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Jahn-Teller effect for the negatively charged C&o molecule: Analogy with the silicon vacancy
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The isolated neutral C60 molecule is characterized by a triply degenerate lowest unoccupied level of
t l„symmetry. In the alkali-metal-intercalated C«crystals, this state is partially filled and is thus sub-
ject to a Jahn-Teller distortion. To examine the relation between this eAect and the superconductivity
of these crystals, we first study the stable atomic distortions as a function of the occupancy of the tl,
state, stressing the similarity between this problem and the single vacancy in silicon. We then show
that the on-ball electron-lattice coupling is not strong enough for C60 to behave as a negative-U sys-
tern. %'e finally relate the dimensionless electron-phonon coupling constant X to the magnitude of the
Jahn- Teller energies.

An intriguing property of the alkali-metal-intercalated
fullerite compounds A3C60 is that they are superconduct-
ing with a transition temperature which can exceed 30
K. ' Recent calculations have shown that the elec-
tronic properties of these materials are dominated by in-
traball interactions (i.e. , within each C60 molecule), the
interball coupling being more than 1 order of magnitude
smaller. Further, alkali-metal intercalation is well de-
scribed by electron donation to the C60 molecule. The first
step in understanding the origin of the superconductivity
is thus to study the electron-lattice coupling of the isolated
negatively charged C60 molecule. This coupling is
strongly inAuenced by the fact that its ground state is or-
bitally degenerate, leading to the existence of a Jahn-
Teller eAect. The aim of the present work is to examine
this Jahn-Teller coupling in some detail and evaluate its
role in the superconductivity of the A3C60 compounds.
We first determine the possible stable atomic distortions.
We then determine the Jahn-Teller energies for C60 and
calculate the contribution of the Jahn-Teller terms to the
dimensionless electron-phonon coupling constant X. We
also show that the Jahn-Teller problem can be cast in the
same form as for the single vacancy in silicon. For the
relevant case of a half-filled triply degenerate state, we ob-
tain results which diAer qualitatively from the current in-
terpretation of the negative vacancy, confirming the re-
cent analysis of Anderson, Ham, and Grossmann.

The electronic structure of negatively charged C60 is
characterized by the fact that the upper partially filled
level is triply degenerate and of t ~„symmetry. In the
23C60 compounds, this level gives rise to a weakly dispers-
ing band due to the small interball interactions. This
band is partially filled with three electrons per C6p ball, so
that the relevant problem to study is the isolated C60 mol-
ecule with three electrons in the t l, state. For such a par-
tially filled orbitally degenerate state, there will be a
linear coupling to the on-ball distortion modes. These
latter can be classified by symmetry. The only modes
which couple within the t ~, manifold are those contained

in the symmetric product (t ~„&& t ~„)„namely, Ag (nonde-
generate fully symmetric modes) and Hg (fivefold-degen-
erate distortion modes). It turns out that the Ag contribu-
tion will be small.

In the following, we shall be concerned mainly with the
Hg modes whose amplitude we label Q„,. Here, p is the
mode index (there are eight such modes for C60) and
a=&, eg, i, r( is the degeneracy index. In the limit of
linear electron-lattice coupling one can treat each five-
fold-degenerate set of modes (i.e., each p value) indepen-
dently. For one such mode, symmetry considerations lead
to the following Jahn-Teller coupling 3 & 3 matrix:

—Qpe+ &3Qp.
—

Qpe
—~~Qpe

0 2Qpg

+ IT„Qp~ o Qp~

We have deliberately chosen the notation to be the same
as for the single vacancy in Si, ' which, in Td symmetry,
corresponds to a T2 electronic state coupled to modes of E
and T symmetry. This can be directly applied to C60 by
considering that the F. and T modes become degenerate,
leading to a fivefold-degenerate Hg mode, and imposing
one relation between the two electron-lattice parameters,
namely, IT= —, J3IE=I. This is analogous to the case of
p-like electronic states coupling to d-like distortions.

The existence of this Jahn-Teller coupling leads to ener-

gy surfaces which can be calculated by adding to the
linear terms (I) an elastic term of the form

Lp = &p~ (Qpe+ Qp. ) + 2 &pT(Q—g'+ Qg + Qt,'),
with KpE =K~T=—K for C60.

