice spacing. Although the net kink density does not
change in one such process, as a result of many of these
processes, the domain performs a random walk until it
meets and annihilates with a neighboring domain wall.
This process is the one considered in Ref. 9. Qn the other
hand, a single spin may meet and annihilate with another
single spin. The result of this is to create a new stable
domain

We shall now calculate the rates for these two types of
process. Then we shall use these rates to derive an ap-
proxirnate equation of motion for the kink density, which
we may then solve under a slow quench to obtain the
freezing behavior.

A. Domain annihilation

If a spin splits off from a domain wall, let the probabili-
ty that it first reaches a site L lattice spacings away before
returning to the origin (and recondensing) be pI . If the
spin reaches (L —1) before returning to the origin, it may
either move next onto L (with probability —,

' or onto
(L —2) (also with probability —,

' ). If the latter occurs,
there is a probability (1 —pI. —,) that it returns to (L —1)
before returning to the origin, and the process repeats.
The probability that the spin arrives at L is obtained
from the total number of walks where the spin reaches
the (L —l)th site 1,2,3, . . . times before returning to the
origin, and then hops onto L:

n

B. Domain nucleation

If a spin walks from one domain wall and then meets
another domain, the kink density does not change on
time scales coarse grained over the single-spin lifetime.
The only way that new, stable domains can form is if two
single spins collide and coalesce. The colliding spins may
have been emitted from the same, or from neighboring
domain walls. Since the spins rarely travel very far from
their place of origin, however, it is clear that the contri-
bution from the former is greater than from the latter by
a factor —1/L

To obtain the probability of such a process happening,
we consider a single spin performing a random walk on a
lattice, starting at position 1, with an absorbing wall at
the origin. A second spin will then be introduced at time
t ' -co

' . Since the first spin has only a small chance of
reaching the far domain wall, the approximation that the
domain is of infinite size will not substantially affect the
result. If the probability of the spin being at site I at time
t is pI ( t), the equations of motion are

PI, +pI +,—2pI for I 1

0 for I =0 (&)

The solution of this master equation with initial condi-
tion

pi(0) =61

is
1

p&(t) =2I sin(qm ) sin(qlm )
0

X exp[ —2(1—cosq)t]dq . (10)

with thermally creating a single spin. A is a number of
order unity, which is expected to vary slowly with the
probability distribution of domain sizes.

PL= g 271 —i
n =0

PL —1

2
PL —1

PL —1+ 1

For t ))1, I » 1, this solution approaches the form

The solution to this equation with boundary condition
p1= 1 is

1
PI 2

1/2
12 2

l n. exp
4t

Thus, for long domains, the spin rarely reaches the next
domain wall ~

If the spin reaches the next domain wall before return-
ing to its original wall, the domain has then moved
through one lattice unit. On the basis of the central limit
theorem, as L —+ ~, a total of order L such processes
must occur before the domain reaches and annihilates
with the next domain wall, if this is a distance L away.
Assuming each domain decays independently, and put-
ting the average domain length L —1 /K, the rate of de-
cay of kink density is therefore

= —A A@K .E3

annihilation

where ~= exp( —4pJ) js the Arrhenius factor associated

g f,p&(r') 0: (r')
I

(12)

where fI represents the probability of the second spin
reaching site I.

The probability of the second spin being introduced in
the interval t ~t +dt is co exp( cot)dt, so the —total prob-
ability of any given spin colliding with a second is ~ cu

The rate of domain nucleation is then

A second spin is introduced at time t ~ Since the prob-
ability of the second spin remaining is very small, the
probability of the first spin interacting with it is very
small, and can be treated by perturbation theory. The
second spin will then perform a random walk similar to
the above, and will survive for a time && t . The spin will
also penetrate only a small distance into the lattice. The
probability of the second spin interacting with the first is
then simply proportional to something of the form
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=Bcoco K (13)
dK =co(co' —K )K .
dt

(15)

nucleation

where B is a number of order unity.

