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Resonant light scattering by fractal clusters
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A scale-invariant theory of resonant Rayleigh scattering by fractal clusters is developed. Our main re-
sult is that the scattering cross section is greatly enhanced, because of the presence of very high local
fields, which are correlated and strongly Auctuating. Simulations dealing with two examples of fractal
structures, namely, random walk and cluster-cluster aggregates, are presented. The numerical results
confirm the theoretical predictions of the scaling behavior for both absorption and scattering, and allow
us to obtain the corresponding exponents. In addition to the results for scattering, the large scale of the
simulations of the present work provides a comprehensive confirmation and a substantial extension of a
recent study by Markel, Muratov, Stockman, and George [Phys. Rev. 8 43, 8183 (1991)].

I. INTRODUCTION

Optical properties of fractal clusters' and in particu-
lar scattering of light by fractals ' have recently been
an area of active research. It is now well known that the
scattered wave bears information about the self-similar
geometry of the fractal structure and allows the deter-
mination of its fractal dimension D through the formula
I,(k) ~k, where k is the wave vector of the incident
beam.

However, together with geometrical properties, it is of
great interest to study manifestations of the dynamical
properties of fractals via light scattering. When individu-
al particles of a fractal cluster possess a high quality
("sharpness" ) of optical resonance, the light-induced di-
pole interaction (at driving frequency co) between polariz-
able particles can be very strong. Such interaction leads
to the formation of collective resonances-
eigenmodes —of the system. If the field frequency co is
close to a frequency of an eigenmode of fractal excita-
tions, the scattering has a collective character and is
determined both by geometrical and by dynamical prop-
erties. In this case light is scattered by collective fractal
excitations rather than by individual particles.

As a direct consequence of the scaling properties of the
eigenmodes of fractal dipole excitations, the light scatter-
ing also exhibits a scale-invariant behavior. We show in
this paper that the enhancement factor of the scattering
by fractals is characterized by a scaling exponent
d, =do+1 where do is the "optical spectral dimension"
already introduced in Ref. 1. This result is confirmed by
numerical simulations. The exponents d„do are deter-
mined for two types of fractals: random walk (RW; with
fractal dimension D=2) and cluster-cluster aggregates
(CC'; with fractal dimensional D = 1.78). We also show
that, for fractals consisting of particles with a high quali-
ty of optical resonance, the resonant Rayleigh scattering
is greatly enhanced. This is due to the existence of

strongly fluctuating high local fields, significantly exceed-
ing that of the incident beam. Together with resonant
enhancement the scattering is also improved by coher-
ence due to the fractality. The huge enhancement for
scattering, obtained in our numerical simulations, is in
good agreement with theoretical predictions.

The interaction of light-induced dipoles in fractal clus-
ter was considered earlier within the mean-field ap-
proach and the binary approximation. However, nei-
ther method led to a scale-invariant theory for fractal ex-
citations. Such a theory for the polarizability of small (in
comparison with the wavelength) fractal clusters was
developed in Ref. 1. In the present numerical simulations
we use ten times as tnany particles (up to N=256) and
ten times more clusters (up to N, = 1000) than in Ref. 1.
This has allowed us, besides the above-mentioned results
on resonant Rayleigh scattering, to obtain a comprehen-
sive confirmation of the main fundamentals of optics of
fractals established in Ref. 1.

General consideration of scattering by cluster systems
is given in Sec. II. The results obtained are then applied
to the scattering by fractal clusters in Sec. III. In Sec. IV
we present results of numerical simulations. Final discus-
sion of our results and main conclusions are given in Sec.
V.