To determine the stable distortions one must minimize
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the total energy resulting from (1) and (2). This energy
takes the form

3

E...= g n, r, (g,.)+L,,(g,.) . (3)

where the y are the basis states. The eigenvalues X; are
solutions of

~i &im Zj Vmm &im'' (5)

the V„„„being the elements of matrix (1). This allows
one to express X; as

~i X riim +mnr'&inr' ~

nt, nt'

We insert this last expression into Et„t given by Eq. (3)
and minimize Et,t with respect to the distortion coordi-
nates Q„,. Noticing that each A, ; is already an extremum
with respect to any variation of the a;„„we get the set of
equations

t)Etot ~ ~ Vnrnr'
Z iii Z riim &im +Kpa'gpa ~

pa I /Pl, Pl pa

The V„,„, are linear in the lattice coordinates so that their
derivatives are numbers. Equation (7) can then be used to
express the Q„, in terms of the a;„,. If we now insert these
values of the Qp, into the V„,„, of Eq. (5), we get an equa-
tion involving only k; and the a;„,. After some manipula-
tions (essentially generalizing those detailed in Ref. 10 for
the case n,.= 1) we get the following set of equations, valid
for any level occupancy:

(8)
These equations reduce to the standard Opik and Pryce
result for n,, =1 or 2 where only the lowest k; is occupied.
In the present situation, we have n; =2, 1, and 0 for the
lowest, intermediate, and upper states. We must analyze
all possible solutions of Eq. (8), considering the possibility
that either a~„, is zero or nonzero. The number of possibil-
ities is larger than those investigated in Ref. 10. However,
the result we obtain is surprisingly simple: We find that
the only stable distortions are either pure tetragonal (i.e. ,
having only the Qtr, Q, modes being nonzero) or pure tri-
gonal (having only the Q~, Q„, and Q» modes being
nonzero). Which of the two situations is the stable one

The k; are the eigenvalues of (1) and the n; are the occu-
pation numbers. The solution to this problem is well
known for n, =P; n; equal to 1 or 2, i.e., when only the
lowest state is filled. '' Here we want to consider also the
case n, =3 which is relevant for A3C60. For this we have
generalized an approach to this problem given by Opik
and Pryce ' ' for the case n, = 1.

We follow exactly the same lines (details can be found
in Ref. 10) and summarize here only the main steps in the
derivation. We first write the ith normalized eigenfunc-
tion of the matrix (1) in the form

0
pi ~aintpm ~

U(n, ) =Et t(no„+ I)+E«t(n, —1)—2Et,t(n, ) .

This can be decomposed as an electronic contribution U, l

plus a distortion contribution Ud. The latter is simply
given in terms of the f(n, ) and, for n, =3, turns out to be

Ud = —tf(4)+f(2) —2f(3)1+E„

We have calculated this contribution in a tight-binding
description for the electronic states and their coupling to
the lattice and a Keating model for the vibrational eigen-
modes. '4 The results, confirmed by a local-density-ap-
proximation (LDA) calculation for some modes, give for
Ud a value of —0.05 eV. This is much lower than U„
which, for the ball, should be of order 0.5 eV. We thus do
not expect a negative-U behavior for the isolated C6o to
arise from the Jahn-Teller effect. There is also a contri-
bution of the A~ symmetric modes to Ud which we found
to be too small ( —0.02 eV) to modify this conclusion.

