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Model-potential study of the lattice dynamics and elastic constants of the Nio 5~Pdz 45 alloy
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A first-principles calculation has been done to compute the force constants of fcc Ni and Pd by
applying the transition-metal model potential of Animalu. These force constants are derived up to
10 sets of nearest neighbors, and then a real-space analysis is done to study the dynamical behavior
and elastic constants of the two d-band metals. A linear relation is used to compute the lattice con-
stant of the alloy Nio»Pdo 4, . Next the force constants of the metals are evaluated at this lattice
constant of the alloy. The lattice dynamics and elastic constants of the Nio»Pd04& alloy are then
computed by using the force constants and mass for the alloy, obtained by the concentration aver-

ages of the force constants and masses of the component metals. In each case, the present micro-
scopic real-space analysis gives the phonon dispersion curves and elastic constants reasonably com-
parable with the available experimental data. Finally a three-body potential is incorporated in the
lattice-dynamical calculation and in all cases, the transverse branches are improved. Thus on one
hand, the present calculation explains the lattice dynamics and elastic constants of Ni, Pd, and

Nio»Pdo&5 alloy and, on the other, it shows that a mean-crystal model works well for the high-
concentration alloy, Nio»Pdo 45.

I. INTRODUCTION

The lattice dynamics of pure fcc Ni and Pd transition
metals has been experimentally studied by Birgeneau
et al. ' and Miller and Brockhouse, respectively. Ni and
Pd form solid solutions at all concentrations and at 45
at. % Pd, the Ni-Pd system is a random substitutional
disordered alloy. The lattice dynamics of Nio 55Pdo45
high-concentration alloy has been studied by Kami-
takahara and Brockhouse by the method of inelastic
scattering of neutrons. These authors derive the force
constants of Ni and Pd from the phonon dispersion
curves in the Born —Von Karman model and, in the
mean-crystal model, they obtain a reasonably good fit for
the phonon dispersion in the Nio &5Pdo 45 alloy by using as
many as 16 force parameters. A similar fit is obtained by
Upadhyaya and Shyam. " They use a three-body
electron-gas phenomenological force model with six con-
stants for component Ni and Pd metals and then evaluate
the force constants of the Nio»Pdo g5 alloy by taking the
concentration averages of the force constants of the two
metals. In both of these works, the resultant force con-
stants for component metals are obtained by fitting with
the experimental data. Since a reliable transition-metal
model potential (TMMP) for fcc d-band metals due to
Animalu is available, we plan to perform a first-
principles calculation of the phonon dispersion and elas-
tic constants of fcc Ni, Pd, and Nio 5&Pdo 45 metallic sys-
tems.

In the present work, the TMMP of Animalu is first
used to compute the radial and tangential force constants
of fcc Ni and Pd up to 10 sets of nearest neighbors at the
experimental lattice constants. These microscopic force
constants are then used to compute the phonon disper-
sion and elastic constants of pure fcc Ni and Pd transi-
tion metals in the real-space analysis. In order to study
the vibrational and elastic properties of the Nio»Pdo 45
alloy, the force constants of Ni and Pd are again calculat-
ed for the fcc phase at the lattice constant of the alloy. A
linear superposition of the force constants and masses of
the component metals is used to deduce the averaged
force constants and mass of the alloy. The values of the
force constants and the mass, so obtained for the
Nio &&Pd045 alloy, are then fed into the dispersion and
elastic relations and computed results are compared with
the available experimental data.

It will be seen that, although a reasonably good agree-
ment is obtained for the longitudinal branches, in gen-
eral, the transverse branches are deviating substantially
from the measured data for the component metals as well
as for the alloy. In fact, the present model pseudopoten-
tial analysis in second order describes the interaction sys-
tem in the central pairwise form and the contribution due
to the third-order terms resulting in the three-body eAect
may be contributory. In the present procedure, we in-
clude the eA'ect of third-order terms in the form of a
three-body potential following the work of Upadhyaya
and Prakash. The eff'ect of three-body forces is incor-
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porated in the computation of phonon dispersion and
elastic constants of the component metals as well as those
of the alloy. Vibration spectra, specific heat, and Debye
temperature are also computed for the Nio»Pdp 45 alloy
by using alloy force constants. Necessary theory for the
calculation is presented in Sec. II and the numerical re-
sults with discussions are given in Sec. III.