C. Equation of motion for the kink density

The two processes of nucleation and annihilation occur
only rarely. We therefore expect them to occur indepen-
dently, i.e., without interacting, to a good approximation.
We make the assumption that there is just one relevant
length scale in the problem, the average domain size,
which we identify as o- 1/K.

Combining the above two results, Eqs. (7) and (13), we
expect the equation of motion for the kink density to be
of the form

dK = —AcoE +Bc@ i E
dt

(14)

The numbers A and B depend weakly on the distribution
of domain sizes. At equilibrium, we have K, =co'
[ = exp( —2PJ) ], so we equate A =B. We also absorb the
coefficient A into the units of time, and write

Notice that, at low temperature, both of the terms on the
right-hand side scale like co o- g, i.e., both terms give
rise to equilibration with dynamic critical exponent z =5.
Although the unit of time is poorly defined, it is clearly of
the same order as the attempt time for spin exchange.

Equation (15) contains the competing terms most
significant at low temperatures. There are other process-
es which can occur, such as condensation of two spins
emitted from two different domain walls, but these may
be shown to be smaller than the ones described above by
at least a factor O(K). It is also important to point out
that the central limit theorem has been used to obtain
both terms, and at length scales not too great, we there-
fore expect further corrections, smaller by a factor 0 (K).

It is worth noting that, in the arguments used above, it
was assumed that whenever a spin arrives next to a
domain wall it is always absorbed. In the Kawasaki dy-
namics, domain walls are not perfectly absorbing but the
above arguments are expected to reproduce the correct
scaling behavior at low temperatures.

The solution to (15) when co is a function of time is

K(t)=
exp f co"2(t')dt'

0

K (0)+3 co(t') exp 3 co ~ (t")dt" dt'
0 0

(16)

Three cases are interesting.
(i) For an instantaneous quench from equilibrium at

high temperature to low, constant temperature, with
K (0)»co'i,

exp(co5 "t)Kt=
[K 3(0)+co ~ [exp(3co ~ t) —1]]'

Here co is the Arrhenius factor at the final temperature.
In the region K co ~ (0) && co

~ t && 1, this gives

This is reminiscent of the domain scaling observed in a
d ~2 conserved order parameter Ising systems' after a
quench from the one-phase to the two-phase region. If a
conserved-order-parameter system is subject to a deep
critical quench to the two-phase region, the correlation
function at separation x is found to be a function of the
sclaing variable (x/t ~ ). In our system, however, we
have not quenched through a phase transition; the equi-
librium corresponds to very long domains, so the equili-
bration requires spins to Aow through domains in a way
reminiscent of phase separation in higher-dimensional
systems. In d &2, the exponent —,

' (Ref. 4) is interpreted

physically by Huse, ' after Lifshitz and Slyozov, ' by ar-
guments about the growth of droplets. In one dimension,
it is explained by our spin-diffusion arguments.

(ii) If a low-temperature system is annealed at a higher
temperature [but still with J/kT »1, so as to ensure the
validity of (15)], the solution predicts an initial domain

shrinkage with

K ~ exp(co5'2t ) (19)

for the regime 3co t « ln, 0[K (0)co ~2]. This law
expresses the initial nucleation of domains. However, the
"kink density" in the above equation describes stable
domain walls only; in this region, we expect the popula-
tion of single spins to be large in comparison to the kink
density, and the thermal creation of these spins will mask
the contribution to the kink density from stable-domain
nucleation. This behavior does not last very long, and for
g —+ oo,

K(t)=co' +0( exp( co ~ t)) . — (20)

co(t)=cooexp
7

(iii) For a slow, continuous quench to zero tempera-
ture, the system may freeze. By using an effective time

u= ~ t' dt', (21)
0

it is possible to show, in general, using (15) or (16) that
the system freezes [in the sense that K (t) does not evolve
to zero] if and only if the effective time remains finite as
g~ oo.

