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Discrete-state models of orientational glasses

H. Vollmayr, R. Kree, and A. Zippelius
Institut fur Theoretische Physik, , Universitat Gottingen, Bunsenstrasse 9, D 8/0-0 Go'ttingen, Germany

(Received 3 June 1991)

We construct and study a class of models for crystalline systems which undergo structural changes
due to the cooperative freezing of orientable defects. The defects are assumed to possess uniaxial
symmetry and are located on randomly chosen sites of a deformable cubic lattice. The orientations
of the defects are restricted by lattice anisotropies. We consider three possibilities with discrete sets
of allowed orientations. The defect axis may be parallel to (a) the cubic axes, (b) the space diagonals
of the cube, or (c) the face diagonals of the cube. For quadrupolar defects the phase diagram and the
elastic properties of the emerging three-state (case a), four-state (case b), and six-state (case c) model
are studied, with the coupling between defects in mean-field approximation. In addition, we obtain
results for a model of dipolar defects with three orientations, which is related to the six-state model.
Depending on the degree of disorder, we find either states with long-range orientational order and
uniform lattice distortions or glassy states. The freezing of defect orientations into a homogeneously
ordered state is accompanied by enhanced fluctuations and a pronounced softening of the lattice in
symmetry directions, which are determined by the lattice-anisotropy fields. We conclude that the
models correctly describe essential experimental findings for orientational glasses.

I. INTRODUCTION

The present study is motivated by the large variety
of experimental realizations of crystalline systems with
orientable defects and substitutional disorder. In most
of these systems one observes a cooperative freezing into
an orientational glass state, which is reminiscent, of the
spin-glass transition in disordered magnetic materials.
Since the orientational degrees of freedom are coupled
to lattice distortions, the random freezing gives rise to
local static strains. Hence the low-temperature phase has
features of a structural glass. From a theoretical point of
view, such systems are of interest, , because they combine
elements of spin glasses, for which the model building
is well understood, with properties of structural glasses,
which have not yet been modeled adequately.

In this paper we suggest a class of mesoscopic mod-
els for orientational glasses. The orientational degrees
of freedom are modeled as discrete state variables. The
number of states and the symmetry of their interaction
is determined by the local anisotropy and the crystal
structure. 4 For example, cubic symmetry is compatible
with an anisotropic six-state model, if the anisotropy
favors the six face diagonals for the orientation of the
defect. The interaction has a uniform and a random
component giving rise to long-range ordered phases and
glasslike phases, much like in spin-glass models of disor-
dered magnets. 2 We focus here on the phase diagram,
the symmetry of the low-temperature phase, and the
critical behavior of orientational and elastic degrees of
freedom. Phenomena, which are specific for very low
temperatures, shall not be considered.

As compared to magnetic systems, the orientational
glasses show a much larger variety of phases. Further-
more the coupling of orientations to lattice distortions is

essential to understanding the elastic properties of these
systems. Long-range orientational order always gives rise
to a uniform lattice distortion. In the above example this
can be rhombohedral, orthorhombic, or tetragonal. The
glassy phase is characterized by freezing of the orienta-
tions into random directions, giving rise to local stat, ic
lattice deformations. 3ust like the cubic symmetry is bro-
ken globally into rhombohedral, orthorhombic, or tetrag-
onal symmetry in the long-ranged ordered phase, it can
be broken locally in various ways in the glassy phase. In
the above example we predict two glassy phases, one with
local tetragonal order and one with local orthorhombic
order.

The paper is organized as follows. In Sec. II we discuss
the model building. We consider defects with uniaxial
symmetry (quadrupoles), which are modeled as three-,
four-, or six-state variables —depending on the local
anisotropy. In Sec. III we derive exact relations between
strain and orientation correlations. These exact relations
are a direct consequence of the bilinear coupling between
strain fields and orientations in our model. The phase di-
agrams for the three- and four-state models are derived
in Sec. IV. Subsequently we discuss the changes in the
crystal structure and the elastic properties of the low-
temperature phases (Sec. V). The quadrupolar six-state
model is analyzed in Sec. VI, while in Sec. VII we show
that the same model also applies to a dipolar system with
three easy axes. The main results are summarized and
related to experiment in Sec. VIII.

II. MODEL BUILDING

In this section we introduce a class of models for sys-
tems of immobile, orientable defects randomly located in
a deformable cryst, al lattice. Prominent exa, mples of such
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systems are disordered mixed alkali halide —alkali cyanide
crystals, potassium tantalate crystals doped with Li, Na,
or Nb, and argon-nitrogen mixed crystals. ' For the mixed
alkali halides —alkali cyanides much work has been spent
on the model building start, ing from microscopic lattice
dynamics. 8 Although the models discussed below are
based on some principles which arose from this work, we

do not aim at a description of specific substances at mi-
croscopic length scales. Our major interest is focused
on phase transitions with diverging (or at least large)
correlation lengths induced by ordering and freezing of
the defect orientations. Other possible mechanisms for
structural or martensitic transitions will not be consid-
ered here.

Our aim is to construct a semimicroscopic model for
mixed crystals. For that purpose it is instructive to first
consider the microscopic Hamiltonian of systems of the
type (AD)q (AB), where D is a rigid orientable defect
or molecule. We assume that the pure AB crystal has
cubic symmetry and that D has uniaxial symmetry, so
that its orientational configurat;ions can be characterized
by a unit vector d. All the above-mentioned systems
belong to this class. In the mixed alkali halides/cyanides,
e.g. , A is an alkali metal atom (Na, I&,Rb, Cs) and B ( =

Br, Cl, I) a halogen atom, whereas D are the dumbbell-
shaped CN molecular ions, which randomly replace the
halogen atoms.

Microscopic model building starts from a system of
atoms and defects (molecules) occupying the lattice sites
of the stable high-temperature phase and interacting via
two-body potentials v p (o, , P = A, B, or D). Quenched
disorder is represented by variables n;, which take on
the value 1 if a site r; is occupied by a D and n, = Q

otherwise. The actual positions r; are characterized by
displacements u, from ideal reference lattice points B.;,
i.e. , r, = B., +u, . There is some arbitrariness in choosing
the reference lattice. Let us start from the lattice of the
pure AB crystal. Then the total potential energy of the
mixed crystal can be written in the form

UAB + +UDA + +UDB + +UDD )

where Ug~ corresponds to the potential energy of
the pure AB crystal and the other terms are sums
over two-body excess potentials Avo„(r, , r&, d, )
v~~(r, , r&, d, ) —v~~(r, , r& ) for o; = A or B and Av~ D =
vD D —v@ gy. A straightforward expansion of H in powers
of displacements u, reveals the following structure:

H = Hz& + 2 ) n;u, M,&(d, , nzdz)uz + ) n, (1 —n&)A, &(d, )(u; —uz)

+2 ) n, n& (B,z(d, , d~) + D,~(d, , d~)(u; —u~)) + ) n, F;(d, ) + anharmonic terms. (2)

The summation extends over the lattice sites R, All

the terms appearing in (2) are easily interpreted. H~& is

the harmonic approximation of U~~ and the next term
on the right-hand side of (2) originates from the mod-
ifications of harmonic couplings in the mixed crystal.
The third term arises from the forces, by which a de-
fect causes displacements of surrounding A and B atoms
from their idealized reference latt, ice sites. F, (d;) is the
anisotropy potential that a defect experiences in a rigid
lattice. Finally, B,&(d, , d&) denotes the direct interac-
tion between defects in a rigid ]at tice and D;z takes into
account the corrections of this interaction due to lattice
d isplacements.

In the following we do not aim at a. microscopic cal-
culation. Hence the details of the derivation of Eq. (2)
are not presented. The microscopic Hamiltonian will be
used in the following only as a. guideline for the coarse-
graining procedure. At present there is no attempt to
treat a model including all these terms simultaneously.
All the models considered up to now invoke some kind
of phenomenological coarse-graining procedure to extract
long-wavelength properties from (1) or (2). There are two
reasons why such a procedure is unavoidable.

(i) The quenched randomness leads to large fluctua-
t, ions of all the terms in (2) on microscopic length scales.
Therefore the standard textbook procedures' to extract

long-wavelength, elastic properties (e.g. , by gradient ex-
pansions) cannot be used here. A complete theoret, ical
t reatment of a harmonic H amiltonian w it h ran dom dy-
namical matrix and random couplings to orientational
degrees of freedom is not available.

(ii) The reorientation of a defect is a strongly anhar-
monic process on microscopic lengt, h scales. ' Thus the
anharmonic terms have to be taken into account. Their
effects are hard to estimate from first principles in a dis-
ordered medium.

In this work we consider regions of thermodynamic pa-
rameters where the correlation length ( of thermal ori-
entational fluctuations is already much larger than the
lattice constant, i.e. , ( » a. The coarse-graining pro-
cedure should lead to an effective Hamiltonian for the
long-wavelength fluctuations which drive the phase tran-
sition under consideration. In accordance with the the-
ory of critical phenomena, we study the simplest effective
Hamiltonian which can give rise to the observed symme-
try changes and is compatible with (2). The form of
H, ff is restricted by the following three simplifying as-
sumptions.

(i) The ranges of all interatomic forces are short
as compared to the mesoscopic coarse-graining length
(p (a (( (p (( ('), with the possible exception of direct
interactions between defects due to electrical multipoles.
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Thus H,~ should consist of terms which are local in the
coarse-grained displacement field u(z) and their deriva-
tives.

(ii) On mesoscopic length scales the system behaves
as an clast, ic medium so that H, g is at most quadratic
in u(z). Note that this does not imply the harmonic
approximation at shorter length scales.

(iii) The local anisotropy of the high-temperat. ure lat-
t, ice eH'ectively restricts orientational fluct, uations to a, dis-
crete set of states in the vicinity of a, phase transit, ion.
The discrete states correspond to the absolute minima
of the anisotropy potential on the length scale (. Note
that this potential is not, the microscopic anisotropy as
represented by F, (d, ) in (2). The positions of t, he abso-
lute minima may change when approaching the transit, ion
and ( becomes larger. Therefore the relevant discrete set
of orientations cannot always be extracted from high-
temperature data. As a calculation of the anisotropy re-
quires a theoretical analysis on microscopic length scales,
we can only assume a certain set of orientations and com-
pare our results with experiments t, o find out whether or
not the assumed anisotropy is realized in a specific sub-
stance. We should also note that the region of validity
of a model with a fixed set of orientations may become
limited if the anisotropy potential changes its form dra-
matically in t, he vicinity of the phase transition.

Given these three simplifying assumptions, the sim-
plest eA'ective Hamiltonian t, akes on the form

Hn =) (2e;, (z)C, ~, ~qi(z)+o;, (d(z))e;, (z)

+v(d(z)))

+2 ) J, (d(z), d(z')).

The z summations extend over the points of a. coarse-
grained lattice with cubic point-group symmetry. We
could have written (3) alternatively as integrals over the
slowly varying fields e;&.(z), d(z) which have to be reg-
ularized by a cutoff. In (3) we have chosen a regular-
izat, ion in real space which automatically respects the
cubic point-group symmetry. Furthermore a summation
convention with respect to Cartesian indices i, j, . . . =
(I, 2, 3} is implied; e;~:—(c);u~ + B~u, )j2 is the (coarse-
grained) local strain tensor and o',

z (d(z)) denotes the lo-
cal stress arising from a defect in the orientational state
d(z). a.,~(d) is a coarse-grained version of the I&anzaki
force dipole tensor. The coupling term o.

