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Transient regimes of flux creep in high-T, superconductors
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Initial nonlogarithmic (t ( z) stages of flux creep in superconductors have been studied both theo-
retically and experimentally. Measurements of the time constant z in grain-oriented YBa2Cu307 — at
T=20 K and B =6 T and various sweep rates dB,/dt are presented. The experimental data as well as
an analysis of nonlinear Aux diff'usion for diff'erent Aux-creep models indicate that the constant r is a
macroscopic quantity essentially depending upon initial conditions and sample geometry. The value r
is shown to be inversely proportional to the sweep rate with z reaching 5X l0' s at dBJdt =5X lO

T/s.

M(t) =M„M, In(t/to), — (2)

where the constant to generally differs from r in Eq. (1)
and depends on the choice of M„as only the combination
M, +Ma lnfp has physical relevance. Usually t p is fixed by
the condition that the value M, should be given by the
Bean model. ' Formula (2) is a known result of the
Anderson-Kim model, ' and also describes the initial
stages of the Aux creep in a vortex glass ' and collective
creep ' models.

As for the time constants i and I,p their meaning is dis-
cussed in the literature. In early works the values r and

to llad been related to a microscopic frequency of oscilla-
tions of pinned vortices and put to be of order 10
10 ' s. Then the dissipation in vortex cores upon the os-
cillations was taken into account, which enabled one to ex-
press r and tp via macroscopic quantities such as the
Aux-Aow resistivity pf, sample sizes, etc. ' '' ' Never-
theless, the formulas for i and t p obtained in Refs. 10, 13,
and 1S still contain uncertain microscopic parameters
such as an attempt frequency or vortex bundle size, which
allows some arbitrariness upon their estimations.

In this paper we show that both r and tp are macro-
scopic quantities determined by nonlinear Aux diAusion,
which enables one to express them via directly measured
parameters. Furthermore, it will be shown that usually

Thermal fluctuations are known to be a very important
factor afl'ecting the critical current density j, and pinning
of vortex structures in high-T, superconductors for which
the observed rapid relaxation of inagnetization (Aux
creep) leads to essential dependence of irreversible mag-
netic properties on induced electric fields. Initial stages of
the Aux creep from a subcritical state (j(j,) well below
the irreversibility line' are usually described phenome-
nologically as follows,

M(t) =M, —M, In(I+t/z),
where M(t) is the magnetic moment of a sample, Mo is
the initial value of M(t), Mi determines the Aux-creep
rate S= dM/din—t, and z is a time constant. At t»r
formula (I) takes the conventional form

r &&tp with tp being an intrinsic time constant unlike r,
which essentially depends on initial conditions, in particu-
lar, on the sweep rate B, =dB,/dt. Here characteristic
values of tp range within 10 -10 s, whereas r varies
from 1 to 10 s upon the change of 8, from 10 to 10
T/s. The time z determines a transient period after which
the logarithmic relaxation of M(t) begins. These state-
ments will be confirmed below by exact solutions of non-
linear equations describing the Aux diffusion and by flux-
creep experiments done on oriented-grain YBa2Cu307-, .

We consider first a slab of thickness 2a along the x axis
and infinite in the yz plane with the magnetic field H,
parallel to the z axis (Fig. I). Let the external field B,(t)
increase with a constant sweep rate 8, until t =0, and
then remain fixed. This induces an initial electric field
E(x) =B„x which then decays at t &0 due to the flux
diffusion through the sample. Such a process has been
considered by Beasley, Labusch, and Webb in terms of
the Maxwell equations for magnetic induction 8 propor-
tional to the vortex density. For our aims it is more con-
venient to present the Maxwell equations 8 = —V x E and
VXH=j as a single equation for the y component of
E =yE(x, t):

E"=po(af/'aE) E, (3)

a x

FIG. l. The electric-field profile E(x,t) described by Eq. (8).
The dashed line shows the initial distribution E(x, t) =B,x
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where the prime and overdot denote the differentiation
with respect to x and t, respectively, and we also put
8 =ppH assuming that H, ~

&& H && H, 2. We are interested
in solutions of Eq. (3) obeying the boundary conditions
E(0,t) =0, E'(a, t) =8, (a, t) =0, and the initial condition
E(x,o) =B,x.