II. THEORY

The normal-mode phonon frequencies (v) of the fcc
system corresponding a wave vector q can be calculated
by solving the secular equation

~D(q) 4m Mv—I~ =0,
where D (q) is the dynamical matrix of the order (3 X 3),
I is the unit matrix, and M is the ionic mass. In the
present work, the dynamical matrix elements D &(q) are
composed of two-body central pairwise and three-body
(many-body) parts:

for the ith set of neighbors.
Now, if G (q) is known, we can evaluate the radial and

tangential force constants for a particular set of nearest
neighbors by using Eqs. (5) and (6). In the present work
we use the TMMP of Animalu to calculate the force
constants of Ni and Pd transition metals. First, the cal-
culation of radial and tangential force constants (a; and
/3,.) is done at the lattice parameter of each metal and next
the calculation is repeated for each metal at the lattice
parameter of the Nip»Pdp 45 alloy. The lattice constant
for the alloy Nip»Pdp 45 is calculated by using a linear re-
lation

a (Ni-Pd) =0.55a(Ni)+0. 45a(Pd) .

a, (NiPd) =0.55a;(Ni)+0. 45m, (Pd) (8)

The force constants, evaluated at the lattice constant of
the alloy, are used to evaluate the force constants of the
Nip»Pdo 45 alloy using the linear relation

D &(q)=D'P&(q)+D p(q) . (2)
/3;(NiPd) =0.55/3;(Ni)+0. 45P;(Pd) .

Pseudopotential theory in second order describes the in-
teratomic interaction in the central pairwise form:

Z2 2

C(r)= 2Z e
G( )

sinqr
d

2 2

o qr
(3)

G(q)=
4~ze'

—2 2

1—
Qq' 1 f(q)—1

e(q)
(4)

where Vb(q) is the bare ion model potential and e(q) is
the dielectric function. Here we use the transition-meta1
model potential of Animalu in the local approximation
with the dielectric function due to Hubbard and Sham.
In the case of the centra1 interaction, first and second
derivatives of the pair potential provide two independent
force constants for a particular set of neighbors:

1 dN
r dr

Z2e2

r3 f G (q) cosqr — dq
mr qr

where Z is the valency, e is the electronic charge, and
G(q) is the normalized energy wave-number characteris-
tic given by

The concentration average mass, used in the calculation
for the alloy, is obtained from the following relation:

M(NiPd) =0.55M(Ni)+0. 45M(Pd) . (10)

C&&
=—(2a&+2P&+4a2+ 12a3+ 12/33+ 8o4+ 8P4=1

Following Maradudin et al. , the consideration of central
pairwise forces up to 10 sets of nearest neighbors in the
fcc system yields the dynamical matrix elements D'Pp(q),
involving 20 force parameters a;,P, , i = 1 —10. In order to
compute the contribution of many-body forces to the
dynamical matrix elements D &(q), we follow the scheme
of Upadhyaya and Prakash, where a three-body empiri-
cal potential is used to deduce the force-constant matrix,
involving a single parameter A.

Now one can construct the dynamical matrix D(q) by
using Eq. (2) and then solve the secular equation (1) to
compute the phonon frequencies (v) corresponding to a
wave vector (q) in the Brillouin zone for a pure transition
metal (Ni or Pd) or alloy (Ni-Pd). For the calculation of
the elastic constants, we solve the secular equation (1) in
the long-wavelength limit (q —+0) up to 10 sets of nearest
neighbors and obtain the following relations:

d N

dr

2Z2e2
r3

2Z e
G(q)

2 sinqr 2 cosqr
mr o qr r

—
q sinqr dq . (6)

164 ~ 328 p + 16 ~ + 32
/35 5 5 3 6 3 6

+56@7+32a8 —16ps+ +'' a9 ——',"/39

+ 266~ + 144p )

We denote the radial force constant [d @l(dr ) j„=a;
and tangential force constant

r

1 d@
r dr

C, z
= —(a, —5P, —4/3z+ 6a3 —30P3+4a4 —20/34
=1

+ —4n, +22P, + —,6a, ——,4P6 —+6'a, +—",'P,

—16/3 + —"a ——'"P —80/3, —8A),9 3 9 (12)
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TABLE I. Calculated values of radial (a; ) and tangential (p; ) force constants (dyn/cm) for pure met-
als (a =3.5165 A for Ni and a =3.8829 A for Pd).

