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Dimer stability region in a frustrated quantum Heisenberg antiferromagnet
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We study the stability region for the columnar dimer state proposed as a candidate ground state for
the square-lattice quantum antiferromagnet with first- and second-neighbor antiferromagnetic cou-
plings (J~-Jz model). We use a boson representation of the spin operators suited to the perturbative
expansion around a dimer ground state. At lowest order, the columnar dimer is found to be stable
only at the classical critical value Jz/J~ = —,

' . However, we show that the leading anharmonic correc-
tions stabilize the dimerized phase in a region of a finite width around J2/J~ = —, . A comparison of the
ground-state energies shows that among the possible dimerized states the columnar dimer is the most
favorable candidate to separate the two ordered states in the 5= —,

' antiferromagnet with first- and
second-neighbor exchange.

The discovery of the remarkable magnetic properties of
high-T„superconductors has led to an intense activity in
the subject of antiferromagnetic quantum spin systems
mainly in two dimensions. One of the crucial issues is the
nature of the ground state. Magnetically disordered
resonating-valence-bond (RVB) states have been pro-
posed as possible candidates for the ground states of the
Heisenberg antiferromagnets (AFM) in two dimensions. '

However, the spin- 2 Heisenberg AFM with nearest-
neighbor exchange have been studied by several tech-
niques and there is now convincing evidence that they
have ordered ground states on both square and triangular
lattices. The situation is far from being understood in
the case of frustrated spin systems. The addition of next-
to-nearest-neighbor antiferromagnetic couplings certainly
destabilizes Neel order on a square lattice and it has been
suggested that beyond some critical values of the cou-
plings the Neel order is replaced by a new magnetically
disordered phase. There are presently several candidates
for this phase. Large-N techniques ' suggest that spin-
Peierls order can occur. This idea has received some sup-
port from nutnerical and series studies on a S=

2 mod-
el with first- and second-neighbor couplings (the so-called
J~-J2 model). Lanczos studies have measured a suscep-
tibility suited to dimerized states showing an enhancement
near Jz/J~ =

2 . However, recent results on a 36-site
cluster indicate that this quantity does not scale properly
with the system size. More exotic proposals also have
been made, such as chiral or spin nematic' ground states
for antiferromagnets with strong enough frustration.

On the contrary, perturbative calculations for Ji-J2
model within the standard 1/S expansion do not reveal
any intermediate phase. One finds a first-order transition
between two ordered phases with ordering wave vector
(tr, tr) (Neel phase) and (tr, O) [or (O, tr)], respective-
ly. ' ' ' awhile this is certainly correct in the large-S lim-
it, the S=

& case can be quite diAerent as suggested by
the numerical results. It is also worth mentioning that the

(a} (b)

FIG. I. Two dimer coverings of the square lattice: (a)
columnar dimer and (b) staggered dimer.

perturbative approach based on the Schwinger bosons rep-
resentation shows' ' that S=

2 is very close to the criti-
cal value of 5 which separates a first-order transition be-
tween two ordered states from a two-step transition via an
intermediate magnetically disordered phase, which is most
likely to be dimerized.

In this paper we present the results of a study of the sta-
bility regions of various dimerized states of the spin- —,

square lattice antiferromagnet with nearest- and next-to-
nearest neighbors. We have used a bosonization tech-
nique suited to the perturbative expansion around dimer
states and have shown that zero-point fluctuations favor
energetically the columnar dimer in Fig. 1(a). At the
quadratic order in bosons, this configuration is stable only
for the particular ratio of the couplings Jq/J~ = —,

' . How-
ever, when the interactions between bosonic excitations
are treated in a self-consistent manner, the columnar di-
mer becomes stable in a ftnite region around Jz/Jl =

2 .
This means that this state is likely to separate two ordered
states in 5 =

2 AFM with first- and second-neighbor ex-
change, though the question of whether columnar dimer
actually is a global minima in the energy is still
unanswered.

We shall study the Ji-J2 model defined by the Hamil-
tonian

H=J|QS;.St+ JP $ S;.St, .
NN NNN
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The first sum runs over nearest-neighbor links of a square
lattice and the second over next-to-nearest-neighbor links.
The S; are spin-2 operators and the couplings J~ and Jq
are both positive, i.e., antiferromagnetic. It is convenient
to introduce a =J2/J1 which is the unique dimensionless
parameter of this model. Let us first discuss the proper-
ties of the classical model related to (1) when the spin
value S . For values of a smaller than & the classi-
cal ground state is Neel ordered, i.e., the ordering wave
vector is Q=(x, x). For a& 2 there is a continuous de-
generacy at the classical level which is lifted by quantum
fiuctuations, the so-called "order from disorder" phe-
nomenon. ' The ordering selected by quantum Auctua-
tions is defined by the wave vector Q = (O, x) or (z,O). It
is then possible to study the model (1) by a perturbative
expansion in powers of I/S starting from the classical
ground states: this is the standard spin-wave theory a la
Holstein-Primakoff. In the classical description, there is
no hysteresis at the transition between the (x,x) and
(x,O) [or (O, x)] phases. At the classical transition point