;& e,z corre-
sponds to the terms A,z(d;) in the harmonic approxima-
tion (2). The Co

&&
are the bare elastic constants on the

mesoscopic coarse-graining scale. v(d(z)) denotes the lo-
cal anisotropy. The coupling J ~(d(z), d(z')) between
defects will in general contain contributions from direct
electrical multipole interactions as well as indirect inter-
actions via lattice distortions on the short length scales( (0 which have been eliminated during the coarse
graining. The coupling term is nonlocal because these
interactions decrease with a power-law decay for large
separations and therefore cannot be considered shor t

ranged. '" The quenched random posit, ions of the defects
will lead to random couplings, J on the coarse-grained
lattice. The quadrupolar interactions between two de-
fects in a homogeneous elastic medium will tend to order
the defect orientations ant, iferromagnetically in a. "tee"
configuration with one axis parallel and one axis per-
pendicular to the vector between the defect locations.
This will lead to frustration if the defects occupy sites
of a three-dimensional Bravais lattice. In a medium
with a finite concentration of randomly located defects
on a lattice a certain fraction of defect pairs will inter-
act ferromagnetically, favoring t, he parallel alignment of
orientations. Thus the defect coupling has the essential
properties of spin-glass models, i.e. , frustration and a ran-
dom mixture of ferro- and antiferromagnetic bonds.

Before we proceed with t, he discussion of Eq. (3) let us
remark that many additional terms will arise as a result of
coarse graining. The second term on the right-hand side
of Eq. (2), e.g. , will lead to couplings c,&).„(„,c,) c)„-(f„,(d)
and others. Furthermore, the functions o,z(d) and v(d)
will in general also acquire quenched random fluct, uations
bo,z(d(z), z) and bv, &(d(z), z), whereas in Eq. (3) the
only random term is the direct, coupling between defects.
Some of the additional couplings have been used in other
theoretical approaches to the orientational glass st, ate'
and t, he phase diagrams of mixed crystals. ' ' In this
work we consider the effective Hamiltonian equation (3)
as a generic model for ordering and freezing phenom-
ena of orientable defects in cryst, als, in the sense that it
implies phase transit, ions to noncubic and glassy phases.
Additional terms, which do not modify these transitions
qualitatively will be considered as irrelevant, even if they
lead to large quantitative modifications of t, he transit, ion
temperatures, critical defect, concentrations, etc.

Let us continue the discussion of the model building
with the specification of the anisotropy potential v(d) in

Eq. (3). In the following we want to consider potentials
which possess absolute minima in the directions of an
equivalent set of cubic symmetry axes, i.e. , in the direc-
tions of

(A) the three fourfold axes which are parallel to the
cubic axes or

(B) the four threefold axes parallel to the body diago-
nals of the cube or

(C) the six twofold axes parallel to the face diagonals
of the cube.

These cases are realized as microscopic anisotropy po-
tentials, if the interactions do not, extend beyond nearest
or next-nearest neighbors, respect, ively. In Refs. 3 and
8 it was shown that, e.g. , cyanide-halide attractive (re-
pulsive) nearest-neighbor interactions lead to type A (B)
microscopic anisotropies. Type C can be realized, if next-
nearest neighbors are also taken into account. There-
fore, we consider A, 8, and C as the simplest prototype
anisotropies and assume that they are still present on the
mesoscopic scale, i.e. , in v(d). More general cases can be
studied, if this should be required by experimental data.

If the defects do not have a dipole moment (like the
N2 molecule in argon and —as a first approximation-
the CN in the alkali halides —alkali cyanides) d and —d
are equivalent and v(d) restricts the oiientational fiuc-
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X,X' PV

(4)

Cubic symmetry rest, ricts the form of all couplings in

H,~. There are only three independent elastic constants:
Ct», , C, &22, and C&~&2. The extra stresses (force-dipole
tensors) of uniaxial defects are denoted by o ". As the
defect axes coincide with cubic symmetry axes for models
A, 8, and C, a." has to be invariant against residual
symmetry operations (e.g. , rotations around the defect
axis which leave the cube invariant). Thus, symmetry
reduces the o" to the following form:

Model A, defect axis
~~

d = (1, 0, 0)

tuations to three (A), four (B), or six (C) states corre-
sponding to the symmetry axes. Let us number these
orientations by p, v = 1, . . . , p (p = 3, 4, or 6) and intro-
duce variables n" (z) which are equal to 1 if tlute defect, at
z is in the orientational state p and which are equal to
zero otherwise. The eAective Hamiltonian for the discrete
state fluctuations takes on the form

H,~ = ) I-'e(z)con(z) + ) n" (z)(rate(z)I

entations (p', v') which can be generated from (p, , v) by
cubic symmetry transformations have to be equal, i.e.,J, = J, . As a consequencePV P V

J(o) PP~ + J( ) (I by~)

for models A and B, where all (p, v) with p g v are con-
nected by symmetry operations. For model C this is not
the case. All pairs of face diagonals, which enclose an an-
gle of n/2 [as, e.g. , (1,1,0) and (1,—1,0)] are transformed
among themselves. The same holds for face diagona. ls
which enclose n/3 [like (1,1,0) and (0, 1,1)]. Therefore
J","., can take on three diAerent values, one of which can
be absorbed in the definition of zero energy. AVe will
number the face diagonals such that (p, —v~ = 3 implies
an enclosed angle of 7r/2 [i.e. , for (1,4), (2,5), and (3,6)
pairs, see Fig. 1(c)]. Then

(0'p+ so
0 op —301

Op ——0.1

3

Model B, defect axis
~~

d = (1, —1, —1)

Op —0 —0
—O' Op +0

(—o +O' Crp )
Model C, defect axis

~~
d = (0, 1, 1)

(0'p + 20'L,

0 Op —OL,

OT

O'T

op —0I,

All the other a& can be obtained from Eqs. (5)—(7) by
applying those symmetry operations which do not leave
cr invariant. Note that we have parametrized the ex-
tra stresses in a form which explicitly splits them into
isotropic pressure and shear stresses, i.e., 0," = Opb, & +
0;". Each defect will in general act as a center of dilata-
tion and therefore a finite defect concentration leads to
a change of the lattice constant. In our coarse-grained
model this eA'ect is contained in the isotropic pressure
terms as can be seen by inserting o pb;z for o'" in Eq. (4)
and using P„n"(z) = 1. The coupling term takes on the
form op P,. e;;(z). It can be compensated for by an ap-

propriate shift e,; ~ e;; —(C&&z& + 2C&z&2) op/2 which
corresponds to a readjustment of the lattice constant. To
avoid extra notations we will always denote strains with
respect to any reference lattice by the same symbol e.
Note that P,. t7,", = 0 and P cr" = 0.

The ensemble of random couplings J"", = 3 .,"., also
has to respect the cubic symmet, ry. If we consider t, he
average J"', —:[J","., ]q all couplings between pairs of ori-

I'IG. 1. In models A and 8 the orientable molecules align
parallel to one of the three coordinate axes (A) or body diag-
onals (8) of the cube. In model C the local anisotropy causes
the orientators to align parallel to the face diagonals.
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( J(o3

0

0

J
0

0

J
0

0

J
0

0
J(o)

0

0

(i)J
0

0

J
0

0

0
J(i)

0

0
(0)
2:S

0

0 l
0

g(i)

0

0

(9)

For the above argument we implicitly assumed that t, he
interaction J", does only depend on the distance be-
tween z and z' but not on the orientation of the vector

I

If the crystal medium including the defects remains
cubic on the length scales of the coarse-grained eH'ective
Hamiltonian, the relations (8) and (9) will also hold for
the realizations J"', of the random couplings. On the
shortest length scales the structure of the medium devi-
ates from that of a cubic crystal. There may be systems
for which the contributions from these length scales lead
to couplings with noncubic realizations. In this case cu-
bic symmetry is restored only after averaging over the
quenched fluctuations. For simplicity we will consider the
first case in the main text. In Appendix A we construct
and discuss some cubic ensembles which have noncubic
realization.

The last step of our model building concerns a tech-
nical point. In the high-temperature phase the thermal
averages (n" (z)) of the n" (z) are equal to 1/p (p = 3,
4, or 6 for models A, B, or C). For many purposes it is
convenient to work with Potts variables

Equation (1'2) together with Eqs. (5)—(9) constitute the
class of models which will be studied in the next sections.

!n most theoretical approaches the defects are de-
scribed by continuous variables, arising from a. multipole
expansion of the mass and charge distribution of the de-
fect. In lowest ordex the defect for example, the CN
dumbbell —can be approximated by a sphere diAering in
radius from the replaced spherical atom, If no dipole
moment is present, the next term in the multipole ex-
pansion is the quadrupole moment. Usually only one
of the two terms is taken into account. In our model the
defect is characterized by a discrete set of p states. In
the high-temperature phase all states are equally occu-
pied such that (n" (z)) = 1/p. This nonzero expectation
value gives rise to a macroscopic dilatation as explained
after Eq. (7) and to a random field as discussed after
Eq. (11). Hence the replacement n" (z) ~ I/p corre-
sponds to the approximation of the defect as a spherical
dilatation centre. The deviations s" (z) = n" (z) —1/p
specify preferred directions of the quadrupole in the limit
of strong anisot, ropy, as explained in Ref. 4.

III. EXACT RELATIONS BETWEEN STRAIN
AND DEFKCT CORRELATION FUNCTION

Thermodynamic properties of the models introduced
in the previous section can be obtained from the partition
sum

1
8 Z: A Z

p
(10)

Z = d d u(z) ( (re) exp( —PH, &r), (13)

so that (s"(z)) = 0 characterizes the orientationally dis-
ordered phase. In terms of these variables, the defect, —

defect interaction in Eq. (4) becomes

where P denotes the inverse temperature and we have
decomposed the strain fluctuations

Ezj (z): E~j + Eij (z) (14)

2 ) ) J"',s"(z)s'(z') + ) ) h(z)s" (z) + const,
X&X PV

with h(z) = (1/p) 5~, , J"', independent of p, due to
the cubic symmetry of the couplings. As P„s"(z) = 0
t, he random field term in Eq. (11) vanishes. A nonvan-
ishing random field term will, however, be generated in
the case of noncubic realizations. In this case the random
field is strongly correlated with the random exchange (see
Appendix A). The effect of random fields on the phase
transitions will be discussed elsewhere.

In terms of Potts spins our basic eAective Hamiltonian
is given by

Hm = ) .(-,'eiz)c'~(z) + ) 8"(z)ci"e(z))

—
2 ) ) J"",s"(z)s"(z').

X&X PV

into a homogeneous part ~,
&

and an inhomogeneous part
ij(z) = (B,u&

+juju,

)/2 which is related to displacements
u(z) obeying natural boundary conditions at infinity [i.e. ,

u(z) ~ 0 for ~z~ ~ oo]. The trace symbol stands for the
sum over all orientational configurations of the defects.
Quenched averages of thermal observables are obtained
from t, he averaged free energy

F = —P '[ln Z].