We choose a "linear" cooling program so that the Ar-
rhenius factors which control the system behave ex-
ponentially in time:
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Under these conditions, the cooling "rate" is constant in
time, u ( ~ ) is finite, and the system freezes.

The full solution to (15) in this case is

—3/2 exp( 6 r[~5/2 5/2] )

—1/3

what would be expected from simple arguments, where
the system is assumed to freeze at the point where the
equilibriation rate r, =g equals the cooling rate
r, =d ln jdt. As observed in a Glauber chain with spa-
tially modulated coupling strengths, the freezing rela-
tion may be altered by different choices of the cooling
program, where r, becomes a function of time.

~o
+3rf exp[-,'r[co5/2 —(~')5/2]Id~' (23)

IV. MONTE CARLO SIMULATION

The term corresponding to the memory of the initial con-
dition quickly decays, and, for t ))~, the solution may be
written in the following form:

—1/3
IC =T ' 3(—') exp(co 7. x—)dx

(24)

(25)

where g is the instantaneous value of the equilibrium
correlation length, and

const as x ~0,(x)- '
x' as x~~ . (26)

The kink density therefore freezes like ~ ' . Note that
the parameter g changes in time. The same scaling form
would not occur if a cooling program were used where co

does not vary exponentially in time. In Fig. 2 the above
form for the kink density is plotted as a function of tem-
perature. These plots are, in fact, for values of ~ where
the long lengths, low-temperature approximation breaks
down, but serve as qualitative predictions for the freezing
behavior in this region. The freezing exponent —,

' = 1/z is

Extensive Monte Carlo simulations were carried out to
verify the above behavior. The system relaxes very slowly
in time due to the rapid decay of the activation factor,
exp( —4PJ). A vectorized routine was used, exploiting
the fact that the lattice may be split into three indepen-
dent sublattices of bonds. The probability per sweep of a
spin exchange was taken to be equal to W~ of Eq. (3). In
principle, such a routine introduces artificial correlations
between the motions of single spins, but these correla-
tions should be of order ( —,

' )', where I is the separation of
the two spins. This was found not to be significant by
checking that the results of two quenches using the above
rates matched those using probabilities scaled down by
some factor a and a factor I/a more sweeps.

The size of the system (3072 spins), using periodic
boundary conditions, was judged to be sufhcient for no
finite-size effects to be important, since the longest
domain size obtained was about 50 lattice units.

A. Domain growth scaling

The spin-diffusion arguments presented above predict
that, after a deep quench and a short transient time, the
domain size scales like t' . This was simulated by start-
ing with an entirely random configuration (but with total
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FIG. 2. Kink density as a function of temperature for three
values of the cooling rate, evaluated from expression (24) (solid
lines) and equilibrium value (dashed line).

Time (NCS/spin)

FICr. 3. (Domain length) as a function of time, from a simu-
lation of a deep quench to a low temperature.
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FIG. 4. Spin-spin-correlation function as a function of re-
duced distance x/t' ' at five different times following a deep

uench.

magnetization zero, as the low-temperature behavior may
be affected in off-critical simulations '), and then allowing
the system to evolve at some low temperature.

Observing this behavior in one dimension is, in fact,
more difficult than in d ~ 2 because the upper limit of the
scaling region is bounded by the value of the correlation
length [—exp(2I3J)], while in spinodal decomposition, '

the system has an infinite relaxation time. If the correla-
tion length is taken to be large, the Arrhenius factor
exp( —4') becomes very small indeed, and so a very
large number of time steps is necessary to obtain a wide
scaling region. In two dimensions for instance, it is typi-
cal to take PJ =2P,J=0.9, whereas, in this simulation, it
was necessary to take PJ=2.05, giving equilibrium
domain length of about 60. A total of 2X10 sweeps
were performed for ten independent initial conditions and
seeds for the random number generator. This required
120 h of CPU time on a Stardent Titan minisupercom-
puter.