Ia=
2 the dispersion relation for spin waves softens; entire

lines of zero modes appear in the Brillouin zone. Since
this is more than we expect from the Goldstone theorem,
this degeneracy is accidental and should be lifted when
the interactions between spin waves are taken into ac-
count. Simultaneously, quantum Auctuations should pro-
duce a finite hysteresis width for the a„= —,

' transition
since there is no exact quantum degeneracy at criticality.
This has been shown by explicit self-consistent calcula-
tions:'' ' for finite S one finds a conventional first-order
transition between the ordered phases for a critical
value'" a, = —,

' +O(1/S) or' ' a, =0.6 for spin —,'.
However, numerical and series analysis suggest that

for S =
& the situation may be different and, in particu-

lar, there may be an intermediate dimerized phase. To
study this possibility, we use a bosonization of the SU(2)
spin algebra for spin- —,

' suited to the perturbative expan-
sion around a spin-Peierls state. Specifically, if S1 and S2
are two neighboring spins to be involved in a dimer, then
we introduce the ferromagnetic and antiferromagnetic
vectors where

Z +k (&k ak +bk bk +Ck Ck )

+Bk [ak b —k +Ok b —k + 2 (Ck C —k + Ck C —k )],
(s)

singlet M =0 state and the triplet states M =1 are the
states with one boson a, b, or c. In this physical subspace
we have the correct commutation relations

[M(,Mq] =is;qkMk,

[L;,LJ] =is()kMk,

[M;,L ] =is; kLk,

together with the constraint S =
4 . Moreover, the ma-

trix elements of transitions between physical and nonphys-
ical states are zero. This bosonization given by Eqs. (3a)
and (3b) may thus be regarded as an exact at zero tem-
perature. It is completely analogous to the Holstein-
Primakoff expression for the spin operators in the case of
S= 2, the only diA'erence is in the form of the vacuum
state. The transformation [Eqs. (3a) and (3b)] can be
generalized to spin S leading to (2S+1) —1 coupled bo-
sons, allowing for the study of higher spin systems. '

If we consider any covering of the lattice with dimers, it
is clear that it can be mapped into a Bose problem by in-
troducing a, b, and c operators at each dimer "site."
Since exchange also occurs between sites belonging to
different dimers, the bosons are allowed to hop. The hop-
ping induces a dispersion of the excitations as well as
zero-point fiuctuations which destroy the perfect dimer or-
dering.

We first focus on the columnar dimer ground state for
the J1-J2 model [Fig. 1(a)]. The two spins belonging to a
dimer are aligned along a lattice direction that will be re-
ferred to as "horizontal" (x). The exchange interaction
(1) leads to couplings M; M~, L;.MJ, and L; L~, as well
as on-site couplings. The last two terms contribute to the
quadratic part of the bosonized Hamiltonian. After
Fourier transformation the quadratic terms can be written

M =Si+S2 and L=S1 —S2.
The dimer (singlet) state is defined by M =0 [M
=M(M+1)]. We now introduce three bosons a, b, and c
with canonical commutation relations in the following
manner: '

J)
~k J1(1+vk ) v2k J2vky(1+ v2k

J)
Bk Jl vky v2k J2vky(I + v2k, ) ~

(6a)

(6b)

M' =a ta —b tb,
M' =JZ (a'c c'b), —

M =J2 (cta —btc),

L' = —(c'U+ U, ),
L + =J2 (a tU+ Ub ),
L =J2 (b tU+ Ua ),

(3a)

(3b)

where U = (I —a ta —b tb —c tc) 'i . The physical sub-
space is obtained by considering states with at most one
boson. The bosonic vacuum a(0) =b~O) =c~O) =0 is the

and vk =cosk. This quadratic form can be straightfor-
wardly diagonalized by a Bogolyubov transformation
leading to three degenerate bosons s, r, and u as, it should
be, since all three excitations above the dimer singlet are
completely equivalent.

%'e find however that the corresponding energies ~I, are
real only at the special point a=

& . Thus there is at this
order of approximation only one point of stability for the
columnar dimer. ' Exactly at a=

& the energies of the
quasiparticles are given by

sk =(Ak Bk ) ' =Ji [(I +cosk~)(1 ——cos2k„)] ' . (7)

This dispersion relation has entire lines of zero modes in
the Brillouin zone. The degeneracy is again not related to
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any kind of broken symmetry and there is no reason to be-
lieve that a —, will be the critical point for the dimeriza-
tion beyond the quadratic approximation. Anharmonic
couplings should thus render the dimerized phase stable
either in a finite region of a or nowhere.