Here and in the following [ ] denotes the average over
quenched disorder and ( ) denotes the average over
thermal degrees of freedom, i.e. , elastic deformations and
orient ational degrees of freedom. Note tha t the partition
sum over strain fluctuations can be performed exactly as
a sequence of Gaussian integrat, ions. Due to this special
feature of the models, all the strain correlation functions
can be expressed by corresponding Potts spin (i.e. , defect
orientation) correlation functions. s 2i In the subsequent
sections we will make use of three exact relations which
we now derive.

(i) From the identity
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17E
( ( )) exp( P—H, lr) = 0Tr

U

(where f 17t = J d t Ig d u(z)) one gets

(16) S=S +) (S o.") y""(S cr ),

where y" = N ' Q, g""(z,z').

(23)

) G., [( )1+)
kf P

Here m"—:N P [(3"(z))] is the average magnetiza-
tion in the Potts spin system. N = P. 1 is the system
size. Thus we see that the "ferromagnetic, " i.e. , orien-
tationally ordered phase is always accompanied by a ho-
mogeneous lattice deformation.

(ii) For the inhomogeneous part of the strain we get
a similar relation if we replace c)/c)t. ,j by b/bu;(z) in
Eq. (16):

(18)

The inhomogeneous displacements u(z) caused by the
extra stresses of the defects can be obtained in explicit
form if we introduce the lattice Green's function G;z (z) as
the inverse of the differential operator pk„Bkc)„Cik
Gl (c)).i~ Then we get from Eq. (18)

IV. PHASE DIAGRAM

In this section we are going to calculate the phase di-
agram of the orientational degrees of freedom coupled to
elastic distortions. Some of the results of this and the fol-
lowing section have previously been published in Ref. 4.

We concentrate here on models A and B, whereas
model C will be discussed in a separate section (6). For
models A and 8 it is convenient to use a diH'erent rep-
re entation of Potts spins. For p = 3 only the diagonal
elements of cr" are nonvanishing. They can be repre-
sented as three-dimensional vectors o" = (o,", , a~2, cr33).
These three vectors (a") (p = 1, 2, 3) constitute a
three-dimensional Potts basis e" = (~3/cr)o", because

o" = Q cr" = 0. Explicitly the Cartesian compo-
nents of these Potts vectors read

A freezing of Potts spins into random directions such that
[(s"(z))] = 0 leads to randomly frozen inhomogeneous
strains (e;j) in the medium which vanish after quenched
averaging [(t;j)]= 0.

(iii) Finally consider the elastic properties of the sys-
tem. Due to the strain-defect coupling the bare elastic
constants in C are renormalized to their observed values
C. The elastic compliance S = (C) ' is defined as the
matrix of second derivatives of the free energy with re-
spect to an externally applied homogeneous stress. This
leads to

For p=4 only the oA'-diagonal elements of cr" are
nonvanis hing. They are represented as vectors o."

(0/3 (rsi 0 ig), so that the corresponding three-
dimensional Potts basis e" = (~4/o)o" reads

The effective Hamiltonian may be rewritten in terms of
Potts spins s(z) g (e "), which can be one of the above
basis vectors

H, ir =
z ) e(z)C e(z)+ ) ) s, ( )zI ;,~ekj(k)z

~ijkl: pN [(&ij &kl) (&ij ) (&kl)]—:pN(&ij &kl)cnm

(20)
—~i ) J s(z) s(z') (26)

A simple shift of variables e' = e+ Co Q s"(z)o" in
the Gaussian integrations during the calculation of the
strain cumulant results in the following identity:

+ ((S trint) ' (S trint))curn.
N

In this relation crjnt denotes the total extra stress due to
the defects, i.e. , rr;„t —P „s"(z)o." and So = (Co) ' is
the bare compliance matrix. Inserting the explicit form
of cr;„t, leads to an exact relation between the Potts spin
susceptibility

[J ]=NJo

and variance

(27)

with Ii;&k = o'/~3 for i = j = k (and zero otherwise) in
model A and Ix;jk = o/2 for i g j g k g i ( and zero
otherwise) in model B.

In order to solve the model as defined in Eq. (26) we
are going to introduce two major approximations.

(a) The interaction between the Potts spins will be
taken as infinite ranged. The couplings J I are uncorre-
lated Gaussian variables with mean

&""( *') = &( "( ) ( '))--
and the elastic compliance

(22)
(28)
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Jo and J are coupling constants of a coarse-grained
model and therefore they cannot be determined directly
from experiments. In the following they are treated as
adjustable parameters.

(b) The homogeneous deformations c are treated ex-
actly, whereas fiuctuations in the strain field e,~. (z) are
treated in a self-consistent cumulant expansion.

Given these approximations, the phase diagram can be
calculat, ed explicitly, in particula, r the transition t,emper-

atures and order parameters for the glassy phase and the
long-ranged ordered phase. These calculations are t, he
central point of Sec. IV.

In order to take the configurational average ovei J,
before the thermal average, we use the replica trick

[ln Z] = lim
[Z"] —1

n 0

with

[Z"]= 'Dc
I T(r)l [exp( —pH, fr(u (z), s (z)))]

exp + s; us~ z — s; z
~(p ij I

) .).) .s' (z)Iz z

sess�(z)

) .).) .zz (z) cz w zsi(z) I.
ij k ijkl

(30)

Here we put P = 1jk~T—:1 and Jp = Jp + (p —2) J2. (The temperature dependence of the system can easily be
recovered at the end of the calculation by multiplying each of the constants Jo, J, Jo, Ix, and C with P.) In a Potts
model without coupling to strains even an antiferromagnetic average of bonds (Jo ( 0) can give rise to ferromagnetic
and glassy states due to the renormalization of the coupling. For Potts models with p & 4 a transition to a glassy
state can only be reached for Jo ( O. Additive constants in the exponent have been dropped. Gauss transformation
yields

J2N
p'D(Q, M) exp &

—— P ) (Q, )

x 'Dc exp ( —
2 ) ) ) r,~(z)C,, l, ci.((z) + P ln z(z) &,

tjkl

where z(z) is the single-spin partition function with an z-dependent field c,z (z):

a(p ij 0' ij k

(32)

3 [ J2 I/2 n 3

dQ P
~ isL a2 27r h ~ I ~ Ss ~

n(p ij Cl'

f NJp

( 2x

The strain field c; (z) is decomposed into a, homogeneous e," and an inhomogeneous part i, (z) = e, (z) —i; .
The partition function of a single spin at site x can be decomposed accordingly

z(z) = ze (ezp —) ) s; li; ( )z)ssz, szI
a ijk

where the thermal average (. )0 has to be evaluated witli zo

ZO
I}

(s
a&p ij
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(a) In a first approximation we are going to ignore
inhomogeneous strain fluctuations, so that the averaged
partition function reads

grees of freedom, s 24 if we define an effective ferromag-
netic coupling constant

[z"] Ii(Q M e}e— I Iq"'I
2

0 oJP + (~1111 1122) '
3

(47)

with For p = 4 the order parameters in real space are given by

J2
f p(Q, M, .-}= ) ) (Q,,')'+ —') ) (~~I;)-'

a(p ij Q'

M, = M e,', Q,~
—— e,

' e ' + qT b,, ,

QI. —VT
(48)

+ 2 Ezj Czj k~ Cg t
—ill Zo.

zj kl
(37)

+iI t I ek I
— ~~ »j (s t ) p — I~ ki j M/„.

We look for a replica symmetric saddle point

Q,,P =QI, M; =M, , e,, =e~. (40)

The single-spin partition function can then be evaluated
by introducing a Gaussian noise source y; with variance
[u v&];= Q*,

ln zp = n[ln zi]g

with

(41)

Tr J
zi ——

& I exp Jti s — Q;~s, sI
U

+ ) e;IJel+ K*S K)eM, I
(42)

We make the following ansatz for the order parameter:

In the thermodynamic limit all integrations can be done
by saddle-point methods, yielding

QP(P)

Hence the eAective coupling constant, is

2
0

Jetr = JP+ —~121.
4

(49)

The random part of the interaction is not aAected by the
uniform displacement.

To conclude: The model of orientational degrees of
freedom with cubic anisotropy coupled to uniform lattice
distortions has the same phase diagram as the isotropic
Potts model s 2" (see Fig. 2) without coupling to the
elastic degrees of freedom, provided the renormalization
of the ferromagnetic coupling constant is taken into ac-
count.

(b) What is the effect of fluctuations in the strain field
e, (z) = e, (z) —e, ". We assume that, these fluctuations
are small, so that a second-order cumulant expansion is
applicable. The validity of this assumption will be dis-
cussed at the end of this section. The expansion for z(z)
reads explicitly

The thermal averages ( )p have to be calculated witll p

and z(z) depends on Q and M through F, I
. To discuss

the phase diagram of the orientational degrees of freedom
we integrate out the inhomogeneous strain field

z(z) = zp exp ( —,') ) I~,, I, I~I, ,F,, Pe, „(a)eP,(~) &

ap zjklr s

(50)
with

F = (; )o —(;)o( )o

and

p~ -sp -+~ gL QT
q = e Q . e = IpiI„1 + qTIIt„,

p —1
(44)

PM

where I„„—:e " e" = pb„—1. With the basis of Eq. (24)
this implies for p = 3

cubic

SG

etragonal
p = 4 rhombohedral

M, =Me,'= M 3 I1, (45) cubic

Jeff( 1

3Q g
= I tIgt + qTI g2

Then the model of Eqs. (36) and (37) is identical to the
isotropic Potts model without coupling to the elastic de-

FIG. 2. Phase diagram of models A (p = 3) and 8 (p = 4).
In the high-temperature phase (PM) and in the pure glass
phase (SG) m = 0 and the lattice is cubic. In the uniform
ordered phase (FM) nl = me' and the lattice is tetragonal
(p = 3) or rhombohedral (p = 4).
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~t'""l(Q, M) = d u(z)exp J ——,
' ) ) ) e,, (z)i~~l(z)

~

6 ~C~g, —) F„, Ii„,jI&,l, l (52)

so that we are left with an effective free energy as a functional of Q, M, and e:

[z"] vlQ, I, il exp (—N fpl Q, M, il y In z~'""~ (Q, M ) ) . (53)

The remaining integrals can be evaluated by saddle-point methods. We assume a replica symmetric solution (40)
and find

l9 1 . 1
Jp(M, —(s, )p) = —lim —ln z&'""

ctMN o n )
~ (s, )o M (s )o ) .((e. (z)e (z)) (e.&(z))(e (z))) (54)

J (Q,j —(s; s, )p) = —lim
~

—ln z '" = I&„ylIil&& (s„sl )o—) .(4l(z))(era(z))i
,, N~-p qn ij

(55)

and

~;,„-.= -I'.', (:)' (56)

These equations determine the phase diagram and the order parameters M and Q, once the corre»tions o«(z) and
e have been calculated in terms of M and Q.