The domain-length cubed is plotted as a function of
time in Fig. 3. The linearity of the plot (to within the er-
ror bars) is striking, in confirmation of the above predic-
tion. The error bars were estimated from the statistics of
the ten independent runs.

In Fig. 4 the spin-spin-correlation function is plotted as
a function of scaled distance x/t' . The full correlation
function shows the same scaling behavior as the kink
density, just as is observed in higher dimensions. The
scaling form is seen to be valid over a factor of 20 in time.
Although the above arguments are formulated for the
kink mode only, they are verified for all domain sizes.

B. Freezing
The behavior under continuous cooling was investigat-

ed by starting with an initially random configuration with

magnetization zero, corresponding to T = ~, and chang-
ing co= exp( —4PJ) in discrete steps. After each step, a
number n, (in the range of 250 —5 X 10 ) of sweeps was al-
lowed at the new temperature, and then m was changed
by a factor of 0.9. The entire simulation required several
hundred hours of CPU time.

In Fig. 5 the kink density is plotted as a function of
temperature for nine di6'erent values of n, It is interest-
ing to note that the kink density lags behind its equilibri-
um value for most of the cooling process, even well before
the freezing occurs. This lag is greater for faster cooling.
The freezing is still fairly abrupt at slow cooling. The er-
ror bars are estimated from the statistics of the indepen-
dent runs.

The values of the frozen kink density are plotted as a
function of ~ on a log-log scale in Fig. 6. The points do
not lie clearly on a straight line. The straight line is one
of gradient —I /z = —0.2 (predicted by the analysis), and
is a guide to the eye only. The best fit to the data gives a
gradient —0. 182+0.02. The reason for this discrepancy
is that the lengths are not suKciently long for the central
limit theorem results to be exactly applicable; we expect
systematic corrections of 0 (K). It is straightforward to
check that the deviations of the points in Fig. 6 from the
line are of this order. Ideally, results would be obtained
for slower cooling, but this is simply not feasible given
the CPU times that would be required (approximately
500 h for a value of K lower by 4 ' ).

The same data is plotted in the form K versus ~ ' in
Fig. 7. This data approaches a straight line through the

0.5

I/l
C:
QJ

C:

1

Temperature j/k

FICx. 5. Kink density as a function of temperature during
simulations of nine different cooling rates. The dashed curve
corresponds to thermal equilibrium. The lower curve is the
density for single spins during the cooling.
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kink density and has also been corrected to allow for the
fact that, for the temperatures shown, the equilibrium
value —,'(l —tanhPJ) differs from the approximate vlaue

exp( —2PJ) in (24). The data shows a slower crossover
from equilibrium to the frozen value than the approxima-
tion. Data for much slower cooling rates (and much
lower temperatures) would be necessary for a more
searching comparison to be made. Given the significant
deviations from the asymptotic long-length and low-
temperature regime of this data, an explicit fit to a scaling
form such as (25) was not attempted.

V. SHORT-TIME AND LONG-TIME RELAXATION
AT ZERO TEMPERATURE

I

10

In T (arb. units)

FIG. 6. ln(frozen kink density) as a function of ln(w) for the
cooling processes shown in Fig. 5. The dotted curve is a guide
to the eye only with the gradient —0.2 predicted for asymptoti-
cally large ~.

The Kawasaki system is qualitatively different from the
activated Glauber systems considered elsewhere ' in that
the system is still capable of relaxing at zero temperature.
The asymptotically long-time behavior of this system at
zero temperature is most easily simulated when the struc-
ture still contains a large number of single spins. We
treat instantaneous cooling as the limiting case of rapid
cooling, where the system will fall out of equilibrium at
high temperature. The case of a two-dimensional
Kawasaki system quenched to zero temperature was
studied briefly by Sadiq and Binder, though they did
not discuss the properties of this state beyond stating that
its domain size was about ten lattice units.

origin as the origin is approached, verifying the asymp-
totic form.