II. GENERAL EXPRESSIONS

Consider a fractal, consisting of polarizable monomers
with interaction between them at the driving frequency
co. The fractal is subjected to an external electrical field,
whose value at the site of the ith monomer (i = 1, . . . ,N )

is equal to E=E' 'exp( itot+ik r, ). Th—e wavelength A,

is supposed to be greater than the size of a monomer but
arbitrary in comparison with the size of the cluster. The
amplitudes d' of the transitional dipole momenta
d'=d'exp( i tot +ik r; ) obey th. e syste—m of equations

—(X+i5)d' =E' ' —g V'Jt3d&,
j
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where X=—Regp 5 Im+0 ', and yp is the polariza-
bility of an isolated monomer;

a'J5
p
—3b'Jn'Jn]

rlJ

a'J = 1 —ikr, —(kr, )
(3)

b'1= l ikr,—, —
—,'(kr, )

and r;. =—r, —r .. The Greek subscripts in (2) and (3) stand
for tensor components (summation over repeated indices
is implied). The interaction (2) and (3) includes the near-
zone (nonradiative) transitional and far-zone (radiative)
terms of the dipole field.

The fractal cluster produces a scattered wave whose
asymptotic form, involving a vector scattering amplitude
f(k', k), is

Let us now average (11) over the orientations of a clus-
ter as a whole (denoted below as ( . . )o). In order to
fulfill such averaging analytically let us use the "unlink-
ing procedure"

& e"..'X'.px."*p &o & 0"..' &o&x'.px."*p &o (15)

o, = k N
I ((15$,—10$,$2+2/~)Tr(x'x' *))

+(42TrX'TrX" &], (16)

The procedure (15) is valid usually in the case of an iso-
tropic system. For fractal clusters having strong Auctua-
tions of its shape, the validity of (15) is not evident. Va-
lidity of such averaging, however, is strongly supported
by our numerical simulation (see Sec. IV).

Averaging over orientations in (11) with using (15)
gives after some elementary transformations

E' = E( )f (k' k)

f (k', k)=k (E' ') 'g~ pdpexp(ik r; i.k' r,—),

r p=6 p
—s sp,' s=k'/k,

(4)

(5)

(6)

where/=—y &, Trd —= 3 . Note that the isotropy of the
cluster has eliminated the dependence on the initial po-
larization e.

Averaging over the orientations of the extinction cross
section in (8) gives

o., =( J dA, If(k k)I'& (7)

where k' is the wave vector of the scattered wave. To ob-
tain (4)—(6) we use the approximate equality
kIr —r;I =kr —k' r, , which is valid for distances much
greater than the size of the cluster. The set of Eqs.
(1)—(6) is the basis for calculations of optical properties of
clusters.

We seek to calculate the ensemble averages of the
scattering cross section

km& ImX'..& . (17)

Let us introduce the factor E, by which the scattering
per monomer is enhanced

ps ~~(0)
s

(18)

where 0.,' ' is the single-particle scattering cross section
I:(xo).p—=xo&.p]:

(where Q, is the direction of k ), the extinction cross sec-
tion

k'Ix I'.s 3 0 (19)

o, = ( 4~k g ImX' pe ep ),
and the absorption cross section

~a Oe ~s ~

(8)

(9)

When the size of the cluster is much less than the wave-
length, the values P, 2 in (16) do not depend on the statis-
tics of clusters (P, =—', , $2 —-0) and the enhancement fac-
tor of the scattering is

Vector e in (8) is the unit one, e=E' '/E' '; angle brack-
ets ( . ) denote the average over an ensemble of clus-
ters. The polarizability of the ith monomer x p in (8) is
defined by

(10)

Inserting (5) and (10) into (7) and performing the in-
tegration we obtain

F, = —,'XIX, I
'(Tr(x'x")& (kR, «1) .

Far from the collective resonances of the cluster (non-
resonant case) the interaction between monomers is negli-
gible because the collective eigenmodes are not excited,
and we can take y'&=g05 &. Such an expression for g'
corresponds to neglecting the interaction term in (1) com-
pared with X. For small clusters we obtain in this way
from (20) the trivial limit

cr, =4mkN (P",X' pX',p.epee ), F' '=iV (kR, « I) . (21)

where

(sin)kr;;

(kr;; )

coskp';I ~

(kr... )

sin kr, ,'
kr, ,'

sin kr, ,' coskr;;. sinkr;, '
+3 —3

(kr;; ) (kr, ;.)kr, ,'