This can be done perturbatively in a Ginzburg-Landau expansion in Q and M. To study the transition from the
paramagnetic phase to the collinear ferromagnet we assume q&

——O, M g 0, and qL, g 0. The detailed calculations
are presented in Appendix B. The result is

M(1 —pJ, rr) = p J,rr
—

~
1+ (p —2) —MpJp

~
I~„;jI~,l, le„e,—) [(e,j(z)eel(z))]

O'JoM ( 3 -1,, 1

2 '"
p —1 k 2 ) ' "'N

+0(M, Q, MQ).
The paramagnetic solution M = 0 becomes unsta. ble to ferromagnet, ic fluctuations at the critical temperature

(57)

2 2TF 0 p p 0 1
1 + - (Sll ll —Sl l22) — - ) ) [(e';(z)e,', (z))]e, e, (58)

for p=3 and

Ty 0 p
20' 1

1 + . Sl2l2 — . —) [(e23(z))(e23(z)) + ( 1e(3)z)( 1e(3)z) + (clz(z))(e12(z))]
Jp 4Jp 3J(~) &

for p = 4. The transition is in general first order. With-
out fluctuations e = 0 the coefIicient of the cubic term
M3 in f(Q, M, e) is the same as in Ref. 19,

I

critical temperature T~, we just need to know

(s, s~)p —J Q,j + O(q ) (61)
2

M(1 —PJ,rr) = P J,tr+ O(M, Q, MQ) (60)

with Jo replaced by J,rr. Fluctuations e g 0 tend to
reduce the cubic term, i.e. , weaken the first-order tran-
sition. Since the transition to the ferromagnetic phase
is discontinuous, the expansion of Eq. (57) is not really
justified. Nevertheless we expect it to give a. qualita-
tive picture of the correct phase diagram, as contained in
Eqs. (58) and (59).

To discuss the transition from the paramagnetic to the
spin-glass phase we assume qL,

——qT
——q and M = 0. As

noted in Refs. 19 and 24 the transition is continuous for
p = 3 and 4. This remains to be true in our model at.
least for small coupling constant o. , where the cumulant
expansion is justified. To calculate the cha.nge in the

t,o lowest order in q. For the three-state model the tran-
sition temperature is given by

T

x ) ).I* [( **(z))(e ( ))]

The time persistent correlation, q g 0, gives rise to a
random static strain (e,, (z)) g 0, which averages to zero
(1/N) P [(e;,(z))] = 0, but has a nonzero variance pro-
portional to Q,j. Hence the last term in Eq. (62) goes
to a finite limit as q ~ 0. For the four-state model the
corresponding equation reads
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(
TG 1 P 2 . 1 1

1 + — — lllll ——) [(e»3(z))(e23(2')) + (&31 (z)) (e31(z)) + (e12(z)) (e12(z))].
3 J q-oq X (63)

Thc critical temperature is hlgllci' thall in R moclcl wi tll-
out coupling to the elastic strain, which means that, thc
random interaction between the quadrupoles is enhanced
by nonuniform lattice deformations. This CAect can only
be seen in a self-consistent cumulant expansion, as de-
fined in Eqs. (50)—(5'2). Straightforward second-order
perturbation theory in o would produce no shift in T~
because to lowest order in o, we have (e,j(z)) = 0.

The cumulant expansion is useful only if two require-
ments are fulfilled.

(a) The coupling between the elastic strain and the ori-
entational degrees of freedom is small compared to the
other coupling constants, i.e. , a /T & 1. For the ferro-
magnetic transition this implies crjJo & 1 [see Eqs. (58)
and (59)] and for the glass transition o jJ & 1 [see
Eqs. (62) and (63)].

(b) The inhomogeneous strain fluctuations are small
or at least finite. Since the "stifI'ness" for the inho-
mogeneous strain is renormalizcd by local spin correla-
tions only [see Eqs. (50)—(52)], we expect, these Auctua-
tions to remain finite —even close to the ferromagnetic
transition, where nonlocal spin correlations become long
ranged. In this sense our theory is at least consistent,

So far we have only discussed the replica symmet-
ric solution of the saddle-point equations. It is well
known that this solution is unstable in t, he spin-glass
phase. " The correct mean-field solution requires replica
symmetry breaking and shows a rich structure in the low-
temperature phase. Here we have focused on the over-
all phase diagram. The transition lines from the high-
temperature phase and the crystal symmetry in the low-
temperature phase are not expected to depend on t, he
assumption of replica symmetry. However it would be in-
teresting to study the correct mean-field solution in the
glassy phase, in order to discuss t, he dynamics Rnd the
quasielastic peak in the low-temperature phase as well
as possible transitions between various low-temperature
phases. This has not been attempted so far.

and a rhombohedral displacement for p = 4

As discussed in the previous section, the distortive phase
transition is discontinuous in both cases.

B. Elastic constants

In Sec. III we derived an exact relation between the
elastic compliance and the uniform susceptibility

s = s'+ soK~KT(so)T. (66)

Obviously this relation also holds for the long range
model, where the ferromagnetic susceptibility has to be
calculated in mean-field approximation. This is most eas-
ily done by applying a uniform field h and calculating the
response g;j ——dM, jdhj ~h = 0. Two simple cases will be
discussed in detail.

(a) The ferromagnetic model without random inter-
actions Rlld without nonUIilform stl Rll'1 flue tuat lol'ls. In
this case the uniform susceptibility is simply related to
the local susceptibility via

loc " 1oc
X~j Xzg X&j JeA —X~~

and the local susceptibility is given by

loc
22

s;s, exp(9J,sM s)

exp(P J,1r M s)

(68)

dered phase is characterized by a nonzero magnetization
M, = Me, , which gives risc to a tetragonal displacerilent
for p=3

C7 0 0
e1j — ~1jei M(S1111 ~1122)

3

V. ELASTIC PROPERTIES

In this section we are going to discuss the modification
of the elastic properties due to long-range orientational
order or random freezing of the quadrupolcs. The first
part of our discussion will be put in the context of' nlcan-
field theory, as discussed in the previous section. 6'e
then go on to discuss which of these results Rre expected
to survive in a short-range model.

A. Homogeneous def'orniations

The local susceptibility cari be expressed in terms of
M, = Me,' as follows':

y,"', = ) e,"y,', 'e~ = p(1 —M)(MI„1I„,+ I„„).
U

(69)

VOt tS Symmetry requireS the Sarile StruCture fOr y" v

= ) e X je = ' I1~1I»+ GATI» (70),pv P v

(& —1)

with
Long-range orientational order causes a macroscopic

distortion of the lattice (see Fig. 2). The exact relation
[Eq. (17)] coincides with the saddle-point equation with
M calculated in mean-field theory. The long-range or-

XL XT XTI II~1 + ' I ~
fOr P = 3

6 3
(71)
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XL XT
X &

= ~,'~,' + XT~',3
for p= 4.

$L
P(l —M)(l+ (p —l)M)

1 —PJ,.(1 »—)(1+ (p 1)-M)

The matrix equation for y;z is then easily salved:

P(1 —&VI )
1 —PJ,p.(l —M )

(73)

such that S1111+ S1122 ——const.
Below T, the elastic complia. nce is t, ha. t of a tetra. go-

nal lattice. In the weak-coupling expansion the elastic
constants are given by

0 O 2

C1 111 —C1111 2g L )
3

0 O 2

C1122 —C1122 XL )

3
(77)

For high temperatures gl. = gT = y = (T —'I' F)
the susceptibility shows Curie-Weiss behavior. The di-
vergence at T~ is cut oA' by the discontinuous transition
at T, & TF. The mean-field equatioii of the homoge-
neous Potts system (8/c)») f(M, P) = 0 can be solved
analytically for P(M). At

Jew p —2 p'
2 p —1 ln(p —1)

the free energy of the paramagnetic and the ferromag-
netic phases are equal. In Fig. 3 we show the uniform
susceptibility as a function of temperature for a particu-
lar set of parameters. For p = 3 the elastic compliance
above T, is given by

XL + 3XT
3 2

p & XL 3XT
+2233 —C1 1 22

For p = 4 the elastic compliance above I; is givei& by

0 2, 0+1212 ~1212(1 + + ~~1212) (78)

and no modification of the other elastic constant, s, i.e. ,

sl 1 1 1 —S1111 alld S1122 —~1122. Below T, the elastic0 0

constants are those of a rhombohedral lattice. In the
weak-coupling expansion they are given by

0- 2 yiL + 2yrT
C1212 —C1212

2 3
= C2121 = C222s,

0 0 p
2

0S,~I, (
—S; I„+ — yS, „„I„,S„]„. (74) Y. L —XT~ 1223 — —~2313 — ~ 1213

2 3
Hence there is no modification of the shear compliance
S1212 an increase ln

0 0 2
0 0 2+1111 —~1111 + 2 X(~1111 ~1122)3

and a corresponding decrease of

and C&111 —01111,C1122 ——C&1 2. In Fig. 4 the elastic0 0

constants C1212 and C12]3 are shown as functions of the
temper at ure.

(b) The glassy regime without ferromagnetic coupling,
J,fT

—0. In this case we expect the uniform susceptibility
to be identical to the local one y, ~

= y,
' with

0 ~, 0 0
2

~1122 ~1122 2 ~(~1111 ~1122) )
3

(76)
0

C)2)2 .

0

TF

FIG. 3. Susceptibility of the homogeneous p = 3 Potts
model. The high-temperature branch diverges at Ty, the two

low-temperature branches diverge at the teniperature marked

above T, . The divergences are cut oA' at T,- by the first, -order
transition.

Tc

FIG, 4. Cq2i2 and Cq2r„ for model B at the ferroelastic
transition. The system is cubic above T, and rhombohedral
below T, .
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for p= 3 (8o) Cm22

all d

ioc
4

for p = 4.

Hence the uniform susceptibility is predicted to show
Curie behavior y I/T above T(~ and a cusplike singu-
larity at TG. The elastic constants are modified accord-
ingly as shown in Fig. 5. Again, symmetry determines
which of the elastic constants are afIected by the random
freezing of the quadrupoles: Sq2) 2 for p = 4, Sq) q) and
Sq)22 for p = 3. The tensor of elastic constants always
has cubic symmetry —even below TG.

C. Nonuniform strain Quctuations

FIG. 5. Cqj22 for model A at the glass transition. Below&

T~ the elastic constant increases due to the stochastic freezing
of orientations.

The random part of the interact, ion J g 0 between the
quadrupoles gives rise to a freezing of the orientations
in random directions. Randomly frozen in quadrupoles
cause a local, static distortion of the lattice. This eA'ect
is most important for the glassy phase. Hence we discuss
it in detail for M = e = 0.

The glassy phase is characterized by a. nonzero order
parameter Q,j, which for p = 3 has the simple structure
Q;&

——(q/3)I, &. Within our second-order cumulant ex-
pansion the fluctuations in the strain field contribute to
the partition functions as follows:

-c O g 2&«xp ——) .) ).&;, (&)&k)(&.) l Cq'j&& — ~&4)I t l + —) .) ) .&,;(&)&,, (&)q'
ij kl x np ij

(82)

with the total partition function given by z = Qc exp

[z"] J2
qq(q) exp( nN q + nN[ln zz]q

2

+ le z'""(q)). (83) (88)

Here zq is given by Eq. (42) for M = i = 0

Z]
j2

I I
exp l Jy". s — ) s;I,, s, & . (84)

U (u*(~)) = (89)

and partially renormalized elastic constants C,j)„.)