Figure 8 shows a comparison of the simulation data
with the form in (24) for the three slowest cooling pro-
grams. This curve has been fitted to the final value of the

0.1

I I I I
I

I I I I

L

(b)

0.05—

(c)

0
0 0,05

I I I I I I I I I I I I I I I I I I I I I I I I I I

0.10 0.15 0.20 0.25 0.30

T ~~ (arb. unitsj

0
0

Temperature J/4

FIG. 7. The same data as in Fig. 6, plotted as a function of
—1/5

FIG. 8. Fit of the approximate form (24) to the data for the
three slowest cooling procedures in Fig. 5 (solid line). The
dashed curve corresponds to thermal equilibrium.
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If the system undergoes a deep quench to a very low
temperature, the behavior may be split up into four suc-
cessive distinct regions: (i) unstable decay of clusters of
three or more kinks (energy reducing), (ii) diffusion and
condensation of the free single spins present, (iii) thermal
evaporation of new single spins, and (iv) domain growth
and approach to equilibrium.

If the quench is to sufficiently low temperature, (iii)
and (iv) (dealt with earlier in this paper) may be separated
arbitrarily in time from (i) and (ii). For the conventional
Kawasaki Hip rates (3), (i) and (ii) occur on similar time
scales and are usually described as the "transient region. "
However, we are at liberty to choose the relative rates of
D and of C/E processes independently, so that, by a
different choice, (i) and (ii) may be made to occur on
diFerent timescales.

In this section, we first investigate the early-time be-
havior (i). Secondly, we investigate the relaxation of the
structure (ii) due to the surviving single-spin density. The
results for (ii) are valid for slow as well as instantaneous
cooling.

Using the vector notation

Il= n3

the equation becomes

dll =Ma,
dt

where the matrix M is

0 0 0 2 2 2 2

0 —1 0 0 2 2 2

0 0 —2 0 0 2 2

0 0 0 —3 0 0 2

dn oo= —(s —2)n+2 g n; s &2 . (28)

(29)

(30)

(31)

A. Initial behavior after instantaneous quench
to absolute zero

dn) =n, + g sn, ,dt s=4
(27)

After an initial quench from high temperature to abso-
lute zero, or a suKciently rapid one where the system
departs from equilibrium at a high temperature, the
structure contains a relatively high density of kinks.
Since a significant fraction of these will be nearest neigh-
bors, many diFerent decay processes may occur. We
define a cluster of kinks (henceforth just cluster) of size l
as a chain of l and not more nearest-neighbor kinks, so
that an l cluster is not part of an (I +1) cluster (see Fig.
9). Such a cluster (for i & 3) may decay by spin exchange
at the mth bond (say) in the chain where
2~+m (l —1). When this happens, the (m —1)th and
(m + 1)th kinks disappear, and so the cluster has decayed
into three clusters, of sizes (m —2), 1, and (I —m —1).
(See Fig. 9.)

The equations of motion for the densities n& of clusters
of size I are

q' =(0, . . . Ii zerosI. . .0,ao, a, ,a2, . . . ), (32)

+a(
+

1 —2

1q+=
a+

+ap

0
0

(33)

4

where the Ia.—J form a set that is independent of I, satis-
fying

na„—=a„—
&
+2a„:3,+ + — + (34)

The eigenvalues of M are just the diagonal elements
0,—1, —2, . . . , since M has no elements below the diago-
nal. The left and right eigenvectors q' and q+ corre-
sponding to eigenvalue ( —l) are of the form

a„+—=0 for n ~ —1 .