P" .=cosk. r, ,'( $,5,—Pzn
"n ".), (12)

(13)

(14)

Note that the substitution of X' p=Xo5 p into (17) gives
only an absorption part o.,=4m' Imp of the total
cross section o., and does not take into account the con-
tribution of the scattering into the extinction. Since
scattering depends on both (real and imaginary) parts of
the polarizability: o., ~gg*, one can put g'&=g05 & in
the formula for cr, even if only X= —ReXo ' (and not
both X and 5= —ImXo ") is much larger than the contri-
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bution of the interaction in (1) (the value of 5 for this can
be arbitrary small comparing with the interaction). How-
ever, in order to find the contribution of the scattering
into the extinction (which is determined only by imagi-
nary part of polarizability: cr, c(: Imp) we should retain
corrective term in y' which takes into account the in-
teraction between particles (even if this term is much
smaller than X).

Let us emphasize that all the results which have been
presented in this section are quite general and valid for
any cluster (fractal or not). We will now focus on the
more particular case of fractal clusters.

III. LIGHT SCATTERING IN THE
COLLECTIVE REGION OF FRACTAL KXCITATIONS

p(r)= R, r
D
4m.

R

(p(r)) =4mfr . p(r)dr= 1 .
0

(22)

Let us now reduce the system of Eqs. (1)—(3). The last
term in (1) gives the contribution of all monomers to the
local field acting on the ith monomer. To estimate the
contribution of monomers located at large distances
r;. )k ' from a given ith monomer we can use the
mean-field approach which gives, using (22)

Ro (kRO), for (D &2),
R (kR )X' i for (D & 2),

L

(23)

where

U —= V'J e&
J

(r, )k )

(24)

When the spectral variable X in (1) satisfies the condition

The number of particles in a fractal cluster of size R,
(R, is a radius of gyration) and the pair correlation func-
tion are described, respectively, by the following scaling
dependencies:

X=(R, /Ro)

The reduction of (1)—(3) to (26) and (27) physically
means that the contribution of far-zone fields of the
monomers to the dipole d of the ith monomer is negligi-
ble and, thus, multiple scattering can be neglected. After
such a reduction the interaction (27) together with a spa-
tial scaling leads to the scaling of optical properties of
fractals. Thus, the condition (25) for the spectral variable
X is a necessary condition to obtain the scaling of optical
excitations of fractals.

Note also that the mean-field approach is not applic-
able for the description of interaction at small distances
(less than a wavelength). This approach gives either a
divergence at small distances as r (without averaging
over the orientations) or exactly zero after averaging over
the orientations, and therefore strong fluctuations, which
are critical for optical properties of fractals, cannot be
taken into account. '

Following Ref. 1, we express the solution of the system
(26) in terms of the eigenstates of the Hermitian operator
(27) [@'ln)=w. ln)]:

X' p= g A„(ialn )(n jIp), (29)

A„=(XO '+w„) (30)

The quantity Imp(X) (X—:—,'(X )) has a symmetrical
power-law dependence in the scaling region

Imp(X)-R (ROIX )
' (32)

where do(0&do &1), is the optical spectral dimension, '

which is very important in the description of optical
properties of fractals.

From the sum rules (31) and the power-law dependence
of Imp(X) it follows that the contribution of nondiagonal
terms in (29) with i', after averaging over the ensemble
of clusters, is negligible. Thus, for IXI »5, we can ex-
press the quantity Imp(X) in terms of the density of
eigenstates v(X)

From the form of the interaction operator (27) and the
solution (29), the exact sum rules follow:

—f Imp'&(X)dX=5 &, f XI'(X)dX=0 . (31)

we can neglect the contribution to d' of the region
r; & k ' and reduce (1)—(3) to the system

Imp(X) =—v(X),
3

where v(X) is defined in the usual way by

(33)

