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We investigate the dispersion relations and amplitude profiles of magnetoplasmons in semi-infinite su-
perlattices, the unit cells of which are composed of two different thicknesses of bilayer minicells ar-
ranged in a Fibonacci sequence. We find that there exists another spectrum of both bulk and surface
modes in the quasiperiodic structure, which is not present in the periodic structure. These surface
modes become nonreciprocal with respect to the direction of propagation in an applied magnetic field.
Since the number and frequency of these modes depend upon the layering of the unit cell, and since the
surface modes are nonreciprocal, our results could be important to surface-wave-device applications.

I. INTRODUCTION

There has been considerable interest recently in the
properties of quasiperiodic structures. Theoretical inves-
tigations have focused on one-dimensional Schrodinger
equations with two values of (constant) potentials ar-
ranged in a quasiperiodic sequence, ' and superlattices
with two thicknesses of films arranged in a quasiperiodic
sequence. The quasiperiodicity in the potentials or
the superlattice layering has been imposed analytically by
requiring that these parameters follow a Fibonacci se-
quence, i.e., if a system is constructed of building blocks
ct and P, then the system will be a sequence of blocks
which obeys the recursion relation F =F &+F
for integer m ~3, with F, = IaI and Fz=taf3I. To illus-
trate the procedure, then, the next iteration produces
F3 =

I a@aI. Therefore we see that the extended sequence
will be Ia/3aaPctPa . I. If the sequence is the simple
Fibonacci sequence represented above, where each term
is the sum (or concatenation) of its two immediate prede-
cessors, then the ratio of the number of elements, n n&,
approaches the golden mean g =( 1+ &5)/2 as m ~ m.
Although we will employ the simple sequence given
above, other types of sequences have also been studied.

Two broad types of techniques have been employed in
studying these structures. The first work involved finding
the allowed bands of energy in the Schrodinger equation
model, ' or the allowed susceptibilities for plasmons in a
superlattice, given a set of initial conditions. The gen-
eral results of this type of work show that the allowed
bands form a Cantor set as I—+~. The properties of
these solutions have been studied in detail. The other
type of calculation involves assuming a model for the sus-
ceptibility (superlattice), and calculating the dispersion
for the elementary excitations in the quasiperiodic struc-
ture, or the Raman spectra. The results of these studies
also show multiplicity in the band structure as a direct re-
sult of the quasiperiodicity.

In this paper, we will examine the effects of quasi-

periodic layering on magnetoplasmons. We will examine
both bulk and surface excitations, and in particular, we
will examine the effects of an applied magnetic field on
the new modes generated by the quasiperiodic layering.
We assume that the magnetic field is applied parallel to
the interfaces. The results could be important for device
applications, since we expect many of the new surface
modes to be nonreciprocal with respect to direction of
propagation.

In particular, we will show that, in a specific model,
each mode (or band of modes) which exists in the period-
ic superlattice will be split in the quasiperiodic structure.
The number of additional modes is dictated by the Fi-
bonacci number which corresponds to the integer I
given above. For instance, if GM =G,+G 2, forI ~ 2, with Go =G, = 1, then the number of additional,
modes (bands) corresponding to m =3 is 63=3. The
particular model with which we will be concerned is a
semi-infinite, periodic array of unit cells, where the unit
cell contains a sequence of F alternating bilayers (mini-
cells) of two different thicknesses, using the procedure de-
scribed above to create the layering sequence. To make
the calculation tractable, we will consider a unit cell
configured in the F3= IaPaI manner. The superlattice
will therefore look like I agaagaaPactPaa13a I. Al-
though this model is in reality periodic, the extended case
(semi-infinite) provides an adequate representation of the
major features present in the actual quasiperiodic struc-
ture.

To understand how the multiplicity of allowed modes
might occur for a different layering arrangement, we con-
sider the following argument. In the case of plasmons,
we know that the collective superlattice excitations, both
bulk and surface, are a coupled set of surface excitations
on the individual films. Therefore we might expect the
number of modes (or bands) to be related to the number
of distinct actiue layers (layers containing free charges)
within the unit cell, the main idea being that each distinct
layer within a unit cell will support an odd-even pair of
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surface modes, each of which is in turn coupled to neigh-
boring unit cells via Bloch's theorem. We will show that
this is indeed the case by examining the plasmon ampli-
tude profiles for selected modes of the structure.

The rest of the paper is organized as follows. In Sec. II
we develop the theory for calculating the bulk and sur-
face dispersion relations for magnetoplasmons in a super-
lattice where the unit cell has 6 bilayers. In Sec. III we
give numerical results for a particular geometry, given by
G3 =3 bilayers/(unit cell). Finally, we summarize the re-
sults in Sec. IV.

Unit Cell

II. THEORY

In this section, we present the general theory for calcu-
lating the bulk and surface plasmon dispersion relations
for a semi-infinite, quasiperiodic superlattice in the pres-
ence of a static magnetic field applied parallel to the ma-
terial interfaces. We consider a periodic array of unit
cells, where a unit consists of a Fibonacci sequence of two
different thicknesses of bilayers (labeled a and P), as dis-
cussed in Sec. I. A bilayer will be defined as a composite
of two films of materials 3 and B, respectively.