If we define the generating function

(35)

Spin representation Kink representation

g+(t)= g a; r', —
i =0

then g+ satisfies

d
(1 r) =—+2r g,g+

dt

whose solution is

(36)

(37)

FIG. 9. A cluster of eight kinks decaying by condensation to
three clusters, of two, one, and three kinks, respectively. The
kink representation denotes a kink by a long line and an unbro-
ken bond by a short line.

g+ = 2 (1 t) exp[+2(t +t l—2)]j—, (38)

where A is a constant, which we will set equal to unity (it
is trivial to prove a posteriori that this definition leads to
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correctly normalized eigenvectors).
The ini. tial condition corresponding to thermal equilib-

rium at temperature T =1/(k~P) is ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~~

n, (0)=r'+

where

r=——,'[1—tanh(PJ)] .

(39)

(40) 0.05—

so

7
n(0) =r (41)

Writing the matrices of eigenvectors Q
—and eigenval-

ues A,

a+
0

a+
1

a+
2

0 0

ao 0
a+ a+

1 0
(42)

0
0

Time (NCS)

0 0 a 0

ao a) a2

0 a, a,
(43)

FIG. 10. Cluster densities n&, n&, n3 after a deep quench to
zero temperature. The solid curve is the exact solution in the
absence of spin diffusion, and the points are a Monte Carlo
simulation of this situation. The dashed and dot-dashed curves
are simulations of spin-exchange dynamics with spin diffusion
inhibited by factors 1 and 0.1 in comparison to the Kawasaki
transition rates.

0 0 0
0 —1 0
0 0 —2 (44)

the solution to Eq. (30) is

n(t)=Q+ exp(At)Q (45)

v exp —t=r g (r)g+ [r exp( —t)]
exp —2t

(46)

Thus, the dominant decay of n, at long time goes like
exp[ —(s —2)t]. The cluster densities from this formula
are plotted in Fig. 10. The one-cluster density is obtained
from integration of (27). Notice that all cluster densities
except n& and n2 decay to zero. Also plotted in Fig. 10
are Monte Carlo simulation results for a spin-exchange
Ising model with the ratio ~&/~z of the time scale ~& of D
processes to the time scale rz of C/E processes equal to
0, 0.1, and 1. The last case corresponds to the conven-
tional Kawasaki dynamics. The simulations were aver-
aged over 1000 initial configurations, and all Rip proba-
bilities were renormalized by a factor of 0.01 so as to en-
sure accurate simulation of the master equation. We esti-
mate the size of the error bars due to statistical Auctua-
tions to be smaller than the thickness of bold lines in the

diagram as drawn.
The curves follow the results of (46) for times up to 1

MCS or so. The two-cluster density then decays. This
decay consists initially of collisions between spins, and
also spins coalescing with stationary domain walls (one-
clusters). The fraction of single spins which decay by the
first process is shown by the simulation to be close to the
fraction which decay by the latter mechanisms.

The decay of the spin (two-cluster) density is a complex
problem because it involves nonlinear terms and depends
sensitively upon the spatial structure. At long times, the
two-cluster density is small, and the dominant relaxation
is from single spins coalescing with domain walls. Under
these conditions, the decay is dominated by free spins
originally in long domains. This is the topic of the next
section.

B.Late-time relaxation after cooling to absolute zero

At very late times after a quench to absolute zero, most
of the free single spins will have di6'used to the domain
walls and coalesced. The only remaining spins will be
those originally in long domains, which therefore had a
much smaller probability of decay. Thus, the long-time
behavior is dominated by the probability distribution of
long domains, which, in turn, depends upon the tempera-
ture at which the system was last in thermal equilibrium,
as the quench can only have a6'ected the correlation func-
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tion over a finite distance. The long-time behavior is
dependent upon the initial equilibrium state only, and not
on the type of cooling, so the results will also be valid for
the continuous cooling considered in Sec. II.