(X+i5—)d' =E' ' —g W'~pdp
J

(26) v(x)= —x5(x —w )) .I
ll

where It is worth noticing, as follows from (32) and (33), that
the dimension do plays the same role in the case of dipo-
lar fractal excitations as the fracton dimension d (Ref. 15)
in the case of vibrational excitations. However, these in-
dices do, d, and the corresponding dispersion relations
(see below) are diff'erent for vibrational (Goldstone-type)
and dipolar (non-Goldstone-type) fractal excitations. '

By analogy with the nonresonant case [see the discus-
sion after formula (21)j substitution of the approximate
expression (29) for X' into (17) gives only the absorption

(27)

For resonant conditions X=5; (6; is the shift of the
resonance due to the interaction W) a condition of such a
reduction is more strict

(28)

(5 &
—3n Jnj)r, , if kr, &1 (i');"

~lJ
0, otherwise .



RESONANT LIGHT SCATTERING BY FRACTAL CLUSTERS 12 219

cr, -kNv(X), (34)

part cr, of the total cross section o, [see also (62) and the
text followed after (62)]. Taking this into account and us-
ing (33) we find

Note that in accordance with (37), the requirement
L~ &&I, is automatically fulfilled by the condition (25).
Taking into account (23), (25), and (37) we find the scaling
region for large clusters (kR, »1) in terms of the spec-
tral variable X

and together with (32) and (33)

~. -kNRo(ROIXI) ' (35)

(kRO) «RoiXi «1 (D &2),

kR,N' ' «R,'~X~ «1 (D&2) .

(39)

(40)

The scaling-transformation properties of X can be
found from the condition of invariance of the absorption
(35) with respect to the change of the minimal size (spa-
tial resolution) Ro. ' After substituting N=(R, /Ro)
into (35) this condition gives

~ 3'io i~ ~~'I "oX ~Ro (36)

One can construct only a single invariant of the scaling
transformation based on (36) which contains both X and
R 0 and which has the dimensionality of length

The condition (40) is fulfilled at large values kR, only if

1«kR, «(kRO)2 ' ' (D &2), (41)

which is assumed to be the case. Besides (39) and (40),
the necessary condition for scaling is ~X~ &&5, which is
compatible with (39) and (40) when the quality factor Q
of the monomer's resonance is high enough.

In the case of small clusters (R, « k ) the scaling re-
gion is de6ned from the condition Ro &&Lx «R, . Using
(37) we obtain'

Lx-Ro(Ro IXI) (37) ' «ROIXI «1 (kR, «1) .

o«Lx (38)

The quantity L~ in (37) plays the role of a coherence
length and characterizes the length of localization of the
eigenstates of the fractal excitations with eigenvalues

~ 1, 16
W~ —X. '

Scaling, i.e., the invariance with respect to the change
of the minimal scale Rp can only take place under the
condition

In a given spectral interval (X, X+dX) there are
-Nv(X)dX eigenmodes excited. These excitations are
centered in different points of the fractals and have [at
conditions (39) and (40)] the localization length LX much
less than the wavelength A, . Taking this into account we
can average p" and y'X' * in (16) over interparticle dis-
tances r," independently. After averaging of the functions

P, z in (16) we find

o., = k N(K, ( Tr(X 'X ' *)) +K@( Try 'Trj ' * ) ), (42)

DI (D —1)2 cos—(D —2)(kR )
7T —D +2 2

for (D &2)„
2 2 —D 4—D 6—D

K, = '
(kRo) ln((k—Ro) N), for (D=2),7

(43)

(kRo) N' for (D &2),
2 D —2

DI (D —1)2' cos—(D —l)(kR )
2 2 —D

K2= '
(kRO) ln((kR—O) N), for (D=2),=. 1

+, for(D & 2),6 6

(44)

(kR )
—2N1 —2/D for(D & 2)

2 D —2

where I ( ) is the y function. The enhancement factor of scattering F, follows from (42), (18), and (19)

F, = —,', IX, I
'(K, &Tr(X'X'*))+K,(TrX'Trj'*)) .

In the limit of nonresonant scattering (see above) (45) reduces to the simple formula

F, = —,', (K, +3K2),
which is in exact agreement with results obtained by Berry and Percival.

