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The existence of a spin gap is studied in a generalization of the one-dimensional t-J model. A frus-
trated next-nearest-neighbor exchange interaction, J', gives rise to a spin gap at half-filling that sur-
vives for small doping and arbitrary values of J. Regions of phase separation and divergent supercon-
ducting fluctuations are distorted but still present in the extended model.

The phase diagram of the one-dimensional (ID) t-J
model has been determined recently. ' The supersym-
metric model (J=2t) solved by Bethe-Ansatz techniques
is a Tomonaga-Luttinger (TL) liquid for all values of the
electron density. Similar behavior is found for the entire
region 0(J/t (1 where the values of the correlation ex-
ponents are similar to those found in the one-band Hub-
bard model in the region U/4t ) 1. Particularly, in the
parameter region relevant for high-T, superconductors
(n —0.8, J/t ——,

' ), the correlation exponents show dom-
inant spin-density-wave correlations with suppression of
superconducting correlations. Enhanced superconducting
correlations were found only at values of J/t —3 as a pre-
cursor of phase separation. ' The high-T, superconductors
are, at least, two dimensional and while there are new
types of instability possible in two dimensions such as d
wave superconductivity or Ilux phases, the experimental
evidence points towards s-wave superconductivity. An s
wave state should have analogy in one dimension. This
has motivated us to look for modifications of the t-J mod-
el that could show superconducting correlations at low
doping.

A key test for s-wave superconductivity is the presence
of a spin gap. In terms of weak-coupling theory known as
"g-ology" this occurs in the region with attractive back-
scattering matrix element (gi (0) whereas a TL state
occurs when gl & 0. In this paper we show that the addi-
tion to the t -J model of a frustrating next-nearest-
neighbor exchange interaction, J', produces a spin gap for
n ~ 1. A diA'erent model with an alternating exchange in-
teraction was examined recently by Imada but will not be
considered here. In this context, it is worth remarking
that recent neutron experiments by Rossat-Mignod and
co-workers ' show evidence for a spin gap opening up
above T, in the low doping compound YBa2Cu306 69.

The t -J-J' model is written as

H= —tg(c; c;+i +H.c.)+Jg(S;.S;+1 ——,
' n;n;+i)

+J'g(S; S;+z ——,
' n;n;+2) .

Hereafter we set t=1. At half-filling, Majumdar and

Ghosh'' showed that a dimer state is the exact ground
state at J'/J=

& and that the triplet excited state has an
energy gap' equal to about 0.25J. Continuum approxi-
mations' and the numerical study of small clusters' in-
dicate that the gap opens for J'/J )0.25. The properties
of a single hole in a t -J-J' model were investigated by Doi
et al. ' The problem here is whether this spin gap survives
when many holes are doped in this system. At first we will
show the global feature of the phase diagram and then
study several regions using analytical and approximate
methods focusing on the spin gap. It is always difficult to
confirm numerically the existence of a spin gap even in
pure spin Hamiltonians as shown, for example, by the
Haldane gap. ' ' Ho~ever, in this paper, we can show
analytically the existence of a gap in the small-J limit by
making use of the results for a spin chain.

Figure I shows the phase diagram for J'/J fixed at —,
' .

The detailed method for obtaining the boundary of the
phase separation and the correlation exponent K~ is the
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FIG. 1. Phase diagram of the one-dimensional t-J-J' model
with J'/J =0.5 determined from the 16-sites cluster calculation.
The curves show the contours of constant correlation exponent
K~. They are calculated from a mesh of points similarly spaced
in density in steps of 0.2J. Solid symbols show the values where
the inverse compressibility crosses zero representing the bound-
ary of the phase separation.
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same as that used for the t-J model. ' The exponent K~ is
determined from the relation ' K~=xv, n x/z, with v,
and rc being the charge velocity and the compressibility,
respectively. The charge-density-wave (CDW) correla-
tion decays as e '""/r & irrespective of the opening of a
spin gap. However note that the other exponents are
different in the two cases with and without a spin gap.
Various exponents are summarized in Table I. It is ap-
parent that the superconducting correlation becomes the
most dominant when K~ & 1 in both regions.