Consider a single spin in a domain of otherwise parallel
spins of length L, starting at site k. Since the long-time
behavior is sharply dependent upon L, we consider only
domains with single spins in them; ones with more than
one will tend to have decayed earlier. The equation of
motion of the probability p&(t) of being at site l at time t
1s

e

~ ~ I ~ ~ ~ ~ ~ ~ ~ 0.5

0.05

0.005

2 L —1

p, (t) =—g sin
L

mix
L

dpi
2pI +p'i —i+ph+ &dt

po=pL, =0
~

which has solution

km'
sin

(48)

-10

0

0
~ ~

0
~ ~

0

I I

m&
X exp —2 1 —cos t

L
(49)

Time {arb. units)

m7TX exp —2 1 —cos t (50)

The number of domains of size L containing one spin at
thermal equilibrium is just proportional to L. Thus, since
the density of domains of size L is proportional to
exp( L /g), the tot—al single-spin density as t ~ oo is

n2(t) ~ g exp( L /g)Lpl— (51)

From Eq. (50), we see that the most dominant contribu-
tion to n2 comes from a value of L « t' '. The argu-
ment of the exponential in (50) can be Taylor expanded,
since the only significant contributions are from low har-
monics satisfying m «L. Then

L m~t
n2(t) ~ g exp L2 (52)

The number of L terms which contribute to n2 will be
large, so the sum over L may be replaced by an integral,
which may be evaluated by a saddle-point approximation.
For t ))g, the only important term is m = 1, yielding

1/3

n2(t) ~ exp —3 (53)

The density of single spins therefore decays with a
Kohlrausch form. Such behavior usually occurs in sys-

In thermal equilibrium, the probability of the spin being
at k is independent of k, and the effects of the quench will
be to affect the distribution near the edges of the domain
only. Summing over k and l, we find that the probability
of a spin remaining in the domain after time t is

r

= 2 m&
pl = g cot,

L

FIT+. 11. Plot of [1n(spin density)] as a function of time for
simulations at zero temperature after an infinite quench, for
different values of the ratio ~& /~2 of time scales for spin
diffusion and condensation.

tems with frustration and/or randomness, such as spin
glasses or the random-field Ising model. This is a very
unusual example of such stretched-exponential decay in a
system without frustration or any disorder implied by the
Hamiltonian; there is, however, "quenched" disorder in
the form of the distribution of domain sizes.

Figure 11 shows a plot of [1n(single-spin density)]
versus time for a Kawasaki chain after an instantaneous
quench from T = ~ to 0. The three different curves cor-
respond to spin-diffusion rates reduced relative to
Kawasaki dynamics by a factor of 0.01, 0.1, and 1 respec-
tively. The validity of the straight-line fit shows that the
"absorbing-wall" assumptions used above do indeed pre-
dict the correct scaling behavior. The straight-line fit is
very striking; a slight deviation points to a small time-
dependent prefactor to Eq. (53). The statistics on the
simulation are very good as the results are averaged over
1000 independent runs.

It must be stressed that the Kohlrausch form (53) is
quite general for a one-dimensional Kawasaki system at
T =0, at times when the spin density is small. It will, in
general, be diScult to detect in simulations, however, by
virtue of the very small amplitude involved; we have been
able to do so by virtue of very high run-time statistics.

VI. CONCLUSIONS

In this paper, we have studied the Kawasaki chain un-
der both slow and instantaneously rapid cooling to abso-
lute zero temperature. Under rapid cooling, we observe
the same domain scaling as observed in higher dimen-
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sions, with the scaling exponent —,'. Just as for the spin-
exchange case, the exponent is the same as in higher di-
mensions. This happens even though there is no finite-
temperature critical point through which to quench, and
the physical origins are different. For the one-
dimensional spin-exchange model, our spin motion argu-
ments surplant those of Lifshitz and Slyozov in higher di-
mension. Our simple physical pictures are insufhcient to
reproduce the full correlation function. The presence of
an energy barrier leads to temperature being a dangerous-
ly irrelevant variable, and, as discussed elsewhere, the
full scaling theory is expected to be more subtle than in
other activated systems.