We let the y axis point into the structure, while the
magnetic field lies along the z direction (see Fig. 1). We
will consider propagation along the x axis, perpendicular
to the applied field.

If we make the assumption that only material 3 con-
tains free charges (material B is an insulator}, then we

may write the dielectric functions of the materials as fol-
lows. In the geometry of Fig. 1,

a2 82

Bx c)y
(2.4)

FIG. 1. The geometry considered in this paper. We examine

a semi-infinite stack of unit cells, as shown, where the y axis

points into the structure, the applied magnetic field is along z,

and the propagation is along x.

&E2 0

0 0

E)

lE2 E) 0, EB =6~BI (2.1)

If we now imagine numbering the individual bilayers
within a unit cell of the superlattice, and examine the ith
bilayer in the nth unit cell, we may write solutions to (2.4)
as follows:

where

e, =e„„[1+co/(co, —co )],
e2 —e ~ g ci)~co& /co(ci)~ co )

e3 —6 g [1 co& /ci) ]

(2.2)

and where co~ is the plasma frequency, m, is the cyclotron
frequency eB /m *c, and the ~ subscript refers to the
background dielectric constant of the given material. If
we assume that material 3 is simply material B with dop-
ing, then we may drop the additional subscript ( A, B) on
the background dielectric constants given in Eq. (2.2).

In the long-wavelength, static approximation, we have
V XE=O, which allows us to introduce a scalar potential

P given by E= —VP. Using this and the relationship
l3=EE, we find

kQ —k5y+ g e y )ei(k» —cot)eiQnL
Y Ai i+ 1

k5 —k5=(B. e «+B e ~ )e'~» ~'~e'& I
Bi i+ l 7

(2.5)

where Q is the Bloch wave vector which relates the phase
of the waves in unit cell n to the phase of the waves in the
neighboring unit cells, L is the length of a unit cell, 5~
measures the distance along the y axis within an individu-

al layer, and the amplitudes 2 and B refer to the respec-
tive materials 3 and B comprising each bilayer.

At this point, we may construct a transfer matrix I
which will give the potentials in the bilayer i +1 in terms
of the potentials in bilayer i. To do so, we match bound-

ary conditions (continuity of the potential and the normal
component of D) across the interfaces between materials
A and B within a bilayer, and then across the interface
with the next bilayer. Thus

8
V D=e, + P+e, /=0 .

X2 gy2
' gZ2

(2.3}
kdA; —kdA;A+e '+ A, e

(2 6)

Since we are considering only propagation along x, P is
independent of z and (2.3) reduces to a simple, two-
dimensional Laplace equation

kd ~,.
—kd ~,.

( —ez+e, )A;+e "'+(—ez —e, )A, e

=e~(B;+ B; )—
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across the interface within bilayer i, and

kd~, . —kd~, .

i+ i — (i+1)+ (i+1)—

kd~, . —kdBi
ea(B; +e +i —e ) ( e2+el) ~(i+(i+

+( &z e()~( +(i—

(2.7)

Here, dA; is the thickness of material A in bilayer i, and

dz,. is the thickness of material B. Each pair of equations
(2.6) and (2.7) may be written in matrix form, which will

give two matrix equations involving all of the amplitudes
A and B. A bit of matrix algebra allows us to eliminate
the B's, leaving

A,-+1=TA;, (2.&)

across the interface between bilayer i and bilayer i +1. where

A(;+1)
A (i +1)—

A;+
A;= i—

[(e +2e )((we a+yea )+eb(wea+ —y a )] w l(&2+e( xea —zea )+ea(xea —zea )]eA

4e(ea [(e(—E)2( w'e a+yea ) —ea(wea+ —yea )]e& [( e(—e2)(xea + a ) ~a(x a a )]

and where

~ =E&
—E&+E1, X —E~ —

E1

E1+E'2, Z =E'g +E1+E2,

where

e( e2 —aeo—
/
k/

and o.=
E'1+E2+0 EP k

and
kd . —kd, .

e =e e —e8
kd . —kd

e =e ' e =e
A ~ A

and Ep is the dielectric constant of the medium above the
superlattice.

In the next section, we will provide a specific numerical
example of the above dispersion relations for a particular
geometry.

M= gT(d;) . (2.9)

If we now consider a superlattice consisting of an array of
unit cells constructed as above, we arrive at the usual ex-
pression for the bulk dispersion relation" in terms of the
transfer matrix M:

cos( QL ) = ,' TrM, — (2.10)

where Q is a Bloch wave vector governing the phase of
the wave from one unit cell to the next, and L is the
length of the unit cell.