Set of
nearesi

neighbors Parameter Ni

Radial force constants

Pd Parameter Ni

Tangential force constants

Pd

1

3
4

6
7
8

9
10

CX)

Q2

CX3

a4
a5
A6

CX7

CX8

CX9

&io

42 076.75
292.92

60.23
—652.32

182.69
160.37

—167.57
—91.96

97.87
83.72

46 123.42
1 482.88
—504.33
—518.00

419.81
51.36

—319.39
—28.70
220.61

74.28

pi
pz
p,
p4
p,
p6
p7
ps
p9
pro

—3 503.39
—28.15

95.25
10.82

—14.28
8.27
6.00

—4.64
—3.75

2.03

—5 817.9
21.7
99.2

—14.6
—10.6

17.9
2.9

—10.4
—2.9

6.0

8.0

7.0

6.0

5.0

3.0

2.0

I.O

0.2 OA 0.6 0,8 1.0 0.8 0.6 0.2 0.2 0.4 0.5

FIG. 1. Phonon dispersion in Ni: dotted curves represent the calculations in second-order pseudopotential theory and solid curves
by incIuding three-body forces; 0, , , experimental points of Birgeneau et al. (Ref. 1).



MODEL-POTENTIAL STUDY OF THE LATTICE DYNAMICS. . . 125

8.0-

7Q~

(100) (I IO) (II])

6.0

5.0

4.0

5.0

2.0

I.O

0.2 0.4 0.6 0.8 l.o 0.8 0.6 0.4 0.2 0.2 0.4 0.5

FICx. 2. Phonon dispersion in Pd: dotted curves represent the calculations in second-order pseudopotential theory and solid
curves by including three-body forces; o, 0, 6, experimental points of Miller and Brockhouse (Ref. 2).

1
C44 = —(a, +3P, +4P~+ 6a3+ 18P3+4a~+ 12P4

a

+ s as 3 ps+ 3 a6+ —", p6+28a7

+ 84p7+ 16p]]+—", a9+ p9+ a]Q

++3'p]o+4A) . (13)

These relations are used to compute the elastic constants
of pure Ni and Pd as well as those of Nio 55Pdo 45 alloys.

III. NUMERICAL RESULTS AND DISCUSSIONS

First of all we use Eqs. (4)—(6) to calculate the radial
and tangential force constants of fcc Ni and Pd by using
the TMMP of Animalu in conjunction with the dielec-
tric function due to Hubbard and Sham. This calculation
involves second-order terms in electron-ion pseudopoten-
tial and, hence, results in the central pairwise forces in
the interaction system. These force constants are evalu-
ated at the experimental lattice constants a =3.5165 and

TABLE II. Elastic constants of Ni, Pd, and Nip»Pdp 4, in units of 10" dyn/cm .

Elastic
constant

Calculated
in second

order

Ni
Calculated

by
including

three-body
forces

Experimental
value (Ref. 12)

Calculated
in second

order

Pd
Calculated

by
including

three-body
forces

Experimental
value (Ref. 13)

Nlp g5'Pdp 45

Calculated
in second

order

Calculated
by including
three-body

forces

C12

22.78
17.84
8.70

22.78
14.69
10.28

24.60
15.00
12.20

24.37
22.47
6.10

24.37
17.57
8.55

22.70
17.59
7.17

22.45
19.43
7.48

22.45
15.47
9.46
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FIG. 3. Phonon dispersion in Nip»Pdp 4, . dotted curves represent the calculations by taking the concentration average of the
force consonants of component metals evaluated at the lattice constant of the alloy in the second-order pseudopotential theory and
solid curves by including three-body forces; o, ~, , experimental points of Kamitakahara and Brockhouse {Ref.3).

3.8829 A (Ref. 10) of the pure Ni and Pd crystals, respec-
tively up to 10 sets of nearest neighbors and are presented
in Table I. The values of the force constants are then fed
into the dynamical matrix and the secular equation (1) is
solved to compute the dispersion relations along the three
high-symmetry directions [100], [110], and [111]. The

phonon dispersion curves, so computed, are plotted in
Figs. 1 and 2 for Ni and Pd and compared with the ex-
perimental data of Birgeneau et al. ' and Miller and
Brockhouse, respectively. The present results for fcc Ni
and Pd, using the real-space analysis, are in agreement
with those of Animalu using reciprocal analysis. The

