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Stopping characteristics for a slow antiproton
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The energy loss, straggling, and dynamic width of slow antiprotons passing through an electron gas
have been evaluated within a scattering-theory approach to the stopping-power problem. The required
e6'ective scattering potential is obtained from both a self-consistent density-functional calculation and a
pseudo-linear-response treatment of the screening nonlinearities. The two methods give similar results.
Comparison of the examined quantities with the case of protons reveals a marked diff'erence in the
metallic-density range.

The availability of antiparticle beams has made it pos-
sible to study the dependence of the interaction between
particles and solids on the sign of the projectile charge
(Z, ). Recent experiments by Andersen et al. ,

' using
incident-beam energies in the range 0.5&E &3 MeV,
have shown the difFerent energy losses experienced by
protons and antiprotons traversing silicon foils. They ob-
serve that the diA'erence becomes more significant as the
energy of the incident beam is decreased. With the
planned extension' of the experiments to even lower en-
ergies (100 keV), it will be feasible to measure the an-
tiproton stopping power down to the stopping-power
maximum. Motivated by these rapid experimental devel-
opments in the measurements and the obvious theoretical
interest in the influence of the sign of the projectile
charge, we have investigated the slowing-down process at
still lower energies, i.e., below the stopping-power max-
imum.

The physical quantities characterizing the stopping
phenomena are the dynamic width of the particle states
(I ), the stopping power (dE/dR), which is the energy
loss per unit path length, and the energy-loss straggling
( W). Within the electron-gas model these quantities can
be calculated at low projectile velocities in terms of a
differential scattering cross section do(uF, 9) for a stati-
cally screened spherically symmetric potential. One
finds'4

( )
dE/dt

r (4)

which represents the average pair excitation energy. It
may find application in studies of electron transport as in
the process of secondary-electron emission.

All of the above quantities can be calculated using
linear-response theory. This description is valid only in
the high-electron-density limit and is equivalent to the
use of the first-order Born approximation for the scatter-
ing cross section. Within this theory a good approxima-
tion to the screened scattering potential is the simple Yu-
kawa potential (Thomas-Fermi) V( r) = —(Z i /r) e
with screening parameter a=2(uF/~)'~ . The stopping-
power quantities can then be obtained analytically, and
one finds (for a unit charge)

2 1 1I =
—,
' vg —arctan —— (5)

x x

feasibility of measuring 8'for slow antiprotons, which is
an additional motivation for the calculation of this quan-
tity.

At the low ion velocities of interest, the stopping phe-
nomena are governed by electron-hole-pair excitations
and I can be interpreted as the total integrated excitation
rate. It is the key quantity in the interpretation of experi-
mental energy spectra using a convolution method.
Furthermore, one can introduce a quantity defined as

I = ,'nv Jdcr(—u~,8) sin —,0

1 dE dE . 2 t9
=2nvuF dc(v~,r8) sin

v dt dR
'
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where v is the ion velocity and VF is the Fermi velocity of
the electrons. Atomic units are used in this paper. The
electron density is given in terms uz by n =vF/(3' ). 83 2

is the scattering angle, and the difterential cross section is
required for electrons moving at the Fermi velocity. We
note that in a very recent article Mgller pointed out the

where y =1/~vF. The extension of these results to the
second-order Born approximation is feasible and has been
carried out for the stopping power by Nagy and
Echenique and S5rensen. ' However, some modification
of the linearly screened scattering potential is necessary,
both from the point of view of formal consistency" and
quantitative accuracy.
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TABLE I. Lowest six angular momentum quantum numbers antiproton phase shifts 6, calculated at
the Fermi energy in KS DFT.

0.2
0.5
1.0
1.5
2.0
3.0
4.0

0.184 787
0.340 635
0.509 178
0.623 477
0.707 902
0.825 753
0.908 961

0.090 447
0.135 220
0.168 202
0.184 313
0.194043
0.204 814
0.210 592

0.051 671
0.061 123
0.058 118
0.050 297
0.041 887
0.025 900
0.010983

0.031 518
0.029 263
0.020 757
0.013 481
0.007 952
0.000 612
0.003 754

0.020 016
0.014 465
0.005 442
0.003 642
0.000 858
0.000 164
0.000 428

0.013 163
0.007 344
0.002 822
0.000 997
0.000 272
0.000 074
0.000 010

At typical metallic densities (UF —1), the asymptotic
expansion breaks down as a result of the strong non-
linearity of the interaction of the probe charge with the
electrons, and so a nonperturbative calculation of the
scattering is needed. The most accurate potentials avail-
able are from self-consistent nonlinear screening calcula-
tions' ' done in the Kohn-Sham (KS) scheme' ' of
density-functional theory (DFT). On the other hand, an
approximate nonlinear solution can be obtained using a
parametrized Thomas —Fermi —von Weizsacker (TFW-A, )