C&t( —(q /3)bjb), )I;)q. The local static stress gives rise
to a local static displacement

[zl. "(z)z;;"(z')) = q" (q) qnq(z —'')

We can then perform the linait n ~ 0 and find

(86)

q has to be evaluated with z~

2q' = [(s)., (s)., ]w-

and y" denotes a. Gaussian random field with [y, yj]
(q/3)I;j. The interaction between different replicas in

Eq. (82) can be decoupled by introducing a local random
stress o,", "(x) with zero mean and variance

where G,j(z) is the Green's function of the lattice. It can
be calculated in Fourier space

C~)(k, k)G),.= b,' (90)

For an isotropic elastic medium the Green's function in
real space is also known, ' whereas for cubic symmetry
the Fourier back transformation is not known in general.
Here we just note that C is given by th.e bare elastic
constant and the local susceptibility. Hence the corre-
sponding compliance S = C ~ = So+ SOKA'' 'K (S )T
always remains finite.

The local static strain vanishes on the average
Inh ln -lnh

n O

with

(87) [(u*(~))1o = o = [(~'j(~))]

but has a nonzero variance, independent of z

(9I)
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Eqq Z Cgg X g d ~ G;k(x —y)G~((x —z), ot" i„."(y) ot', "(z)
~ye

3 p
0' " 8 c)

d z G,k(x —y)Gql(x —z)q — Iyl -6(y —z)
3 c)yi„- r)zl

d'y d'= G,„(y)G, , (z) b(y —z).
t-) yk

(92)

To lowest order in tT or close to T, : q —q, so that the spin-glass transition temperature is according to Eq. (62)

(
2

1+ — d g d zG;g P Q&~ z l;&If„-~ 6 g —z
ijkl

(93)

S(r, cu) = dg i(ut g iP (I —l„)( iP u(i, P) —iP. u(Z, t))
xy

(94)

Here l denotes a lattice vector. Local tiIne persister1t dis-
placements give rise to an elastic peak S(tt:, ~) = f( )St~
with strength

The most prominent efI'ect of a. local strain will be an elas-
tIC peak in the van Hove correlation function, as seen ex-
perimentally in neutron scat, tering. The difterential cross
section for neutrons wit, h energy transfer h~ and momen-
tum transfer h~ is proportional to the Fourier transform
of the density correlation

of debate. Monte Carlo simula. tions of the isotropic
quadrupolar glass show a, static freezing transition at
T = O. Carmesin has obtained some evidence that, the
anisotropy in the quadrupolar glass is essential for a fi-
nite TG g 0. However the limit of strong anisotropy,
i.e. , the Potts model in three dimensions, is still contro-
versial. Banavar and Cieplak2 argued that it depends
on the dist, ribution of the randomness whether or not
a three-dimensional Potts glass exists at finite tempera-
ture. Scheucher et a/. present evidence that, the ~r = 3
Pot, ts model with Gaussian disown de& is at, its lowe& crit, Ical
dimension at d = 3.

From a theoretical point of view it is not even clear
whether t, he quadrupolar interact, ion in three dimensions
is in the universality class of the short-range model.

f( ) ) 2K'(l~ —l„)[( aPu(Z))
(

aP'u(z)) —
]N VI. THE SIX-STATE CASE

(95)

The thermal average ( . .);„h has to be calculated with
z'"" [Eq. (88)] for fixed 0" ". Above the glass transition
temperature TG the elastic component vanishes. Below
TG, its strength f(tc) can be calculated within the ap-
proximations of the last section, i.e. , a second-order cu-
mulant expansion for ei) and long-range interactions for
the orientational degrees of freedom. Work along these
lines is in progress.

How are these results modified, if the interaction
between the orientational degrees of freedom is short
rangeE The transition to the ferromagnet, ically ordered
state survives for all p in three dimensions. For p = 3 and

p = 4 it is extremely weakly first order with a correspond-
ing enormous increase in the susceptibility, as shown by
elaborate Monte Carlo simulations. Hence we expect
to find a tetragonal phase for p = 3 and a rhombohedral
phase for p = 4 in a three-dimensional model with short-
range interactions. Of course the transition temperatures
will be difI'erent from the predictions based on mean-field
theory. The strong enhancement, of ferromagnetic fluc-
tuations as the transition is approached will lead to a
corresponding strong decrease of the elasti(. consta, nt, s, as
is entailed in the exact relation of Eq. (23).

Whether or not there is a, glass transition in the
three-dimensional short-range model is still a, matter

In this section we discuss the case in which orientations
align parallel to one of the face diagonals [Fig. 1(c)]. First
t he cof I'espondll1g six-st, at, e II100el wltI1 appropl'la, t,e synl-
metry will be discussed without consideration of elastic
degrees of freedom. Several ordered and glassy states
are shown to exist, for this model. Then it is argued
that (like in the case of the three- and four-state models)
weak coupling between elastic and orientational degrees
of freedom is not expected to change the phase diagram
qualitatively. Equations (17) and (23) can then be used
to derive macroscopic distortions and elastic constants in
the difI'erent phases.

A. Symmetry of the model

All face diagonals are equivalent. Every face diagonal
can be mapped on every other by cubic transformations
(changing of coordinate axes, reflection of a coordinate
axis). Since none of the face diagonals is singled out, the
high-temperature phase has vanishing mean orientation,

In order to discuss the interaction of two orientable
molecules, the symmetry of pairs of orientations has to be
considered. It can easily be seen that two pairs of face di-
agonals can be mapped onto one another by cubic trans-
formations, if and only if they enclose the same angle.
Angles can take the values 0, a/3, or n/2. In Fig. 1(c) we
numbered the face diagonals such that they are perpen-
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lose ~dicular if — = n lni ~p
—v( = 3 and inc /3 if

eneous system can b e writ-

H =— ) s„(z)J"", s„z'). (96)

We do not disc
dla ra

iscuss the w

s a ility of th
e ic' phase.

1e

Here, (z, z'~ a '
o, z

&
~are pairs of teract

, 'x- imensional P
ns and theing orientatio

s vectors:

spaz) = e "&*&—e, where e" = I
mat

„=—I„„=—6b'" —1 (97)

(a 0 0 b 0 0
0 a 0 0 b 0

(a+ b, a —b)—:
b

0 6
0 0 a 0 0

0 0 a 0
(0 0 b 0 0 a)

(98)

where +band a —b are the (th
o . appropriate z

ireefold) eige lenvalues

Now
'

odu nc

y is defined J"'

w we introdu

ls ) p

the lo

d l l8
n o sor er respe t-

, ) Tl
nnsor~; c s the s )

0= —) s

e Hamilt onlan is

) s„(z)(jp"+ 4 "" ., z
(x,x') Pv

Z, X' j /4l/
)

"" ., z (99)

where J"'

d st, atisti-

tl tll
ss phase turns os s oui

ngesln il
"' " ' 'g

1e mixed phases

The rix elements j"
e on three diA'eren
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In mean-field approximation thn e uniform Ha namil ton ian
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Then
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are thermally disordered: nv = O. The ground state is
characterized by parallel orientations of all defects, i.e.,

n = (1,0, 0, 0, 0, 0) and m = (5, —1, —1, —1, —1, —1). The
ground state is sixfold degenerate (orientations 2—6 are of
course equally likely). When the temperature is slightly
above zero, almost all defects will be parallel to the (say)
1-direction. The local field, "felt" by the defect at z is

h = W'(Jo+, J() )m + O(1/N). Now assume that, m~

mq. Multiplication by W(Ju+, Jo ) will in general lead
to h2 g hq, which is inconsistent with t, he assuniption.
So one should expect that at low temperatures the mean
orientation has the symmetry

Al — 70]
&

70& I
& mg ) I, ITk (104)

where m = —(mi + mq)/4 is imposed by P m„= 0.
This is exactly what is found by explicit calculat, ion.

If Jo && Jo the system enters an i nter media te phase
on cooling from high temperatures. Heie the mean ori-
entation is

rn= m(2, —1, —1, 2, —1, —1). (105)

The state is threefold degenerate. Obviously it has lower
symmetry than the disordered phase, as one pair of or-
thogonal orientations is selected by spontaneous symme-
try breaking. However, it has higher symmetry than the
low-temperature phase, because there is no distinction
within the pair (mr —mq).

For —Jo Jo+ ( 0 another intermediate phase is ob-
served. Here we find no distinction between pairs (1,4),
(2,5), and (3,6) but one orientation in every pair is pre-
ferred. There are 2 ways to choose the preferred orien-
tations, hence the degeneracy is eightfold. nv is, e.g. ,

rn = m(1, 1, 1, —1, —1, —1). (106)

Note that the three preferred orientations (m„= +m)
lie in a plane if mi . m2 ms ——m [Fig. 8(a)] and align
around a body diagonal if mi m~ ms ——+m [Fig. 8(b)].
However the system does not discriminate between the
two possibilities (which are important in view of corre-
sponding lattice distortions). This is clue t, o t, he fact. t, hat,
the Hamiltonian involves only pair iilteractions and every
two out of the three preferred orientations have an angle
~/3 in both cases, but one must look at three orientations
at a time to distinguish between the two cases.

In the cubic high-temperature phase (see Fig. 7) the
system has highest symmetry. The symmetry is lowest
in the orthorhombic phase because nx [Eq. (104)] con-
tains two independent order parameters mq, rnid. Note
however that there is still some symmetry left: 7m~

FIG. 8. In the rhombohedral phase three face diagonals
enclosing angles ir/3 are favored. They align around one of
the body diagonals (a) or lie in a plane perpendicular to a
body diagonal (b).

7TL3 —m5 —706 . The same relations hold in t he tetrag-
onal phase, where we have in addition 7n, ~

——n~q. The
orthorhombic phase represents thus a subsymmetry of
the tetragonal phase. The phase transition is second or-
clel' ancl 'l71(T) is contliluous fot' T ( 6J+. On the otllei
hand the orthorhombic phase is not a subsymmetry of
the rhombohedral phase (106), because in the latter case
m2 g ms. Hence the order parameter nv jumps and the
phase transition is first order. The cubic-tetragonal tran-
sition corresponds to the paramagnetic ~ ferromagnetic
transition of the p = 3 Potts magnet (see Sec. VII). For
J+ = J the system is an isotropic Potts magnet (cubic-
orthorhombic transition) with p = 6. Both transitions
are first order in mean-field approximation, although t, his
is not, required by a simple symmetry argument.