Substituting (29) into (45) and expanding the product of factors A in simple factors

(45)

(46)
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we find

wn wn

F, = —
—,', IXOI ( g . (A„—A„)[K&(ialn )(n I

jp)(i'pin')(n'I j'a)

+&2«aln )« I
ja}«'Pln')«'I j'P}]& .

The minimal difference b, „between eigenvalues w„and w„. in (47) can be estimated as

(47)

Using (33}one can see that at the condition

Ro IXI »(R,'s)

(48)

(49)

the mode spacing b,„ is always much larger than 5. Thus, for monomers with high optical-resonance quality (small
value of 5), when (49) is the case, one can neglect in (47) the contribution of terms with nAn . This ultimately gives

F, =—y, C&(X,RO),
Ixol

'
limy, 'I

where

(50)

Dr(D —1)2'-Dcos—(D —1)(kR, )-D
2 2 —D

y = '
(kRO) ln[(kRO) N], for (D =2),

(kRO) N i for (D )2)

+, for (D (2),1 1

(51)

@(X,((0)=
( g ImA„((ala)(a(j(()(i'(I(a Na(j'a)) .

n, J',J

& Tr(X 'X ")&
- llmXO

'
I

'& (X,R, ),
one can find the scattering enhancement in the case of
small clusters (kR, «1):

(52)

It follows from (52) that the function 4(X,RO) satisfies
the sum rule where

, (Rolxl) ' (kR, «1),
Ro Imago

' (56)

I @(X)XdX=O . (53) d, =do+1 . (57)

Therefore, in the scaling regions (39) and (40) @(X,RO)
should have a symmetrical power-law dependence with
coefficient which can be defined from dimensionality ar-
guments

C (X,R, ) -R,'(R,' IXI )', (54)

e=do 1

Using (20), (54), (55), and the relation [see (45)—(50)]

(55)

where e is a corresponding exponent.
In accordance with (18}, (19), and (50), the function

@(X,RO) must have the same dependence on X as cr, :
@(X)c(-F, IXOI (x:o.,(X). Taking into account (9) one can
conclude that all three quantities o.„cr„and a, should
have the same exponent in the scaling region. It follows
from (35) that this index is do —1. Thus, we have

(kRO ) 2 3 $F, — 3, ln((kRO) N)(RO IXI) ' (D =2),
Ro Imago

'

(59)

(kRO)
F, — 3

N' (ROIXI) ' (D&2),
R 0 llmXp-'I

where d, is given by (57).

(60)

Equation (56) was obtained by substituting IXol = IXI
into (20},which is valid for IXI &)5.

For large clusters (kR, »1) the limiting behavior, as
follows from (50), (51) and (54), (55), depends on D:

(kR, )-D
F,—,(R IXI) ' (D &2), (58)

Ro Imago
'
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In accordance with (37), increasing iX~ leads to an im-
proved localization of fractal dipole excitations and as a
result, to an increase in the intensities of local fields inside
the fractal. High local fields (significantly exceeding the
exciting external field) ultimately lead to an enhanced
scattering. Thus, the scattering enhancement factor F,
should increase with increasing ~Xi (the exponent d, is
positive). It is worth noticing that localization of dipole
optical excitations takes place only on fractal structure
and disappears in the limit of a conventional medium
where D =3.

Let us now use the mean-field approach in order to
take into account the contribution of the region r,")k
[neglected in (26)] into d'. This approach allows us to
find the improved formula for the polarizability g;:

(61)

where X; =1/3X~ is determined by (29). Within this ap-
proximation, multiple scattering can be neglected provid-
ed

~ vX; ~
&& 1. If this is the case, a substitution of X; into

(17) gives

cr, -kX ImI (X, ) +v *(~X, ~') ] . (62)

One can make sure that the second term in (62) is of the
order of rr, determined in (18), (19), and (58)—(60). Thus,
the first term in (62) corresponds to the absorption part
o, in the total cross section o, in accordance with (32)
and (35). Substitution of X; into (45) results of course, in
the same formulas (58)—(60) for F, in the limit of single
scattering.