To find the dispersion for surface waves on the semi-
infinite superlattice, we write the solution to (2.4) outside
as P = Ce

"~, and then match the boundary conditions at
the upper surface (y =0). Using this, along with an
equation analogous to (2.10) for surface waves [replace
cos(QL) by cosh(pL ), with Re(p)) 0, to ensure that we
have exponential decay into the material and hence a sur-
face wave] we arrive at the dispersion for surface
plasmons:

A, (M„+AM,2)=M2, +XMzz, (2.11)

Note that the transfer matrix I depends upon the
thicknesses d A; and d~;. Therefore we may multiply G

transfer matrices together, inserting different thicknesses,
in order to create another transfer matrix which will link

the potentials in the first film of a unit cell with the first

film in the next unit cell. Therefore we write

F

III. NUMERICAL EXAMPLES

In this section, we present numerical examples of
dispersion relations and amplitude profiles of magneto-
plasmons in semi-infinite Fibonacci superlattices. We
will show that the effect of the quasiperiodic layering is to
increase the number of bulk bands and surface modes,
and also show that the new surface modes are nonre-
ciprocal with respect to propagation direction in the
presence of an applied magnetic field. In all of what fol-
lows, we assume that material A is doped GaAs, while
material B is undoped GaAs. For these materials, then,
we use E =13.13, and with a doping concentration of
n = 10' cm, we calculate a plasma frequency of
co„=0.040 75 eV.

We assume that there are two different thicknesses of
bilayers which are arranged in a Fibonacci sequence to
form unit cells. In particular, we will investigate a super-
lattice composed of a semi-infinite stack of unit cells, and
each unit cell contains 63=3 bilayers. If we label the
two dift'erent bilayers a and P, then a unit cell composed
of three bilayers will look like apa. The total thickness
of each bilayer will be denoted d and d&, respectively,
and we label the thicknesses of the individual films d A,
d z, d&A, and d&z. The unit cell is shown in Fig. 2. In
all of what follows, we take d /d& = 1.618 (golden mean,
as discussed in Sec. I), d „=2d a, and df(„=2d&a

For the purpose of comparison, we begin by showing
the dispersion curves for the periodic superlattice—
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FIG. 7. The amplitude of the potential (t as a function of

depth into the superlattice for four diAerent surface modes. The
dashed lines indicate the boundaries between individual films.

Note that two unit cells are shown. In all graphs, we take

co, =0.004075 eV (cf. Fig. 6). In (a), kd & =+3, co=0.0276 eV.
Note the odd character of the mode. In (b), kd &

= —3,
co=0.031 eV. This is the —k branch of the same mode as in (a).
Here we see even character, and both (a) and (b) are localized at
the outer surface. In (c), kd ~

= +3, co=0.0215 eV. This mode

is localized at the fourth boundary into the top unit cell. In (d),
kd &

= —3, co=0.0276 eV. The mode is very strongly localized
within the uppermost film.

perlattice, and therefore it is not surprising that a mode
of nearly the same frequency exists in the periodic case.

A number of other surface modes deserve additional
attention. For example, one of the modes not present in
the periodic case is at kd ~ =3, ~=0.0215 eV, which ex-
ists in the gap between bulk bands at this frequency in
Fig. 4. The amplitude profile for this mode is shown in
Fig. 7(c). Note that it is most strongly localized at the
fourth interface into the first unit cell, and that it extends
further into the superlattice. In fact, the rather large
value of k (kd z =3) for this graph tends to limit the
depth of penetration into the superlattice, and that for
small values of k the mode will extend even further. Fi-
nally, in Fig. 7(d), we examine the uppermost surface
mode. Here we show the amplitude profile for
kd &

= —3, m=0. 0373 eV, and co, =0.004075 eV. This
mode is localized almost entirely within the uppermost
J7lm, and does not even appreciably penetrate the first
unit cell. The high-frequency modes, then, are roughly
independent of the layering in the unit cell.

depth

FIG. 8. The amplitude profile as a function of depth over Ave

unit cells for bulk modes in the quasiperiodic superlattice. Here

IIo =0. In (a), we show the mode kd ~ =3, ~=0.0217 eV visi-

ble in Fig. 4. The mode has a repeat distance of two unit cells.

In (b), kd & =3, ~=0.0246 eV. Here the mode has a repeat dis-

tance of 1 unit cell.

Lastly, we show the amplitude profiles for bulk modes
in the quasiperiodic system over five complete unit cells
in Fig. 8. In both graphs, Ho =0. In Fig. 8(a) we show a
mode at kd ~ =3, co=0.0217 eV. The character of this
mode is clearly bulk, with a repeat distance of two unit
ce1ls—note that just over two complete patterns are visi-
ble. In contrast, the mode shown in Fig. 8(b), for
kd z =3, co=0.0246 eV, shows a repeat distance of one
unit cell, and five complete patterns are visible.

IV. SUMMARY

We have investigated the dispersion relations and am-
plitude profiles of magnetoplasmons propagating in a
semi-infinite quasiperiodic superlattice. We have exam-
ined a superlattice whose unit cells are composed of two
difFerent thicknesses of bilayers which are arranged in a
Fibonacci sequence; specifically, we have looked at a unit
cell composed of three bilayers —two of one thickness
separated by a third of a difFerent thickness. We have
shown that there exist new additional bulk and surface
plasmons in the quasiperiodic structure which do not ex-
ist in the periodic case, and that these surface modes
show nonreciprocity in frequency with respect to direc-
tion of propagation. The structure of the amplitude
profiles of these surface modes indicates that they are lo-
calized at the new interfaces, as expected.
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