0
TABLE pp&. Force constants (dyn/cm) for the N&p»Pdp 45 allo y (a =3.6813 &~.

Parameter
Radial force constants Tangential force constants

Ni Pd Nip»Pdp 45 Parameter Ni Pd Nip»Pdp 45

al
CXp

A3

A4

Ag

0,'6

CX7

0!8

CX9

&io

30994.00
1 209.50

—360.77
—305.75

247.06
—58.31

—137.25
57.71
87.04

—27.93

59 862.30
1 573.20

—122.60
—985.05

105.68
469.54

—135.39
—348.25

8.81
255.83

43 984.76
1 373.41

—253.60
—611.44

183.44
179.22

—136.41
—124.07

51.84
99.67

Pi
0~
03
134

13s

l4
137

138

139

Pio

—2 886.10
—49.74

74.24
—8.71
—1.50

9.25
—1.76
—4.38

1.23
2.80

—7 928.2
44.36

136.64
2 2.71

—32.13
6.42

19.10
—1.73

—12.14
—3.41

—5 155.08
—7.40

—102.32
5.43

—15.29
8.87
7.63

—3.18
—4.79

0.01
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maximum errors occur at the zone boundaries for the
transverse branches and are 8.7 and 14.1% along the
[100] direction and 9.4 and 26.9% along the [111]direc-
tion for Ni and Pd, respectively.

Next, Eqs. (11)—(13) are used to compute the elastic
constants of Ni and Pd and are presented in Table II with
the experimental data of Alers et al. » and Rayne et al. '

The elastic constants C» for the two metals are of the
same order of magnitude as the experimental ones, but
C&2 and C44 differ from the measured values with a max-
imum error of 28.7% for C44 of Ni metal.

For the computation of the dispersion relations and
elastic constants of the fcc Nio 5~Pdo 4~ alloy before taking
the concentration average of the parameters it seems ap-
propriate that the force constants of the component met-
als Ni and Pd are to be evaluated at the lattice constant
of the alloy. The lattice constant of the alloy Nio 55Pdo 45

is calculated using the relation (7) and is obtained to be
0

3.6813 A, which is very close to the experimental value
3.72 A. In the present analysis, therefore, we again use
Eqs. (4)—(6) and calculate the force constants of fcc Ni
and Pd at a =3.6813 A for the alloy. These force con-
stants are presented in Table III. Next, Eqs. (8) and (9)

are used to determine the force constants of the
Nio 55Pdo 4~ alloy and the values, so calculated, are given
in Table III. The alloy force constants are then fed into
the dynamical matrix and the secular equation (1) is
solved to calculate the phonon dispersion curves along
[100], [110], [111] symmetry directions for the
Nio 5~Pdo 45 alloy. The computed dispersion relations are
presented in Fig. 3 with the experimental data of Kami-
takahara and Brockhouse. We find that the phonon
dispersion curves are seen in reasonably good agreement
with the neutron data with a maximum error of 12 and
14.7% for the transverse branches of [100] and [ill]
directions, respectively. The elastic constants C», C,2,
and C44 are also calculated for the Nio 55Pdo 45 alloy by
making use of Eqs. (11)—(13) and are presented in Table
II.

An observation at the computed results for the phonon
dispersion of Ni, Pd, and Nio 55Pdo45 shows that the
maximum errors at the zone boundary of the [100] direc-
tion are 8.7, 14.1, and 12.0% and those of the [111]
directions are 9.4, 26.9, and 14.7 %, respectively. There-
fore, the mean-crystal model works approximately well
for the high-concentration alloy Nio &&Pdo45. As far as

450-
N oss P ops

400-

500-
C

Cl~ 250-0

I50

l00 "

50

0
I.9355 5.8706 5.8059

g (THz )

7,74 I2 9.6765

FIG. 4. Phonon density of states of the Nio»Pdo 45 alloy.



128

6.p-

S. C. Up D»AYA J C PADHYA YA, A SHYAM

Pd

2.0-

I.Q-

0--
5Q I pp I5o

T (K)
2QO 25p

on ofs

the eja

pec~~c heat o

astic c

same
s for the th

neer ne d, the co

order of ma
ee meta j~ic

Puted eIast'

t
ncentra

'
y are a

o

ying the
o. 55 do

he corn 0
tion avera

nent meta)s
' g' of the e)a,tic

' a is
onstants f

Bpp

&ext, we in
th

" orPorat
dynamjca)

. t effect of t

view of th
atrjg and el

. o th«ebo

e work of U
e astic con t

y orces in

e valUUe of the th
P hyaya and ppadh

s ant re

zone bo
ree-bo

n

the t
onon froUndary Ph

y orce con t
we obtai

»nt b
n

e transverse b
reqUency of

y tting to t

&anch. Th;
. 0 the [)pp

is invo]ve s one
d~~ection

Parameter g

Fg~ Variati the ~i o.45 a&/op tern peratu

55Q-

Ni 0.55 Pd o.g5

+2Q

&IO

3QQ
5O IQp I5p

T (K)

FIG. 6.