To perform the perturbative calculations we need to ex-
pand the square root in the operator U. The simple ap-
proximation v 1+x = 1+ —, x is valid if both the density
of particles and the interaction strength are small. There
is, of course, no small parameter in the present problem to
control our perturbative expansion. However, the low-
density approximation can be avoided by summing all the
quadratic terms in the Taylor expansion of U when we re-
quire normal ordering. This procedure is known from the
Holstein-Primakoff expansion for 5 = —,':

)/2 ' I/2ata1— =1 —ata 1
— 1—

2S
+o(a ta taa)

(Ref. 20). In the present case a similar reasoning leads to

U=U =1 —ata —btb —ctc. (8)

where A is a gap in the spin-wave spectrum produced by
quantum fluctuations. This gap should be calculated from
the condition of self-consistency: A —gin A, where g is
the (presumably small) coupling constant. At the leading
order in g, A-gin g. Since A is positive, a finite shift

We believe that the first corrections will show the correct
tendency since the degeneracy seen at the quadratic level
is accidental and must be lifted immediately when quan-
tum fluctuations are taken into account. ' We will calcu-
late the first correction in the coupling constant with the
assumption, in analogy with the I/S expansion, that quar-
tic vertices are linear in the coupling while cubic vertices
are proportional to the square root of the coupling con-
stant. ' Note also that with U given by Eq. (8) the matrix
elements between physical and nonphysical states remain
zero and nonphysical states thus do not contribute to the
problem.

Expanding U as dictated by (8) we obtain vertices con-
taining three and four bosons. At the first order in the
coupling, we treat the quartic terms in a simple Hartree-
Fock approximation: one inserts the zeroth-order contrac-
tions of the Bose operators allowed by (5) in the terms in-
volving four bosons. This procedure changes the coef-
ficients of the quadratic form (5): Aq At, +8At, and
81, BI,-+FBI,. Since A/,

—B/, =1 we only need to com-
pute bAp+hBp to investigate what happens to the low-

energy part of the dispersion relation et, . Our main result
is that while the contributions coming from M; MJ terms
are finite, the corrections produced by the L; LJ interac-
tion are logarithmically divergent at a= —,'. The corre-
sponding contribution to the spectrum is positive along
"soft" lines in Eq. (7) and thus leads to a finite region of
stability for the columnar dimer. We find

[bA+h~t &aiv=5X
1

k

~in'A, (9)
(2~) 2 )sink„cosk~/2)

from a =
z is required to destabilize the columnar dimer.

Another contribution, also linear in the coupling con-
stant, comes from the second-order terms produced by the
cubic vertices. The corresponding self-energy corrections
are given by one-loop diagrams and are known to renor-
malize only the coe%cient A& (A& At, +AAI, ). By ex-
plicitly calculating the one-loop diagrams, we have found
that AAI, is finite and cubic terms do not cancel the diver-
gent contribution coming from the quartic interactions.

We now justify our choice of the columnar dimer.
Indeed there is an infinite number of dimer configurations
which at the mean-field level have the same ground-state
energy Ep= —3J~N/8 as the columnar dimer. Moreover,
one can find a whole family of configurations which are
stable in the quadratic approximation only at a= —,

' (for
example, one can transform a part of the horizontal di-
mers into the vertical ones). However, the first quantum
corrections to Ep (produced by noninteracting bosons) al-
ready depend on the shape of the spectrum

3 1~&p= ——Ji —z &I (10)

This clearly favors configurations with a maximum num-
ber of zero modes in the spectrum. This singles out the
columnar dimer because all other dimer configurations
have less zero modes at a= 2. For example, another
widely discussed ground-state candidate —a staggered di-
mer ' ' [Fig. 1(b)]—is also stable at the quadratic or-
der only at a =

2 and has a line of soft modes in its spin-
wave spectrum, but its dispersion relation at a = 2,
el, =J~[(l —

v2& )l', is clearly less "soft" than that of
Eq. (7). Thus, zero-point fluctuations favor energetically
the columnar dimer: with dE as in (10), the gain in ener-
gy is &E =J&(3/~)(1 —2/tr).

To summarize our findings, we have introduced a bo-
sonization suited to the study of dimerized states and ap-
plied it to the J~-J2 model with spin —,'. We have found
that the columnar dimer has the lowest energy among the
dimer states and focused on the stability region of this
configuration. At quadratic order in the bosons, the
columnar dimer is stable only at a = —,', the classical tran-
sition point. However, the leading anharmonic correc-
tions stabilize the dimerized phase in a region of finite
width around a =

2 .
Of course, the analysis given above does not manage to

answer the question of whether the columnar dimer is ac-
tually the global minima in the system around a =

2 be-
cause short-range corrections to the ground-state energy
are by no means small. Nevertheless, it seems worth
pointing out that if to restrict with the leading quantum
corrections, the energy of the columnar dimer at a = &,
Ep = 0.52J~W, practically coincides with that of the
Neel phase (EN, ,i= —0.54JiN) and significantly ex-
ceeds the ground-state energy of the (tr, 0) phase (E( p)= —0.43J~N). Also, this value of Ep is very close to the
results obtained in the series (Ep = —0.48J~N) and nu-
merical (Ep = —0.52J iN ) experiinents. This means
that the columnar dimer actually is a good candidate to a
ground state close to a = 2, though this question
definitely needs further investigation.
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