From Fig. 1, we can see that the boundary of the phase
separation is more distorted compared to the 1D t-J mod-
el. Especially near n = —,

' it extends to the large-J regime.
This is related to the fact that there is a stable config-
uration at this electron density, which we discuss below.
Accompanying this distortion, the region with K~& 1 is
also distorted, but remains adjacent to the phase separa-
tion as in the ID t-J model. The low-density and high-
density limit of the boundary can be understood easily. In
the low-density limit, the two electron problem can be
solved analytically. Two electrons form a singlet bound
state at J &4 —2J2 (=1.172) for J/J'=0. 5. This value
is smaller than that in the t-J model (J=2) because the
next-nearest exchange term also contributes to the attrac-
tive force between the electrons and shifts the boundary to
smaller J. In the high-density limit, the boundary moves
to a larger J.

Let us proceed to the problem of the opening of the spin
gap. In the small-J limit, it can be shown that a wave
function similar to the large-U limit of the 1D Hubbard
model is realized. At J=0 all the spin configurations are
degenerate and thus the charge degrees of freedom of the
wave function is expressed by the Slater determinant
of spinless fermions, ( —l)~det[exp(ik/xg~)J Here x(i.i
&x@2& . &xg/v are coordinates of all the electrons

with Q being a permutation, and k/ are the momenta of
free spinless fermions. In the perturbation procedure
around this degenerate point, ' the spin part of the wave
function is determined by diagonalizing the following
effective Hamiltonian for the squeezed spins:

H, fr= (J(n;n;+ i)sF+ J'(n;(I n;+ [)ni+2)SF)—ZS/' S~+ i

+J'(n;n;+in;+2)sFXSJ SJ+2, " (2)
J

where ( . )sF indicates the expectation value for spinless
fermions. The summations over j are taken over the
squeezed spin chain. This Hamiltonian is nothing but the
J-J' Hamiltonian with eA'ective exchange interactions, J,q

and J,'g. As a result, we see that the ground-state wave
function in the small-J limit has a form, ( —1)~

i&det[exp(ikjx(ii)] @(J„'ii/J,ir), where @ is the ground-
state-spin wave function of (2). The ratio J,'a./J, a is cal-
culated simply from the expectation values and depends
on the electron density. In the small doping regime, we
find Jdr=(1 —28)J+6'J' and J,'tr=(1 —3B)J', where 8 is
the hole density, 8=1 —n. The eAect of the doped holes is
simply to reduce the effective exchange interactions so
that the ratio decreases from the bare value J'/J( =0.5 in
the present case). This means that the frustration of the
spin chain is reduced by the doped holes, which is opposite
to the intuitive expectation that doped holes induce frus-
tration. The magnitude of the gap can be estimated from
the results of the spin chain. Exact diagonalization of
short spin-chains' showed that the gap decreases rapidly
from 0.23J at J'/J =0.5 and becomes very small
(—0.03J) at J'/J=0. 4. Although it is difficult to deter-
mine precisely the critical value of J'/J at which the spin
gap vanishes because it closes very slowly, it was estimat-
ed as approximately 0.25. Using the expectation values in
the spinless fermions, we find that J,'ir/J, ir becomes 0.4 al-
ready at n =0.89 and J„'a./J, ii=0.25 at n =0.75. Figure 2
shows the obtained magnitude of the spin gap as a func-
tion of density. Note that the spin gap is easily destroyed
by doping a few holes in the spin chain.

As we can expect from the J dependence of K~ near
half-filling in Fig. 1, the J dependence of this spin gap re-
gion will be also small. To understand this behavior, we
consider a variational wave function which is applied in
the finite-J region. Assuming that the exchange term sim-
ply changes the spinless fermion part of the wave function,
we use a variational state, g(xi, x2, . . . , X~,V)@(J,'ii/
J„ir). g is a ground-state wave function of a spinless fer-
mion Hamiltonian with a nearest-neighbor attractive in-
teraction V (t-V model). The ratio J„'a./J, ii is determined
from the expectation values of (n;n;+ i)sF, etc. , in the wave
function g. Using the exact solution of the XXZ Heisen-
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TABLE I. Correlation exponents in the two cases without

(TL liquid) and with a spin gap. SS and TS indicate singlet and
triplet superconducting correlation, respectively.