dielectric function in which the parameter k is used to
satisfy a nonperturbative constraint (nuclear-cusp condi-
tion). The advantage of this approach is that analytic
forms for the potential and induced density' (see also
Ref. 18) can be obtained. The stopping power for a slow
antiproton has been calculated' ' using both ap-
proaches, which give nearly the same results for various

densities. More importantly, the results show a marked
difference in comparison to those of a proton. "'
The same conclusion was arrived by S5rensen' by means
of self-consistent DFT calculations at two electron-gas
densities (r, =0.543 and 2.17). His results for proton and
antiproton stopping powers are in quantitative agreement
with ours, except for the case of the proton at the lower
density, which in his calculations is problematic. At this
density the screened potential supports a bound state,
which is included in our calculations and leads to a
significantly weaker scattering potential than obtained
when screening by the bound state is excluded.

To complete our understanding about the inAuence of
the sign of the charge on the stopping phenomena, we
here present the results for 1, W, and ( E ). We have used
the Fermi-level phase shifts of the self-consistent screened
potentials to determine the differential scattering cross
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FIG. 1. Width of the particle states (I ) calculated for protons (p) and antiprotons (p ) within the scattering-theory approach using
KS DFT [curve (b)] and TFW-A, [curve (a)] descriptions of the scattering potential.
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FIG. 2. Ratios of proton to antiproton values as a function of

r„using the KS DFT approach: (a) width of the projectile
state, (b) stopping power, and (c) straggling.
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FIG. 3. Average energy &E & of an electron-hole excitation as
a function of r, for protons (p) and antiprotons (p ) using the KS
DFT approach.

section dtr(v~, 9) [see Eqs. (I)—(3)]. Table I contains the
first six phase shifts for an antiproton as a function of the
density parameter r, = [3/(4vrn ) ]'~ in the range
0.2 ~ r, ~4, obtained in the KS DFT. At metallic densi-
ties the leading phase shift (6o) is relatively insensitive to
changes in the density of the system. A similar con-
clusion holds in the case of protons. As is well
known, ' ' 6o for protons is about m/2, while for an-
tiprotons it is roughly one-half of this value. This large
difference in the leading phase shift results in significantly
different stopping characteristics for protons and antipro-
tons, as shown in detail below.

In Figs. 1 and 2 we show the width of the particle
states (I /U) and energy-loss straggling ( W/U ) as a func-
tion of r, for antiprotons (p) using the TFW-A, [curves
(a)] and KS DFT [curves (b)] approaches to calculate the
scattering potential. The curves in the inset refer to the
same quantities for a proton (p). Figures I and 2 show
the sensitivity of these two quantities to the sign of the
projectile charges. At typical metallic densities the re-
sults obtained in both approaches agree within 10%.

In Fig. 3 we plot (E), as defined in Eq. (4), as a func-
tion of r, for protons (curve p) and antiprotons (curve p )

obtained in KS DFT. It is not very sensitive to the sign
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FIG. 4. Energy-loss straggling ( 8') for protons (p) and antiprotons (p ). The notation is the same as in Fig. 1.
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of the charge of the bombarding particle and is close to
the value ( E ) —vv~ to be expected on the basis of classi-
cal arguments. The ratios (R) of the proton and antipro-
ton I and 8'are plotted in Fig. 4 as a function of r„ to-
gether with the same ratio for the stopping power taken
from Ref. 12. It can be seen that these ratios are of the
order of two in the metallic density range (2 (r, (4) and
increase in the order I, dE/dR, and 8 as a result of the
different weighting factors of the scattering cross section
[see Eqs. (1)—(3)).

It should be noted that the linear-response values one
obtains from Eqs. (5)—(7) for the antiproton are in accept-
able agreement (within 20%) with those obtained in the
self-consistent KS DFT calculation for the antiproton,
even though the Thomas-Fermi and KS DFT screened
potentials differ markedly. ' ' An examination of the
leading phase shift (6o) provides a simple explanation. In
the first-order Born approximation, the phase shift 50 for
our Yukawa potential is given by

T

50= ——y ln 1+7T 2 1

2 x'

The numerical values from Eq. (8) are fortuitously close
to those given in Table I. Qualitatively, the mistake one
makes in choosing a linearly screened potential is "com-
pensated" by the use of the first-order Born approxima-
tion; neither of these approximations is quantitatively ac-
curate.

In summary, we have investigated the behavior of the
stopping characteristics for slow antiprotons. A notable
dependence on the sign of the projectile charge is found;
nonlinear effects are therefore significant for the quanti-
ties examined.
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