Qualitative features of the flux creep entirely deter-
mined by the nonlinear dependence of the diAerential con-
ductivity Bj/BE on E can be obtained from Eq. (3) by as-
suming E"—E/a and E —E/t, which yields

t —pp(Bj/BE) a '. (4)

This diff'usion-type relation enables one to get long-time
asymptotes of E(t) for various flux-creep models. For in-
stance, for the exponential I-V curve E =E,exp[ —(j,

j) /j —
~ ], m & 1, one finds E~ 1/t and j (t) =j, —j~

x ln'/ (t/t p), with an accuracy to slowly varying logarith-
mic terms lnt as compared to t at m&1. Likewise for the
power I-V curve E =E,(j/j, )", one has E ~1/t"
and j(t) ce 1/t " ', whereas for the vortex-glass model
with E =EpexP[ —(j p/j ) ~1 (Refs. 7-10) one gets
E(t) ee 1/t and j(t)-jp/ln ' ~(t/tp), where we again
neglect lnt as compared with t at t » to. Here F, plays the
role of a crossover field between the flux-Aow and Aux-

creep regimes.
These general results based in essence only on a dimen-

sional analysis show the independence of the long-time be-
havior of E(t) from initial conditions. The latter occurs
at t » r, where the time constant r can be estimated by
substituting a characteristic initial electric field E =8,a
into Eq. (4), which gives a time needed for the beginning
of the above steady-state regime after a diA'usion redistri-
bution of magnetic Aux due to the abrupt change of B,(t)
at t =0. Hence it follows that

r =appj ~/mB, In' '/ (E,/aB, ),
r =(a ppj, /nE, )(E,/aB, ) '

r =appj p/PB, ln'+'/~(Ep/aB, ),

(5)

where Eqs. (5)-(7) correspond to the exponential, power,
and vortex-glass I-V curves, respectively. Notice that the
time r essentially depends on 8, (see also Refs. 4, 10, 14,
and 15), this dependence being close to an universal law
r ~ 1/8, for all of the above-mentioned I Vcurves if one-
neglects slowly varying logarithmic terms lnB, or takes
into account that usually n»1. ' This is due to the fact
that the difference between different Aux-creep models
manifests itself only at long times t» r, ' ' whereas at
t —i the results are close to that given by the exponential
I Vcurve. Indeed, the fiel-d E(j) at j & j, can be present
in the forin E =E,exP[ —U(j)/ktrT], where U(j) is a
Aux-creep potential barrier which is, in general, a non-
linear function of j vanishing at j=j„(see Refs. 6-10).
At initial stages of the decay of the critical state
[j(0)=j,] we can expand U(j) in a power series of j,—j
keeping only the first term, i.e., U/k&T=(j, . —j)/j~ with

j& the observed Aux-creep rate: j~ = dj/dint (in the-
Anderson-Kim model j~ =j,k8T/Up, where Up is a Aux-
creep activation energy ).

Since we are interested in the transient stages of the

Aux creep (t —r ), we consider the case of the exponential
I V-curve in more detail, assuming for simplicity m =l.
By substituting Bj/BE =j ~/E into Eq. (3) we find an exact
solution obeying the boundary conditions E (0, t)
=E'(a, t) =0 and E'(0,0) =8,:

E(x, t) =pp j ) (ax —x '/2)/(t + r ), x & 0, (8)

Notice that the parabolic profile (8) forms from the initial
distribution E =B,x during a time t —r needed for the
diffusion of electric-field perturbations from the lateral
surface toward the slab center (Fig. 1). At t » r formu-
la (1) reduces to Eq. (2) with

tp=8a Pp j~/e E, . (lo)

To estimate the crossover field E, we consider a Aux-Aow

part of E(j) at j& j„where E =(j j,)pI. T—his formula
is valid if j—j,» j] as j] determines the smearing of the
I-V curve due to the Aux creep. Hence E, —pIj~ and Eq.
(10) yields tp —a pp/pI, which correlates with estimations
of to obtained for various flux-creep models. ' ' '

Therefore the transient nonlogarithmic stage of mag-
netic relaxation can take considerable time, which may
even exceed a time window in flux-creep experiments. For
instance, if a=1 mm, j, =lo A/cm, j~ =2X10 A/cm
(Ref. 11), we get r =appj ~/8, =25 s at 8, =10 T/s
and r =2.5X 10 s at 8, =10 T/s. Taking p/=p„(8/
8,.2) =10 pQcm with 8/8, 2=0. 1 and the normal-state
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FIG. 2. Examples of the relaxation curves M =M(lnt) at
T=20 K, 8=6 T, and various 8„: 10 3 T/s (Cl), 1.3&&10 T/s
(V), 2X IO ~ T/s (0), 5x 10 T/s (0). The solid curves corre-
spond to Eq. (1).