IV. NUMERICAL SIMULATIONS

A numerical solution of the problem of optical excita-
tion of the ensemble of clusters, consisting of X interact-
ing particles, is restricted to N-10 or even less (for
reasonable computing time) due to the order of the ma-
trix to be diagonalized and the numbers of eigenfunctions
to be determined. The region of spatial scaling
(Ro «r «RoN' ) for N of order of a few hundred is
rather short and not always well pronounced. Accord-
ingly, it is difficult to obtain the dynamical scaling. To
resolve this difficulty a model of a "diluted" fractal can
be used fruitfully. ' In this model each monomer of the
initial fractal (consisting of the large enough number of
particles) remains in its place (with probability p «1) or
is removed from the fractal (with probability 1 —p). The
fractal as a whole is then reduced in size by a factor
(1/p)' . The resulting fractal turns out to have the
same scaling properties as the initial one. The power-law
behavior of the correlation function g(r ) ~ r holds for
this fractal (with the same exponent D as the initial one)
down to smaller distances ro=p' Ro «Ro. It is impor-
tant that the dilution (random mass decimation) does not
affect the properties in the region of collective excita-
tions. Since collective excitations have a large coherence
length I., they are not sensitive to the small-scale details
of the fractal structure and therefore should be the same
for the original and diluted fractals.

We study two types of fractals: random walks [RW:
D =2; Ro =R i /(6)' ], and cluster-cluster aggregates
[CC (Ref. 14): D = 1.78; Ro =R i/3; where R, is the lat-
tice period). All clusters used here were subjected to 32-
fold decimation (p=0.03) except in simulations done
with p as small as 10 for comparison (see Fig. 5). De-
creasing the value of P, as shown in the simulation does
not affect the results. The calculated values are averaged
over a large ensemble of fractals (about 10 ).

The polarizability was computed from (29) by di-
agonalizing the matrix (27) using the numerical QL
method. '

In accordance with (32) and (35) the absorption of a
cluster per monomer is determined by the imaginary part
of the polarizability Imp = —,

' ( ImX ). The quantity
Imp, plotted as a function of X, is shown in Fig. 1 for two
different numbers of particles: X= 128 and X=256 and
for 5=0.001. Here and in all other figures we put Ro = 1.
From Fig. 1 it is clear that there is no change with the
number of particles. The absorption is symmetrical in X
and described by a resonant contour in accordance with
(32). The width of the fractal absorption greatly exceeds
that of an individual monomer ( —5 ). A double-
logarithmic plot of X lmX versus X is shown in Fig. 2(a)
in the range X=0.002 to 0.6. The last value of X is 0.6
[but not 1 as follows from (39)] because for X)0.6 fiuc-
tuations become of the same order of magnitude as the
mean value (more precisely, the upper X value, here and
in all the following, is chosen such that fluctuations be-
come equal to twice the mean). One can see from Fig.
2(a) that absorption for the RW model is well described
by a power-law dependence on X and the slope gives the
optical spectral dimension do=0. 4+0. 1. The straight
line in the figure corresponds to do=0. 38 as found by a
least-squares method. This result is in perfect agreement
with Ref. 1.

For the CC model the scaling behavior is also observed
[Figs. 3 and 4(a)]. We have obtained the value of the op-
tical spectral dimension for the cluster-cluster aggregates

Im X

6-

2-

0
X

FIG. 1. Plot of Imp as a function of X for the random walk
model with 5=0.001. Symbols ~ and 0 refer to 1V=128 and
N =256, respectively.
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in(X Im X)

(a) 20

Im x
I cc i

10-

I Rw I

0
-1

in(x)

(b)

FIG. 3. Plot of Imp as a function of X for cluster-cluster ag-
gregates. Symbols 4 and 0 refer to 5=0.001 and 5=0.005, re-
spectively.

in[X y (X)]