C. The six-state glass

Starting from (99) we replicate the partition function
I

and take the average over A
'

. Additive constants are
dropped to obtain

(+ ]:
( ( ~) +xP( ~V ) .) .() .I:(~) l~o () .C(~))"

Ct (JV Z Ã

Here Jo = W(JO+, J() ) and
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Jo —Jo+ + P(6J+)', Jo:—Jo + P(6J ), (108)

are the effective homogeneous coupling constants. Gauss transformation yields the free energy per site:

py min
(m, q}

2) ) &(J 1)pv cr + ) ) up(J —1)yv(J —1)p&r op

A PV ~(P PVPCT

—ln ~ exp 7Ap sp + qpp sp8p
Q' ~(p pp

(109)

Note that the special structure of the system, represented by Jo and J, appears only in terms quadratic in rn and q.
We need not specify the interact, ions yet. If, e.g. , Jo and J were proportional to the identity matrix, Eq. (109) would
describe the isotropic (p=6) Potts glass. 's ~~

The extremal values of m and q (neo and qo) correspond to the magnetization and Edwards-Anderson order
parameter:

(110)

In order to obtain the stability boundary of the high-temperature phase (m„= 0, q&~P = 0) the trace in Eq. (109)
has to be expanded up to second order in rn and q

2 4

exp( p) ) m„s„+p ) ) q„ps„sp ( =6" 1+—) ) m„I""m + —) ) q„pI" I" q
p

Ck' P ~(p pp Ck PV ~(P PVPC7

+O(m, m q, mq, q ) j.

The high-temperature phase is (at least) metastable, if
the rn-rn and q-q coupling matrices are positive definite,
which means that

(1, 1, . . . , 1) be an eigenvector of Jtt ancl J.Then the high-
temperature phase is (meta-)stable for T/p greater than
all Eigenvalues of Jo and J.

Jo+ Jo (112)

Figure (9) shows two two-dimensional cuts of the four-
dimensional phase diagram. Note the similarity to the
Potts glass (Fig. 2).

The result can be generalized for all pstate mod-
els with coupling matrices which do not single out one
or more states. To be more precise, we require that

D. Pure glass phase

In the following we put, Jo —— 0 and consider only
replica symmetric solutions. In the absence of an ef-
fective homogeneous coupling no global preference of an
orientation is expected, i.e. ,

8=0
(meta

r qgO

(We write m, q instead of nl , q in the follow. ing. ) How-

ever, for a specific realization of 4 the defect at site x
may be frozen:

(s(~)) 8 o

This leads to a nonvanishing Edwards-Anderson order
p ar

arne

ter
I'IG. 9. The "paramagTIetic" solution m, = 0 of the six-

state glass is at least metastable!f T/6 ) Jo+, Jo, J+, J . We
show here two two-dimensional cuts of the phase diagram to
stress the similarity ta the Pot ts glass (Fig. 2).

(115)

In addition to (113) we require that for Jo+ ——0, q„„
should have the symmetry of the Hamiltonian, i.e. , of
W"" Then
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+
q„, = w"'(q+, q )— (116) (118)

Here we already took care of the condition

) q„. =o, (117)

which originates from our Potts spin representation of
the states:

The eigenvalues of the matrix q„, are (1x) 0, (2x) q+,
and (3x) q . So the system is described by two order
parameters q+ and q . Before we t, urn over to the results
of the calculation, let us discuss the physical meaning of
q+ and q . We define the vectors v"' by

(v', . . . , vs) = & +

Remember that in the homogeneous system there is a phase (rhombohedral), where m and (I/N) Q~[{s(z))] «e
para]]el to one of these directions. Now assume that in the glass phase the local mean orientation at site z, {s(z)) is

para]]e] to p&(~). If each /", is equally probable, then (I/N) p [{8(z))]= 0, i.e. , the global mean orientation vanishes
as we claimed for the pure glass phase. The order parameter of this phase has the following structure:

~ ).[( ( )){ .('))]- 8 ),' ." —]4'""(0 I) (»0)

which implies that q+ = 0. Now assume t, hat local orientations freeze into states which prefer one pair of orthogonal
face diagonals. Here (s(z)) is parallel to

(121)

and q =0.
So we should associate q+ g 0 wit, h local freezing of orthogonal pairs and locally tetragonal structure and q g 0

with ]ocal splitting of occupation numbers within pairs and locally rhombohedral structure. A freezing of {s(z))
para]]e] to (rn& rn rn rn&, pn, rn) directions causes both q g 0 and q g 0 as the six states break both symmetries.

The phase diagram (Fig. 10) is constructed from an expansion of the free energy:

2

3"(q+)-'+ 3 —1 3 (q )" + 2 3 (q+) —2 3 q+(q ) + 2 3 (q )

—2 3'(q+)' + 2'3'(q+)'(q )' + 2'3'q+(q )' —2'3'(q )" + o(q') (122)

The thermally disordered phase, q+ = q = 0 lo-

cally minimizes the free energy for J+, J ( T/6 For.
J+ ) J we find a second-order transition to q+ g 0
but q = 0. (Note that f does not contain a term lin-

ear in q .) q+ grows linearly in T —T, [Fig. 11(a)]. In
this region we expect a glassy phase with a local tetrag-
onal structure. For J ) J+ the system undergoes an-
other second-order transition to a phase with q+ g 0
and q g 0. [Note the terms q+(q ) and q+(q ) in f].
Here q grows linearly in T —T, whereas q+ —(T —T, )
[Fig. 11(b)]. So just above the transition line (T = 6J ):
q+ « q and we expect a glassy phase with almost pure

local rhombohedral structure.
The expansion (1'24) of the free energy is not, st, able as

(q+) and (q ) have negative coefficients. To recover
stability one has to take into account higher powers of q,
at least up to q . In particular in the shaded area we do
not even get a metastable solut, ion. However, it is quite
obvious that it should have q+ g 0 and q g 0. For J+ =

the system is the six-state Potts glass. "" -'" The phase
boundary between q = 0 and q g 0 has slope —

s in

the neighborhood of the t, ricritical point J+ = J = T/6
The borderline of the shaded area. ha, s slope —

3 in this
region. Both lines have been derived for q+, q « l.
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q t0
Sp Z W 6 X

2; P

(123)

ll6

q, =Q

q =0

iqpO
~q 00

, q. ~Q
lq =0
I

l

I

I

I

1

I

1/6 J. / g

E. Elastic properties

As we have shown, the model defined by (99) ex-
hibits several phases: (1) a. thermally disordered high-
temperature phase; (2) ordered phases with nonzero
global orientation with diA'erent, symmetries for J (( Jp.,
(3) pure glass phases wit, h frozet7 Io& al oiiet7t. atiot7s for
J yy Jo.

In addition there may be mixed phases for an interme-
diate range of parameters and low temperatures.

Orientations are coupled to elastic degrees of freedom
by adding

q.

FIG. 10. Phase diagram of the pure six-state glass. The
free energy has been expanded up to fourth order in rg. In
the shaded area we find no stable solution. All transitions a,re
second order.

to the Hamiltonian.
o" is given by (7) and its cubic transformations. 11Ve

put op = 0 by a readjustment of t, he lattice constant.
The full Hamiltonian is given by Eq. (11). Expecta. —

tion values of orientations and elastic distortions are re-
lated by Eq. (17). We showed for the three- and four-
state models that weak e-s coupling, ptTL T « 1, does
n.ot alter the phase diagram qualitat, ively. In particular
the symmetry of orientational expectation values remains
unchanged. Here it is assumed that this result can be
generalized to the six-state case. Then the orientational
expectation values on the right-hand side of Eqs. (17)
and (23) can be taken from the discussion of the Hamil-
tonian (99). They lead to elastic distortions with dif-
ferent, symmetries (Fig. 7): (1) high-temperature phase~ cubic; (2) m = m(2, —1, —1, 2, —1, —1) —tetrago-
llal; (3) 777 = m(1, 1, 1, —1, —1, —1) —rllolllbohedra l;

(4) 777, :(mt, 777, , 777, 777q, 777, 777)
' ol'thorllo111171C; (5) pu1'e

glass ~ cubic with frozen local st, rain.
It is also straightforward to show that a mean orien-

tation rn = (m1, m1, m, m4, mq, m) would cause a mon-
oclinic distortion. This phase is unstable in the homoge-
neous limit (J+ = 0).

It has already been mentioned above that two rhom-
bohedral phases are accessible for the system, depend-
ing on the sign of mqm2m3 ——+m . For o.T & 0 and
mqm2m3 ——+m the crystal is stretched along a body
diagonal, whereas in the mqm2m3 ——m case it will be
shortened along the body diagonal and stretched in the
perpendicular plane. If o.z ) 0, the two cases will be
interchanged. In our simple model both configurations
are degenerate. However, higher-order terms or short-
range contributions presumably distinguish between the
two possibilities.

In the pure glass phase, m = 0 and there is no macro-
scopic distortion. Nevertheless the elastic constants are
affected by the disordered freezing of orientations. The
elastic compliance can be calculated as in Sec. V:

Ib)

s„„—s„„= —,, (s„„—~„,-, ) ~, ,
o 2 1

q o -o

0 1
~ 0 0 2 2~1122 ~1122 —

( )g (S1111 ~1122) +L)

(124)

o 1 q o
~1212 S1212 — 1

)
2 (~1212 ) ~t .

0- VII. DIP OLAR EFFECTS

Tc

FIG. 11. For the pure glass with J ) J (a) one enters
an intermediate phase on cooling with q = 0, q+ g 0. At
the transition q+ grows linearly in T, —T For J+ ( J (b).
q grows linearly whereas q+ is quadratic in T- —T.

The symmetry arguments, which have been used to
derive the Hamiltonians of our three-, four-, and six-stat, e
models, can easily be generalized to t, reat, arbit, rary @-

state models. In particular we are now ready to discuss
systems with dipolar defects for which the IIamilt, onian
is not, invariant, under 160 degree Hips of a defect, .

As an example we return to the three-state model,
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where the orientable rnolecules align along coordinate
axes. Now the two ends of the defect axis are no longer
equivalent. Each molecule is in one of six states (Fig. 12),
modeled by Potts vectors: s(z) (97). Cubic symmetry is
assumed and the s-s interaction matrices 3 t, ake the form
(98).

Hence we exactly recover the six-state model, which
applies to nondipolar face-diagonal symmetry, with how-
ever a different physical interpretation of the states and
phases. If dipolar effects vanish, the system cannot dis-
tinguish between state 1 and state 4, i.e, j = 0. So,j
is a measure of the dipolar interaction strength. Analo-
gously J+ measures the quadrupolar (nondipolar) inter-
a.ction.

The phases can be described by nl. and q. If the
nonordered pairs (m~, mq}, (m.&, ms}, (m3, ms} are all

equal (e.g. , (m, —m}, (m, —m}, ( m, m}—) the phase will

be called quadrupolarly disordered (qu. d). Otherwise the
phase is quadrupolarly ordered (qu. o), which means that
(at least) one of the coordinate axes is discriminated. If
m~ ——mq, rn2 —sn5, and n~3 —~n6, t, he phase will be
called dipolarly disordered (di.d), otherwise di.o.

The form of the orientation-strain coupling o" must
be newly determined. Let us assume that the defect
points in the +z direction correspond to p, = 1. Then the
force dipole tensor o.