Correlation Without a spin gap With a spin gap 0.0
0.7 0.8 0.9 1.0

2kF SD%'
2kF CDW

SS
TS

4kF CDW

1+Kp
I +Kp

1+ 1/Kp
1+1/K

4K'

(exponential decay)
Kp

1/K
(exponential decay)

4K'

FIG. 2. Magnitude of spin gap as a function of electron den-
sity in the small-J limit. It is calculated from the exact ground-
state wave function in this limit (see the text) combined with the
numerical estimate of the spin gap at the half-filling (Ref. 14).
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berg chain by Yang and Yang which is equivalent to
the t V model, we can show that (n;n;+1)sq —1 —26
+4ir 6' /3 (2 —V/t ) near half filling. Obviously the
effect of exchange term represented by V on the ratio
J,'ir/J, ii is very small. As a result, we expect that the spin
gap region extends to fairly large-J values with the depen-
dence on the electron density being roughly the same.

To investigate the possibility of a spin gap at large J, we
study the special case with n = —', . For the large-J region,
a simple variational state is expected, which is an ordered
state where one dimer and one hole alternate. This has an
energy JN, /—2 J'N, /8—. The actual ground state in the
large-J limit is the completely phase separated state and it
has an energy —5JN, /8 —J'N„/4. We assume that the
former state is realized just below the critical J for phase
separation because it gains kinetic energy through a self-
energy process in second-order perturbation theory. In
the virtual state, one electron hops to its neighboring
unoccupied site so that the state consists of one isolated
electron and three electrons next to each other. By di-
agonalizing these four electrons in the virtual state, we
can see that the excitation energy is (J—J')/2 and the
matrix element is J3/2 for small J'. As a result, the ener-
gy gain from this second-order process is —3t N, /
2(J —J'). Comparing the above two variational states, we
get the critical value of the phase separation at J, =4
which is not far from the estimated value in Fig. 1

(J„-4.5).
As a direct estimate of the gap, we calculate the ener-

gies of the ground state (5=0) and the lowest S= I state
under periodic and antiperiodic boundary conditions in
chains of increasing sizes: ' N, =9, 12, 15, and 18 at
n =

3 . %e fit to the formula

Es, sc(N )/N, = e +ST,/N +Cs, sc/N,

+SDsc/N, +as, scexp( —g/N, ),

for S=0, 1 where the coeIIicients depend on the total spin
(S) and the boundary conditions (BC). Minimizing the
sum of least squares of the fit, we can see that the estimate
of the spin gap, h, , begins to increase in the range
4~ J~ 4.5 just before phase separation at J—4.5. The
estimated value of 5 is very small (6 (0.01t). Although
the spin gap could be a precursor to phase separation
which we cannot resolve due to finite-size effects, we ex-
pect that the spin gap region at small J extends to J=4,
n= 3. Presumably the gap would be bigger at higher
densities.

In this paper we have examined the doping of a frus-
trated spin chain with a spin gap. %'e show that the spin
gap persists to finite values of the doping. This leads to a
quantum liquid with enhanced CDW and singlet super-
conducting (SS) correlations. The relative strength of
these correlations favors CDW for small values of J/t and
SS for larger values of J/t The .magnitude of the spin
gap reduces with hole doping, i.e., decreasing rL There is
no evidence that doping induces frustration; rather, it
reduces frustration and causes a transition to a TL liquid
without a spin gap. In the high-T, materials there is ex-
perimental evidence that there is a progression with in-
creasing doping from antiferromagnetic long-range order
to a quantum liquid with a spin gap above T, to a quan-
tum liquid which is close to a usual Fermi liquid. The
one-dimensional model we discuss here shows behavior
consistent with the latter type of crossover, i.e., from a
frustrated quantum liquid with a spin gap to a TL liquid
without a spin gap but does not show a crossover of the
former type.
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