-2

iRwi

in(x)

rF

0

-2
4

in(x)

i Rwi

FIG. 2. (a) ln-ln plot of Imp multiplied by X as a function of
X. T' he slope of do =0.38 is indicated. (b) ln-ln plot of the den-

sity of eigenstates v(X) multiplied by X as a function of X. The
slope of do=0. 39 is indicated. (c) ln-ln plot of the scattering
enhancement F, multiplied by 1/N 6/X as a function of X.
N=128, 5=0.001. The slope is do=0. 40.

do =0.3+0. 1 (the slope do =0.28 is shown in the figure).
From Fig. 3 one can also see that, in accordance with the
theory, there is no dependence of the absorption on 5 for
~X~ ))5. Other quantitative differerices between the two
models can be seen by comparing Fig. 1 and Fig. 3, which
correspond to the same set of parameters (except for the
number of particles which is N =64 for the CC model).

Thus, we can conclude, the absorption has a universal
scaling behavior in the region of collective fractal excita-
tions in agreement with the theory.

According to formula (33) the density of eigenstates
must show. the same scaling behavior. Figures 2(b) and
4(b) support this result and give the same slope as in the
case of the absorption: dp=0. 4+0. 1 for the RW model
(in agreement with Ref. 1) and do =0.3+0. 1 for the CC
model.

We also. present in Fig. 5 the density of eigenstates for
two very different values of p: p=32 ' and p= 1000
(N=30). One can see that for p=32 ' the overall be-
havior is quite similar to an order of magnitude (although
the results are more noisy). This proves that the dilution
does not affect collective fractal properties. The order of
magnitude of v(X) we obtain is close to that of the ab-
sorption (Fig. 1) in the scaling region, according to the
theory. The small asymmetry of the density of eigen-
states which takes place in the central part outside the
scaling region is a finite-size effect.

We also numerically calculated the corrective term (24)
neglected in our theoretical approach when using the
reduction procedure [see (23)—(27)]. This correction did
not exceed 10%%uo.

The enhancement factor of the scattering I', was com-
puted from (18) using the general formulas (ll) —(14) for
o, . The factor F,(R&5)/N (Ro= 1) is plotted in Fig. 6
as a function of X for two different size clusters (N= 128
and N=256). Note that the number of particles and
value of kRo(kRo =0.1) that we used here correspond to
intermediate cluster size: kR, —1, because kRp=0. 1 for
D =2 and 1V=256 gives kR, =1.6 and kr „=4.5 for the
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FIG. 5. Plot of the density of fractal eigenstates multiplied by
m. /3 as a function of X for the random walk model. Symbols 4
and 0 refer to different dilutions 4:P=0.03 and ():P=0.001, re-
spectively.
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mean value of the largest distance between particles. In
accordance with the theory, fluctuations increase with in-
creasing X, as one can see in Fig. 6. The quantities I, /X
also exhibit scaling behavior with power indexes
do =d, —1 =0.4+0. 1 for RW clusters [Fig. 2(c)] and

do =d, —1=0.3+0. 1 for CC aggregates [Fig. 4(c)] in

quite good agreement with the values do found from the
absorption [Figs. 2(a) and 4(a)] and from the density of
states [Figs. 2(b) and 4(b)] in accordance with (57). In
contrast to the absorption, the scattering turns out to be
enhanced. The value of the enhancement factor obtained
here is I",—10, i.e., roughly equal to the product of the
factor (kRo) (-N in our case) and the quality of the
optical resonance IRolmyo 'I ' in agreement with the
theoretical formulas (56) and (58).

Note also, that a good agreement of the results of nu-
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FIG. 4. (a) ln-ln plot of Imp multiplied by X as a function of

X. The slope dp =0.28 is indicated. (b) ln-ln plot of the fractal
density of eigenstates v(X) multiplied by X. The slope dp =0.35
is indicated. (c) ln-ln plot of the scattering enhancement F, mul-
tiplied by 1/N 5/X as a function of X with N=64, 5=0.001.
The slope dp =0.32 is indicated.

FIG. 6. Plot of the scattering enhancement F, multiplied by
R()6/N (Rp =1) as a function of X for the random walk model
with 5=0.001. Symbols 4 and refer to N=128 and N=256,
respectively.
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merical simulation with theoretical formulas obtained,
strongly supports the possibility of independent averag-
ing used to get (16) and (42).