;& must be invariant under rotations
around the z axis by 7r/2 and w&. Hence o" is given by
Eq. (7) with O'T = 0. This means that only qu. o. phases
show a macroscopic distortion, which is always tetrago-
nal. Defects with dipolar symmetry and no quadrupolar
moment only couple to nonuniform strains, as already
not, ed in Ref. 29,

For homogeneous couplings (no quenched disorder) we

get the phase diagram of I"ig. 13. Now assume that Jo+

and Jo are given and T is varied. At high tempera-
tures the crystal is always completely disordered and at
low temperatures it has qu. o and di.o. At intermediate
temperatures we have three different cases (Fig. 13).

(i) Jo /Ju )) 1: The system goes into an intermediate
phase, which has qu. o but no di.o and hence is tetra. gona. l.

(ii) Jo+/J& I: The intermediate phase has no qu. o
but di.o.

~o

kBT

1

6

0

cpu. o., tetragonol
~

dlP. d.

1

6
j0

(iii) Quadrupoles and dipoles order simultaneously.
In t, he pure glass phase, 30 —0, the elastic constants

are not modified by q, because oT ——0. Remember that
near the glass transition q+ (T, —T)t+ where P+ is 1

or 2, depending on the ratio Jz+/Jz (Fig. 11).
If cubic potassium tantalate, IKTa03, is doped with Li

or Na, the smaller dopand (say Li) replaces the larger I&

atom. The former is thus sit.uated in a. cage of 12 oxygen
atoms, which is too large, so t, hat, it takes an oA'-center
position on one of the cubic axes' (l'ig. l4). We talce this
position as the orientational degree of freedom. CI&oos-

ing the center of the cage as the origin, the six possible
positions are indicated by the end points of the vectors in

Fig. 12. So our model has the appropriate symmetry for
the above example. We expect the dipola. r interaction to
be of electric origin and the dominant, quadr' upolar inter-

FIG. 13. Phase diagram of the homogeneous, dipolar
model A. The system is mathematically identical to the
quadrupolar model C as long as the coupling between orien-
tations and lattice distortions is disregarded. Three possible
paths which the system can take are indicated as dotted lines

(i), (ii), and (iii). The transitions occurring along these paths
betvveen quadrupolarly (qu. ) and dipolarly (di. ) ordered (o.)
and disordered (d.) phases are discussed in the main text.

FIG. 12. If the defects have an electric moment, up a.nd

down directions have to be distinguished. For the anisotropy
of model A we get six states, which car~ be numbered such
that states p, and v are antiparallel for ~p, —v) = 3 and per-
pendicular for ~p,

—v~ = 1, 2, 4, or 5.

FIG. 14. The dopand Li+ (black) in lithium-potassium
tantalate in its cage of the 12 surrounding oxygen at, oms

(white) takes an off-center position. It can be represented

by a vector pointing from the center of the cage (black point)
to the center of the I,i+-ion. The six possible positions corre-
spond to the vectors in Fig. 12.
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action to be mediated by latt, ice strains, so t, hat. dipolar
and quadrupolar efkcts should be separable in dielectric
and structural/elastic measurements.

As it has been stated in the beginning of this sec-
tion, every model with p easy axes can be extended by
introducing dipolar intera. ctions. One must, exploit the
symmetries of the corresponding 2p states to reduce the
number of free parameters of the 2p x 2p matrix Jo and
the couplings cr". Even if the ~-8 coupling o." is dis-
regarded, this will become more and more complex for
p ) 3. Consider, for example, the face-diagonal model
with dipolar interact, ions (Fig. 15). It includes four free
parameters. The energy can take five diA'erent values,
depending on whether the angle between orientations is
0, n/3, 7r/2, 27r/3, or n", the zero energy is arbitrary. With
the numbering of the states of Fig. 15

(125)

with

(a d d c d 0)
' d a d 0 c d

d d a d 0 c
c 0 d a 0 0
d c 0 0 a 0

(0 d c 0 0 a)
(126)

Ib 0

0 0~II—
0 c

0

0 c 0 d)
0 d e 0
b 0 d c
0 b d d
d d 6 dcddI)

If no dipolar interaction is present, states r and r + 6
become identical and a = b, d = 0. It might be conve-
nient to simplify the general interaction [Eqs. (125) and
(126)j assuming that the dipolar part has a specific form,
controlled by one parameter (instead of two: a —6, d).
Take, e.g. , the scalar product of the vectors in Fig. 15 as
the dipolar interaction energy. Then 3O is a sum of the
quadrupolar part (with twice as many states) and the

FIG. 15. If dipolar interactions are taken into account for
madel C, I2 orientations are allowed. Note the numbering of'

the states: Orientations p and v are antiparallel for ~p
—v( =

7 and perpendicular for ~p
—v~ = 3 or (p —v~ = 9.

dipolar part:

~&J, J, &, „(J„,J„„'I,
Jq) (Jd» Jd& ) ' (127)

Jdn = —J~i (128)

We shall not discuss t, he details of the three-dimensional
phase diagram of this homogeneous model. Let us just
mention as a final point that the phases and phase bound-
aries of the quadrupolar model (d = 0) remain unchanged
for d/T small enough. The effect can be seen in Fig. 13.
Here the quadrupolar model is a, three-state Potts sys-
tem and d corresponds to J . For J /'I' « I the system
has indeed the same order parameters as for J /T = 0.
The phase boundary does not depend on J and the
low-temperature phase has qu. o but, no di. o.

VIII. CONCLUSIONS

We have proposed several mesoscopic models for the
orientational glasses. Basic ingredients for our models
are the following.

(1) The orientational degrees of freedom are character-
ized by a discrete state variable. The number of states is
determined by the local a.nisotropy of the particula. r sub-
stance under consideration and the symmetry of the in-
teraction is specified by the crystal structure. For exam-
ple, (I&Br) (KCN)& is described by a four-state Potts
model, which seems adequate in the vicinity of the crit-
ical concentration, z, 0.4, for the glass transition.
As another example we refer to I& TaOs(Li)~, which
may be considered a possible realization of our dipolar
six-state model which is discussed in Sec. VII.

(2) On mesoscopic length scales the medium is con-
sidered as elastic, except for the coupling to the orienta-
tional degrees of freedom. This is justified if fluctuations
on smaller length scales give rise to a finite renormaliza-
tion of the elastic constants and do not lead to structural
instabilities.

(3) The important interactions are those between the
orientational degrees of freedom, which are either medi-
ated by lattice distortions on a small wavelength or of
electrostatic origin. These couplings can give rise to co-
operative freezing into either random directions or homo-
geneously ordered states. Hence the cooperative behavior
of the orientational degrees of freedom is considered to be
the basic mechanism for the observed phase transitions.
Modifications of the elastic propert, ies and the crystal
structure are due to the bilinear coupling between elastic
distortions and orientations, There are of course other
mechanisms, which lead to structural phase transitions

where Jz —W(J+, J ) is the quadrupolar interaction
matrix (98) and

( 2 1 1 0 1 —I)
1 2 1 —1 Q 1

1 2 1 —1 0
0 —1 1 2 —1 —1

1 0 —1 —1 2 —1

(—11 0 —1 —12)
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accompanied by freezing of orientable molecules. A pos-
sible example is pure KCN, where experiments yield ev-
idence for a martensitic transition into an orthorhombic
phase. a 3 Experiments in the high-temperature phase
reveal a local anisotropy which is compatible with a four-
state model. On the basis of our four-state model
one would then expect a rhombohedral low-temperature
phase, as found in pure CsCN. ss ss

The models have been solved, using a mean-field ap-
proximation for the interact, ion bet, ween t, he orientat, ional
degrees of freedom and a second-order cumulant expan-
sion for the inhomogeneous elastic strain. The main re-
sults are the following.

(1) A phase transition to a low-temperature phase with
long-range orientational order is observed, provided the
homogeneous interaction is strong enough. This t, ransi-
tion is always accompanied by homogeneous lattice de-
formations, which give rise to new crystal structures in
the low-temperature phase. For the three-state model,
the symmetry of the low-temperature phase is tetrago-
nal, for the four-st, ate model it is rhombohedral, and for
t, he six-state model it can be tetragonal, orthorhombic, or
rhombohedral, depending on the anisotropy of the cou-
pling (see Fig. 7). (KBr) (KCN), , for z —z, may be
considered an experimental realization for t, he four-state
model. Li atoms in K.TaOs(Li), are defects with
dipolar and quadrupolar moments. They can be modeled
by six state variables (see Fig. 12). As shown in Sec. VII
our model allows for independent, ordering of the dipolar
and quadrupolar moments. Hence there are three pos-
sible phases with long-range order: Simultaneous dipo-
lar and quadrupolar ordering, dipolar without qua. drupo-
lar ordering, and quadrupolar without dipolar ordering.
The experimental situation is not completely clear, but,

there is evidence for independent, freezing of dipola. r and
quadrupolar moments. ' As far as the uniform distort, ion
is concerned, the dipolar six-state model is equivalent to
the three-state model with a tetragonal low-temperature
phase in agreement with experiment.

(2) If the interaction between the orientations is suf-
ficiently random, our model predicts freezing of the ori-
entations in random directions, much like the spin-glass
phase in magnetic materials. This scenario is supported
by a number of experimental results, in particular for
the dipolar glasses, where the orientational degrees of
freedom can be probed experimentally by dielectric mea-
surements. One finds a cusp in the ac dielectric function
and a plateau in the dc dielectric function in analogy to
the corresponding susceptibilities in spin glasses. Fur-
thermore one observes irreversible behavior upon cool-
ing. The remanent polarization was found to depend on
the history of the sample. Qf particular interest are field
cooled and zero field cooled measurements. " Attempts
have been made to measure the order parameter suscep-
tibility as the nonlinear dielectric response.

The six state model allows for a variety of glassy
phases. Each glassy phase is charact, erized by t, lie syn~nie-
try of one of the homogeneous low-t, emperat, ure phases.
For example, one finds a glassy phase with local tet, rago-
nal distortions, which ave1 age to zel'0, so tllat the global
symmetry of the medium remains cubic. The random

freezing of the orientations gives rise to random static
strains. These static strain fiuctuations show up as a
quasielastic peak in the glassy phase. Its intensity is pro-
portional to the glass order parameter. Its wave-vector
dependence overs the possibility to detect local order in
the glassy phase and possibly discriminate between vari-
ous glassy phases.

The variety of glassy phases is even larger, if one takes
into account the possibility of mixed phases, where ho-
mogeneous deformations coexist with glasslike order.

(3) The elastic properties of the medium are affected
by cooperative freezing of the orient, ations, no matter
whether this leads to a homogeneously ordered st, ate or a
glassy phase. Due to the bilinear coupling of translational
and orientational degrees of freedom in our model, there
is an exact relation between the elastic constants and
the orientational susceptibility. If the system approaches
the transition to a homogeneously ordered state, the sus-
cept, ibility follows a Curie-Weiss law, y 1/(T —TF).
This growth of y is seen as a softening of specific elastic
constants, which are determined by the symmetry of the
model. For example, in t, he four-state model the shear
elastic constant Cr~i~ is softened as the transition to the
rhombohedral state is approached. In the three-state
model as well as in the dipolar six-stat, e model Cr~~~ is
softened, whereas Ci2i2 remains unaffected. Ordering of
the orientations in the low-temperature phase has two
effects: (a) a restiIfening of the elastic constants which
were softened upon approaching the transition and (b)
the appearance of new elastic constants, reffecting the
lower crystal symmetry of the low-temperature phase. In
our models the transition to the homogeneously ordered
state is always discontinuous. Hence the softening of the
medium is disrupted at the transition temperature. In
fact experiments on I& TaOs(Li), show a softening of
Ciiii according to a Curie-Weiss law and no modification
of Cipiq. Experiments on (KBr) (KCN), for z 0.3
reveal a pronounced minimum of Ci2i2 at Ty, whereas
Ciiii is less temperature dependent.