After completion of this work, we discovered that Lay-
vraz and Jan had discussed the domain scaling in this
system. They used arguments similar to those presented
in this paper to predict the domain-scaling behavior when
the domain size is much smaller than the equilibrium
correlation length, although they were, in fact, interested
specifically in the dynamic critical behavior. They also
reported simulations, obtaining a scaling exponent
1/(3.05+0.1). However, they did not discuss the compet-
ing processes that must be present when the system is
close to equilibrium, nor did their simulations verify the
full scaling form for the correlation function.

Under slow cooling, arguments based on spin motion
predict that the kink density scales with cooling time like
K ~~ ' ', where z =5 is the dynamic critical exponent.
This relationship is similar to that which had previously
been obtained for the one-dimensional Czlauber model,
with the appropriate (different) value for z. The simula-
tions are consistent with a slow approach to this law,
with corrections smaller by a factor 0 (K). To obtain re-
sults well into the asymptotic region requires impractical-
ly high run times, so this method is a very inefficient way
of measuring the critical exponent.

The success of the spin-motion arguments in describing
the scaling behavior under domain growth, as well as the
apparent agreement with freezing behavior, suggests that
they are indeed valid descriptions of the Kawasaki chain.
This should motivate further investigation into the
disputed critical exponent for the alternating bond
Kawasaki chain. ' ' '

Under an instantaneous quench to absolute zero, the
transient behavior due to an unstable decay of clusters of
kinks has been studied exactly in the limit that the time
scale for spin diffusion is much longer than that for con-
densation. Simulations of different values of the ratio of
these two time scales show that the exact solution is valid
for these for only about one time step, but the final struc-
ture is only weakly dependent on this ratio.

In contrast to activated Glauber models, the
Kawasaki chain has nontrivial temporal behavior at zero
temperature, since single spins may move unhindered.
The exponential distribution of domain sizes for large dis-

tances gives rise to a Kohlrausch form for the relaxation
function. This form will describe the residual decay of
the system independently of the details of the cooling
program.

It is important to note that this behavior is a property
of the far-from-equilibrium state only, since at any finite
temperature the long-time behavior will be dominated by
thermally activated processes at the domain walls. It
would be possible to observe the Kohlrausch form as a
response function to some impulse whose effect is to in-
ject a small number of spins randomly into the system
(e.g., if the system is, say, a gas adsorbed on a substrate,
then exposing the system briefly to the vapor will allow
spins to be introduced evenly over the lattice).

The frozen Kawasaki chain therefore displays some of
the features of a glass. The system freezes into a random
domain structure, stabilized by an energy barrier, which
is not describable as an equilibrium state at some effective
temperature. Kohlrausch forms obtain for relaxation
functions, which are specific to the frozen state (in con-
trast to the artificial kinetic Ising models of Palmer
et al. and Frederickson and Anderson ). However, all
relaxation times are of Arrhenius form, in contrast to be-
havior in true glasses; we would expect that frustration
(e.g. , from competing further-neighbor interactions)
and/or higher dimensions would be required for such be-
havior to occur.

We have characterized the system before, during, and
after cooling by one or two parameters, but it would be
desirable to describe the system more fully, e.g. , by the
full correlation function. However, it is unlikely that this
may be obtained analytically to any good approximation
because of the mathematical difBculties in treating this
system.

The Kawasaki model in two or higher dimensions is a
still more complex problem. As mentioned before, Sadiq
and Binder considered this system very briefly. This
system will clearly freeze as zero temperature is ap-
proached, and the long-time behavior will again be dom-
inated by remnant single spins in large domains. Simple
arguments analogous to those used in this paper suggest
that a Kohlrausch form would be observed for long-time
relaxation at zero temperature even in dimensions greater
than one, although it is often the case that stretched ex-
ponential forms observed in one dimension do not appear
in three. This question is currently under investigation,
as are other questions relating to freezing in the
Kawasaki model in dimension greater than one.
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