Let us finally work out the relation between the Jahn-
Teller stabilization energy and the dimensionless elec-
tron-phonon coupling constant A, occurring in the theory
of superconductivity. We use a standard expression for

l5

g I Vi;i, (p, q) I
'~(«) ~(&i ')

N(0) p, q 2Kp, q i;,k'
(12)

depends upon the corresponding Jahn-Teller gains in en-
ergy. These can be written as f(n, )Ep for tetragonal dis-
tortions and f(n, )Tp for trigonal modes. The function
f(n, ) takes the values I, 4, and 3 for n, =1 or 5, 2 or 4,
and 3, respectively. ' The units of Jahn-Teller energy are

4 IT'„
E = " T =— (9)

2KE, 3 2KT,

Only pure distortions occur (tetragonal for Ep) Tp,
trigonal for Ep & Tp) irrespective of the value taken by n, .
For the vacancy in silicon this result agrees with Watkins'
observations of a pure tetragonal distortion for the posi-
tive state V+ (n, =1). ' However, for the negative state
V (n, =3), it contradicts his simple explanation for the
observed mixed (tetragonal + trigonal) distortion since
this analysis predicts only pure modes of distortion. Our
results confirm the recent conclusions of Anderson, Ham,
and Grossmann that more complex effects like multiplet
splitting must be included to explain the observed mixed
distortion.

Coming back to the C60 problem, the fact that IT
=IEJ3/2 and KE =KT =—K implies that E„=Tp, i.e.,
that there is an extra degeneracy involving the five distor-
tion coordinates. The origin and consequences of such a
degeneracy can be found in the work of O' Brien. '

Now that we have the value of the jahn-Teller energy,
which is f(n, )Ep for the C6o molecule, we can answer the
question whether it behaves as a positive- or negative-U
system. The effective electron-electron interaction U is
defined, in terms of total energies Et,t, as
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where Kp q is the force constant for the pth phonon mode
of wave vector q, VgI,- is the corresponding electron-
phonon matrix element between electronic states of wave
vectors k and k'. The 6 functions ensure that the sums are
restricted to the Fermi surface. N(0) is the total density
of states per spin and the sums do not include spin. The
electronic states at the Fermi level are essentially built
from the three t ~„st ates of the ball and we can write them
in the Bloch form

to show that Vkq reduces to

Vtt, =+C,*(k)C,(k') g—e' " Vtt'tt(p, q)
V, V N g

(i4)
I

where VRg is the intraball coupling matrix. For the one-
phonon mode with wave vector q this term takes the form
(I/JN )e'~ Voo and when inserted in (14), leads to the
condition k'=k —q. We thus get

tlt(k) = g c,(k)ge "~y„R,
N v-i

(i3) V t, — = g V" (p) C, (k)C, (k —q) .
N ~.'

where we consider a fcc lattice with one C6p ball per unit
cell, R defines the cell position, v runs over the three states
per ball, and N is the number of C6p balls in the crystal. If
we neglect the interball electron-lattice coupling, it is easy

We now proceed to calculate X, by inserting this form of
Vt t v into (12) and also considering that the dispersion
in the phonon modes can be neglected, i.e., that Ez q is in-
dependent of q. We then obtain

N(0) p 2K' t, , t; —
q lV

I
V, V

t

(16)

Using the fact that (I/N)gt, C,*(k)C, (k)B(et, ) is the
partial density of states n„(0) per C6o at the Fermi level,
this can be rewritten

tailed form of (1),one can express (18) as

X =2n (0) gEp—5

g Voo (p) Voo (p) *n„(0)n„,(0),n0 t, 2Kt, , .
(17)

X =2n(0)g Tr Vp

p, 18K'
(18)

Vp being the matrix obtained by taking the derivative of
(1) with respect to the mode amplitude Qp, . From the de-

where n(0) is now the density of states per spin and per
C6p. For the fcc crystals the local symmetry is such that
n„„(0)= 3 n(0)8„, i.e., k takes the form

which directly relates the distortion mode contribution to
X, and their total Jahn-Teller energy 3+~ E~ in the n, =3
situation. Detailed calculations, described in Ref. 14, give
a total contribution k —0.6 with a reasonable density of
states of n(0)=15 eV ', which is the correct order of
magnitude for explaining the observed values of T, .

In conclusion, we have studied the Jahn-Teller distor-
tions of the C6p molecule as a function of the occupancy of
its last filled electronic state. We have derived a general
expression, also valid for the vacancy in silicon, showing
that only pure distortions are involved. Our calculation
leads us to conclude that C6p is not a negative-U system.
Finally, we have established a sum rule relating the part
of A, arising from the distortion modes to the total Jahn-
Teller energy.
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