V. CONCLUDING REMARKS

We briefiy summarize the basic physical results of this
paper. Resonant Rayleigh scattering by fractal clusters
has been theoretically described. When the frequency of
the external field is close to the frequency of the eigen-
modes of fractal dipole excitations the scattering occurs
on collective excitations rather than on individual parti-
cles due to the appearance of strong interaction between
particles. The dynamical excitations of the fractal are lo-
calized and possess a scaling dependence on the spectral
variable X=—Reg0 in the scaling region determined by
(39) and (40). The corresponding exponent is do —1 for
the scattering cross section (the same exponent as for ab-
sorption cross section) and do+I for the enhancement
factor I, .

It follows from the theory, that the scattering is
enhanced by coherence due to the fractality [with a factor
(kRo) if D (2 and (kRO) X' ~ if D )2; see (58)
and (60)]. In addition, the value of the enhancement is
proportional to a large factor and, namely, to the quality
of optical resonance. The physical reason for such
enhancement is the existence of high local fields within a
fractal. The external Geld excites eigenmodes of the frac-
tal with eigenvalues w„=X(co). Local fields E& of the res-
onant modes significantly exceed the external one E:
Q =Et /E -Ro ~Imago '~ '. However, the fraction of
resonant monomers is small —Q

' and therefore, the ab-
sorption is not ultimately enhanced. In contrast to ab-
sorption the scattering is proportional to the second
power of the local field, that is to Q . Multiplying this
factor by the fraction of resonant monomers Q ', we ob-
tain the enhancement factor I', ~ Q ~ ~Imago '~ ' in
agreement with (56) and (58)—(60). It is also interesting
to note that the resonant scattering can be significant
(comparable with the absorption) even for clusters of size
much less than a wavelength [see (18), (19), (35) and (56)].

For isolated particles optical resonance takes place
only at X= —Rey0 '=0. The interaction between parti-
cles in a fractal leads to the appearance of a set of collec-
tive resonances in a wide spectral region. The appear-
ance of additional resonances in another spectral region
can lead to the additional enhancement of the scattering
due to the improvement of the quality of optical reso-

nance of eigenmodes of the fractal in comparison with
the quality of resonance of an isolated monomer. For ex-
ample, in the case of fractal clusters consisting of small
metallic balls, there are collective resonances in the
longer wavelengths of the spectrum in comparison with a
plasmon resonance of an isolated particle. The
monomer's polarizability in this case is
yo=R (e—I)/(@+2) (where R is the radius of mono-
mer and e= e'+i e" is the permeability of metal)
and the corresponding quality of resonance
Q ~ ~lmyo '~ ' cc ~e —1~ /e" increases at the transition to
the longer wavelengths of the spectrum (the "luster"
ea'ect").

To complement the theory we carried out a numerical
simulation of the basic equations, including averaging
over a large ensemble of clusters. The numerical results
obtained con5rm our theoretical results of the resonant
scattering by fractals. The exponent of the scattering
enhancement found from our simulations equal
d, = 1.4+0. 1 for the random walk model and
d, = 1.3+0.1 for the cluster-cluster aggregates. The
value of the enhancement factor I', obtained is of the or-
der of 10 for the number of particles X-(kRo) —10
and for the quality of resonance with a realistic value of
Ro~lmyo '~=0.001. For example, clusters consisting of
metal spherical particles

R0 3E"
Ro3jlmy, '~ = ' — ' —10

—'
R ie —li

for the visible and infrared regions of the spectrum.
Thus, resonant Rayleigh scattering of light by collec-

tive excitations of a fractal may be a good method of
determining the optical spectral dimension, which gives
information on dynamical properties of fractals. The
study of both resonant and nonresonant scattering simul-
taneously allows one to obtain both the fractal dimension
D, characterizing geometrical properties of fractals, and
the optical spectral dimension d0, which is an important
characteristic of dynamics of fractals.
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