For the pure glass, the susceptibility shows Curie be-
havior y —1/T, on approaching the glass transition.
This gives rise to a softening of the same elastic con-
stants as for the transition to the homogeneously ordered
phase. Freezing in random directions disrupts the soft-
ening, but does not generate new elastic constants. The
increase of the elastic constants sets in at TG and reflects
the decrease of the susceptibility due to a finite fraction
of frozen spins q. At the same temperature, T~, one ob-
serves a strong increase of the elastic peak (5.6), which
is determined by the glass order parameter q.

If uniform interactions are present —as, for example,
in (1&Br) (KCN)i close to z z,—we expect Curie-
Weiss behavior on approaching the glass-transition tem-
perature from above. Hence the enhancement of t, he sus-
cept, ibility and the corresponding softening of the clast, ic
medium at the glass t, ransition is strongest close to t, he
multicritical point z, and less and less pronounced as z
decreases.

Other mechanisms have been proposed to explain the
random freezing of orientations. Michel' and Bostoen
and Michel consider a higher-orde& coupling between
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APPENDIX A: SYMMETRY OF GENERAL
p-STATE GLASSES

WITH GAUSSIAN DISORDER

Consider the uniform Potts system with Hamiltonian
P

0 = —) J... ) n~(z)n~(z),
(x,x') p=&

n."(z) = b„„( ), (Al)
where r(z) is the state of the Pot, ts variable at site z.
This system is usually randomized' by a.llowing fluc-
tuations of the coupling strength J,. I, Each pair of in-
teracting variables remains Potts symmetric. Here we
discuss the situation, which arises if Potts symmetry is
not microscopic but only macroscopic. The Hamiltonian
is then

0 = —) ) n~(z)J."., n (*).
(~,~') I

(A2)

translational and rotational degrees of freedom of the
form ee f(d) together with random static strains. Ran-
dom strains alone give rise to a gradual freezing process
and cannot account for a sharp glass transition. Higher-
order couplings between e and d can be generated in our
model by the process of coarse graining. Here we have re-
stricted ourselves to the lowest order couplings, because
we identify the interaction between the orientations as
the basic mechanism for the phase transitions. If higher-
order couplings of the form ef(d) f(d) are present, then
a homogeneous freezing of the orientations can give rise
to an even wider variety of crystalline phases than the
model discussed here.

To summarize: The four-state model as well as the
dipolar six-state model seem to be adequate descriptions
of prototype orientational glasses. At present we do not
know of any experimental realization of our quadrupolar
six-state model. On the other hand it is plausible that
lattice anisotropies may prefer face-diagonal orientations
of defects. Our theoretical results indicate that such a,

system can show types of beha. vior which diA'er qualita-
tively from the hitherto studied systems, for example,
the existence of severa. l glass phases with diA'erent loca.l
symmetries.

Several extensions of our work are possible. Besides
random fields, which have been proposed as a. disor-
dering mechanism, there are in general also random
anisotropies, which can give rise to new ferroelastically
ordered phases. ~o The wave-number dependence of the
quasieleastic peak can be calculated. Thereby it, is possi-
ble to check the experimental accessibility of local static
order in the glassy phases. Finally it seems interesting to
extend our approach to dynamics, in particular for dipo-
lar systems, where many experimental data are available.

Macroscopic Potts symmetry means that ensemble-
averaged correlations of J are symmetric, i.e. ,

J4v ppv j
! Jm(p)x(v) (A3)

G"""=- [J."." J.': j —(J."."}tJ,': j
Gn(p)7r(v)x(p)x(v) (A4)

+const, (A6)

Here we defined J"," = J"",. The first term on the right-
hand side of (A6) is a "real" random bond term. The
second term contains P, (& ) P J"", = z P Jo

" +
Q, (& ) P„bJ"",

, where z is the coordination num-

ber. As Jg" has Potts symmetry, P „s"(z) Jg' = 0.
The fluctuations bJ produce a random field h" (z) =

bJ"",. It is well known that random fields
alone cannot induce a glass transition, Furthermore the
glass transition, which is induced by random exchange,
is not, destroyed by random fields, as long as the fluctua-
tions in the exchange and the local field are uncorrelated.
As far as the glass transition is concerned, we regard ran-
dom fields as nongeneric terms. The transition to a phase
with ferromagnetic long-range order may be suppressed
by random fields, if they are suFiciently strong. This fact
is well known from Ising models. However for Potts vari-
ables other types of ordered phases may be induced by
random fields, provided that their distribution is chosen
appropriately.

In the following we require

) Qpvpv — —) GVvpc

so that no random field terms are present, in the averaged
Hamiltonian. From the definition of G we have

Gpupv Qpcrkv all d (A8)

The total number of p entries of G"'P is reduced by
conditions (A8). For the Potts glass the following con-
stants are free:

where x(iu) denotes a permutation of the states. J, I.
is assumed to be statistically independent of J&&~ unless
(zz') = (yy'); The disorder is Gaussian, i.e. , higher-order
cumulants of J are zero.

The system (A2) is apparantly obtained by randomiz-
ing bonds, but it also contains hidden random field terms
as we shall show now. Equation (A2) can also be written
with another representation of Potts variables:

n" (z) = -(s"(z) + I}.1
(A5)

p
Then

&'H = —) ) (s"(z)+ I}J.":{s (z) + I}
(x,x~) pv

) ) s"(z)J"",s"(z)
(~,~') pc
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p=2:
p=3:
p) 4 ~

01111 ~1122 ~1112 ~1212 ~],221
) G

(like 2) + g1123 g1213 g1231

(like p= 3)+ g"" g'-'"' g"-"

(A9)
(A10)
(A 1 1)

Condition (A7) further reduces the number of indepen-
dent parameters. These can be chosen as

p=2:
p: 3:
p) 4 ~

g1212
)

g1212 g1122 g1221
) ) )

g1212 g1122 g1221 gl ll 1
) ) )

(A12)
(A13)
(A14)

One can show that the order parameters of the system
remain unchanged, if G"'~ is replaced by G~'" . IIence
we choose the following independent parameters:

G1212

g1212 gl 1 1 1
)) 4 . g1212 gl 1 1 1 g112'2

(A15)
(A16)
(A17)

p=3:

In the Ising case the SI& model" is recovered, containing
one disorder parameter g which corresponds to the
variance of the coupling strength g[(J,I) ] in R.ef. 45.

For p = 3 and p & 4 a general random bond model is
described by two and three parameters, respectively.

The glassy phase of the six-state model in Sec. VI has
been characterized by two disorder parameters J+ and
J (+ two homogeneous couplings). If microscopic sym-
metry is replaced by macroscopic symmetry, 10(!) pa-
rameters are needed to specify the quenclif d disorclei,
e,g. ,

gl 1 1 1 g1144 g1114 g1414 gl 122
) )

g1422 g1425 g1212 g1242 g1245 (A18)) ) ) )

However we do not expect that all parameters reveal
qualitatively new physical phenomena, .

APPENDIX B: GINZBURG-LANDAU
EXPANSION FOR THE FERROMAGNETIC

TRANSITION

In the second-order cumulant expansion

(inh)(Q d u(z) exp &
—-' Q) ) e,, (z)e~~, (z)(b ~C,,„,—) I"„,PIi.„;~Ii'.,pl) &

ap ij kl

(B1)

with

(B2)

Here the expectation values ( )p have to be calculated witll zp wiihoni coupling to the homogeneous strain. As

a first step we calculate F, . Three different quantities have to be calculated: C,z
—(s, s~)p, M,. —:(s; )p, and

Q; = (s,"s, )p for n g P. As usual we introduce a. Gaussian noise to decouple different replicas in zp.

ln zp —A

- r' dy, &

exp &
—

2 ) y;(Q '),i' & in zl + O(n ) = n(lnzl)„+ O(n )
2lr ) det Q,i )3

(B3)

with a) I,, ) I, +b) IlIl I,,

Z1—
r 2

exp( Jy s — ) s,s, Q, , +Jos M L

'l3

(B4)

z3

= (() s'I*i ) .s~ Ii 1)1)v

(B8)
The expectation values are then given by

C*i = ((s*'&)1).

M;=((") ),
Q*i = ((s*)1(s~ )1).

For the two-spin correlation we mal'e the ansatz

(B5)

ax3 x2 +bx3 x2=3(v3(sl)o+2)
= fi(Mo + 1).

Multiplying Eq. (BG) by I;z and summing over ij we find

3 x 2a+3 x 2b=3x 2 or 3(a+b) = 1.

(B9)
C;3 —aI;1I31 + bI&j'fol' p: 3,

C, = aI1I 1+bb; for p= 4. (B7)

Multiplying Eq. (B6) by I, l I&1 and summing over ij we

fl Il d

Hence C,
&

is determined by (s, )p ——Mpe,'

1 Mo
C,, = I,, + (I, , I, , —I—,, ) (B10)

If this result is substituted in Eq. (B1), t, he first term
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gives rise to a renormalization of the bare elastic con-
stants at high temperatures and the second term vanishes
due to cubic symmetry

and

) e, e —) e,"e„"e& —(p —2)eI. .

z2 P

( 814)

(B11)
Hence we find

The argument for the four-state model is completely
analogous.

To study the transit, ion from the paramagnet to the
collinear ferromagnet we calculate (sy)p perturbatively
for small M and QL,

- M
(st)p ——et JpM 1+ (p —2)Jp—

2

and therefore

8
~i o ~q o

(B15)

= eie& JpM 1+ p —2 Jo—Jp 1+ p —2 JpM

U IJ

+O(M', M'Q, Q'), (B12)
e,'e' Jp M(1+ z(p —2)JpM). (B16)

e,' — e,"e~ ——e~
p

(B13)

The contribution from (c)/DM)Q, is of higher order and
can be neglected as long as we are only interested in linear
and quadratic terms in M. Hence we find

1 1
lim — ln z;„h = lim ——) K,. ,&

K, qt ) (n(~,". (z)c&.t(z)) —n(n. —1)(c," ( )z&~( t)z))e„e, Jp M(1+ z(p —2)JpM)~-p n M ~-p n
7 ij S tt;, l

(B17)
or explicitly for p = 3

—lim — ln z;„h = ———) ) [(i,, (z)ety(z))]e, e& Jp M(1+ 2 JpM) + O(M, MQ, Q )
ik

and for p=4

(B18)

—lim — ln z;» ——o-' Jp M(1+ 3JpM) ) [(e»(z)~»(z)) + (e»(z)F»(z)) + (~t~(z)e»(z))] + O(M, MQ, Q').3~-p n 0M

The disconnected correlations [(i~(z))(F~t(z))] have been neglected because they are of higher order.

(B19)
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