2QQ

perature de ePendence of th ebye tern er ture for th e Njo p

25p



44 MODEL-POTENTIAL STUDY OF THE LATTICE DYNAMICS. . . 129

and its value is found to be 1385.8 and 2378.0 dyn/cm for
Ni and Pd, respectively. For the Nip 55Pdp4~ alloy, the
three-body force constant was not fitted to the phonon
frequency but was obtained by the linear relation with the
value 2 =1823.3 dyn/cm. Now, by including for the
three-body effects in the dynamical matrix, the secular
equation is again solved along the [100], [110],and [111]
symmetry directions for Ni, Pd, and Nip 55Pdp 45 metallic
systems and the phonon dispersion curves are plotted
along the three directions for the three cases. The results
of computation are presented in Figs. 1 —3 by solid curves
for Ni, Pd, and Nip 5&Pdp 45, respectively. We find that in
all the three cases, an almost exact agreement is obtained
with the experimental data. The calculations were also
done for elastic constants by including three-body forces.
The present form of the three-body potential does not
affect the elastic constant C&&, but, in general, the C&2
and C44 elastic constants for the metallic systems are
changed in the right direction to give a close agreement
with the experimental values (Table II).

The phonon density of states for the Nip 55Pdp 4~ alloy
is computed by incorporating three-body forces in the
system in the root sampling method as discussed in Ref.
13 and the results of computation are presented in Fig. 4.
We find that the phonon density of states has similar
trends to that of Kamitakahara and Brockhouse. Fur-
ther, we have also computed the specific heat and Debye
temperature as a function of temperature from the densi-
ty of states by following the standard procedure and
presented the results of computation in Figs. 5 and 6.

Recently, Garg et al. '"' have adopted a similar pro-
cedure for the calculation of the lattice dynamics of fcc
disordered binary alloys. They use de Launay's angular
force model' for the calculation of force constants of
component metals, assuming the interatomic forces
eff'ective up to second-nearest neighbors and then they
take the concentration average of the force constants and
masses of the end members to study the dynamical be-
havior of disordered alloy. Thus, these workers essential-
ly use short-range forces to study the lattice dynamics of
metallic systems. However, the interatomic forces in me-
tallic systems are known to possess long-range character.
Further, it is to be pointed out that the force constants of

the component metals in these works are evaluated by
fitting with the experimental data for phonon frequencies
and elastic constants. In the present work, on one hand,
we determine the ab initio radial and tangential force
constants by using the TMMP of Animalu and, on the
other, we reasonably account the long-range character of
interatomic forces by considering the interaction system
extending up to 10 sets of nearest neighbors. Further, as
far as the central pairwise forces are concerned, no pa-
rameter is fitted with any lattice dynamical or elastic
property. In this respect, the present analysis is also rela-
tively much more satisfactory than those of Kami-
takahara and Brockhouse and Upadhyaya and Shyam.

Thus, in the present work, we evaluate the ab initio ra-
dial and tangential force constants of two fcc transition
metals Ni and Pd by using the transition-metal model po-
tential of Animalu. A real-space analysis is done for the
calculation of phonon dispersion and elastic constants of
the two metals by considering the interatomic forces
effective up to 10 sets of nearest neighbors. In order to
study the phonon and elastic properties of Nip 55Pdp 45 al-

loy, the force constants of fcc Ni and Pd are again evalu-
ated at the lattice constant of the alloy and the concentra-
tion averages of these force constants and masses of the
constituent metals are used to compute the dispersion re-
lations and elastic constants. For the three metallic sys-
tems, Ni, Pd, and Nip 5gPdp 4g the longitudinal branches
of the phonon dispersion curves are relatively in closer
agreement than the transverse branches. When three-
body forces are incorporated in the metallic systems,
close agreement is also found between the experimental
and computed transverse branches but at the cost of one
disposable parameter.
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