where r =app j~/8, is given by Eq. (5) with m =1. Using
Eq. (8) we can calculate the magnetic moment per unit
lateral area of the slab, M = —,

' Jxjdx, where
j=j,—j~ln[E, ./E(x, t)]. The result is given by Eq. (1)
with

Mp= —,
' a j[,+j ~ ln(8aB, /E, ) —3j~l, M~ = —, a j~ .
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FIG. 3. Dependence of Mo on B, The line gives the best fit.

resistivity p, =10 pAcm, one finds the time constant
to-10 s is much less than r.

In order to observe the transient stages of the Aux creep
we have studied the magnetic relaxation in grain-oriented
YBa2Cu307 —, at various sweep rates 5 & 10 & 8,
& 1.2X 10 T/s. We used a sample of rectangular shape
0.47X3.5X2.5 mm with the sides parallel to the a, b, and
c axes, respectively. The magnetic field B=6 T was
parallel to the c axis, which ensured complete Aux

penetration into the sample and stable current
configuration in the isotropic ab plane. ' The relaxation
of M(t) was measured at low temperatures (T=20 K),
where the flux creep has been observed to be nearly loga-
rithmic with the maximum value of ji (T) in Eq. (5). The
experimental setup has been described elsewhere. ' '

Shown in Fig. 2 are typical relaxation curves M(t)
measured at different 8, . Being plotted as a function of
Int, the curves M(lnt) clearly display a plateau corre-
sponding to the transient nonlogarithmic stage, the pla-
teau increasing as 8, decreases. As follows from Eq. (1)
the value lnr is the ordinate of the intersection point of
the straight line M Mo —Mi In(t/r ) being the long-time
asymptotes of M(t) and the horizontal line M =Mo. We
have found a good fit of Eq. (1) with the experimental
curves M(t) when treating Mi and r as fit parameters
(Fig. 2).

The dependences of the measured quantities Mo and r
upon 8, have been found in good agreement with those
given by Eqs. (5)-(7) and (9). For example, Fig. 3 shows
the logarithmic dependence of the initial magnetic mo-
ment Mo on B„which reflects the eAect of the induced
electric fields on j,. The slope dMo/dln8, ' coincides
with the slope Mi = —dM/dint, in accordance with Eq.
(9). Furthermore, we have observed the inverse depen-
dence of the time constant r (8, ) upon the sweep rate 8„

FIG. 4. Dependence of r on I/B„. Inset: data for higher B„.
The lines give the best fits; their slopes in the main figure and
the inset differ by —20%.

the value r(8, ) reaching -5x10 s at 8, =5&&10 6 T/s
(Fig. 4). Notice, however, that the slopes dr/dB, ' prove
to be slightly different at 5X10 & 8, & 10 T/s and
10 '&8, &1.2X10 ' T/s, which may be due to slow
logarithmic factors or a nonzero value of I/n in Eqs.
(5)-(7) resulting from a nonexponential form of E(j).

In the above experiment we have specially used reduced
sweep rates in order to reveal the transient stage. Usually
the value 8, is taken by several orders of magnitude larger
than our lowest B„which shifts this stage into the ms re-
gion. ' Notice here the recent work by Gao et al. ,

' who
have measured the flux creep beginning with t —0. 1 ms
with the use of a pulse technique giving 8,—10 —10 T/s.
Under these conditions the above estimations indicate that
the transient stage cannot be observed since z &0.1 ms
with E(0)—1 mW/cm —E,. However, the decrease of 8,
(or E in resistive experiments) leads to the essential
growth of r imposing a lower limit for the minimum time
window needed for measurements of steady-state Aux-

creep or resistive characteristics. For instance, in a sam-
ple with a —1 mm the time constant r —a poj ~/E
exceeds 1 h at E & 7 x 10 ' V/cm.

In conclusion, we have studied both theoretically and
experimentally initial nonlogarithmic stages of the flux
creep and have shown their essential dependence on the
sweep rate. Systematic measurements of the time con-
stant r(8„) are presented, and the inverse dependence
z CL 1/8, has been observed. The results are shown to be
similar for various flux-creep models over a wide region of
the parameters.

One of us (A.G.) is grateful to the Alexander von Hum-
boldt Foundation for support.
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