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Transverse and longitudinal electromagnetic modes in metallic superlattices
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%'e give a simple unified analysis of the longitudinal and transverse plasmons in a superlattice of me-
tallic sheets. We evaluate the longitudinal and transverse conductivities in the random-phase approxi-
mation in a momentum-space formalism closely patterned after the standard approach used in bulk met-
als. A detailed analysis is presented {with retardation fully included) of how the longitudinal and trans-
verse plasmon frequencies depend on the sheet separation d. The photon line co=ckI~ separates the two
kinds of superlattice modes, with the exception of the k, =0 longitudinal plasmon.

I. INTRODUCTION

A superlattice is a periodic array of metallic sheets in
which there is negligible charge transfer (it is often re-
ferred to as a layered electron gas or LEG). There is a
considerable literature on the longitudinal plasmon spec-
trum of a superlattice (see, for example, Refs. 1—3). In
addition, the propagation of electromagnetic waves and
how they couple to charge fluctuations have been dis-
cussed (see, for example, Refs. 4—6). The older literature
on collective modes in superlattices was motivated by ex-
periments on epitaxially grown layered semiconductors.
In this case, the number of conducting layers is usually
quite small and surface-interface effects are of consider-
able interest. Moreover the layers have finite thickness
and thus are best described as quantum wells with an as-
sociated electronic state spectrum. The recent literature
on collective modes in semiconductor superlattice has put
emphasis on including such multiple subbands (see, for ex-
ample, Ref. 6). In the limit of thick enough layers, one
can treat the superlattice as a periodic array of layers
each described by a bulk dielectric function (see, for ex-
ample, Ref. 7). More recently, the theory of infinite me-
tallic superlattices has found a new application in the
study of the new high-T, superconductors. These may be
viewed as a periodic array of unit cells (with a typical
spacing of about 12 A), each of which contains up to
three closely spaced CuO2 sheets. Even at these small
separations, the electronic bands are 2D-like, showing
that there is almost no charge transfer or tunneling be-
tween the sheets. In this case„ the metallic layers really
are truly two-dimensional (2D). For further discussion of
the high-T, superconductors as infinite metallic superlat-
tices, see Ref. 8. This system is the motivation of the
present work.

The main purpose of this paper is to give a simple,
self-contained, unified analysis of both the longitudinal
and transverse plasmon modes in a metallic superlattice,
including the effects of retardation on the former. Our
analysis should be especially useful for readers who are
not experts in the layered electron gas literature as ap-
plied to semiconductors. While we discuss superlattices
without a basis, it is straightforward to extend the

analysis of the paper to deal with the longitudinal and
transverse modes in a superlattice with several closely
spaced sheets in each unit cell. In Sec. VI, we illustrate
this by working out the effects of retardation on the well
known longitudinal plasmons of a two layer (bilayer) sys-
tem.

Our formal derivation of the dispersion relations is
most similar to that of Refs. 4 and 6. However, in con-
trast to previous studies, we formulate the problem (in
momentum space) in terms of calculating the longitudinal
and transverse conductivities of the superlattice within
the random-phase approximation (RPA). We try to
present our analysis in a form analogous to the usual
momentum-space treatment of longitudinal and trans-
verse modes in bulk metals (see, for example, Pines and
Nozieres and Martin' ), modified to take into account
the periodic structure. In our momentum-space formula-
tion, the periodicity is most naturally described using the
reciprocal lattice vectors of the (1D) superlattice. We be-
lieve that our approach brings out the physics involved in
both kinds of mode in a clear fashion and also gives a for-
malism which can be generalized to deal with more than
one metallic sheet per unit cell.

We also give a detailed examination and comparison of
how the longitudinal plasmons (including retardation)
and transverse plasmons depend on the spacing d be-
tween the sheets. Most explicit discussions of the longi-
tudinal plasmons in the literature have emphasized the
nonretarded (choo or electrostatic) limit. We are not
aware of any similar analysis in the literature as is given
in Secs. III—V. Quinn and co-workers (Refs. 4, 5, and 11)
worked out the special case when there is a large magnet-
ic field perpendicular to the sheets. King-Smith and Ink-
son only considered the k

~~

d, k, d «1 limits. The depen-
dence of the superlattice plasmon spectrum on the spac-
ing d is found to be surprisingly delicate. The longitudi-
nal plasmons are restricted to the frequency region
co &ck~~, with the exception of the k, =0 mode where all
sheets oscillate in phase. The transverse plasmons are re-
stricted to the region co & ck~~ and do not exist in the limit
d —+ Do (i.e., there are no transverse plasmons associated
with a single sheet).

In Sec. II, we combine Maxwell's equations with linear
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response theory (following Harris and Griffin' ) and write
down the general self-consistent integral equations for the
conductivity tensor o;J(k, —p, co). We then specialize
these equations to a periodic array of metallic sheets and
work out the transverse and longitudinal conductivities
within the RPA. In this approach, the collective modes
arise as poles of the appropriate conductivities. The for-
mal dispersion relations are given in terms of the longitu-
dinal o &(k~~, co) and transverse cr, (k~~, co) conductivities of
a noninteracting 2D electron gas and a universal function
R (k~~, k„co) [see Eq. (19)] which contains all effects of the
periodic structure. The formal dispersion relations we
And reduce to the ones obtained in the literature by a
variety of approaches (see, for example, Refs. 1, 4, 6, and
13).

In Secs. III—V, we give a detailed analytic discussion of
the solutions of these dispersion relations. We are in-
terested in understanding how the plasmons in a superlat-
tice with spacing d compare with those of 2D and 3D
bulk metals. In the limit of large d, the results go over to
those of a single sheet. In this case the nonretarded lon-
gitudinal 2D plasmon (no is the charge density per unit
area)

g (r r) —f dk f dco it r+i~rg (k )
(2~)3 2m'

(4)

and k; represents the Cartesian component of k along the
ith axis (i,j=x,y, z). The total or net electric field is
given by E;(k,co)=E,„r;(k, co)+5E;(k, co). We next in-
troduce the conductivity tensor in the usual way,

5J;(k, co) = g o.; (k, —p, co)E,„,i(p, co)
dp

(2ir )

dp= g f cr' (k, p, co)E—~(p, co) .
J rr

(6)

co(co —c k ) J (2~)

Xo" (k, p, co)E (—p, co) .

The result in (6) may be viewed as a definition of the
screened conductivity tensor o' as the response to the
true electric field. ' ' All long-range effects arising from
the Coulomb interaction are contained in the true electric
field E, defined . above. Combining (6) and (3) gives us an
integral equation for the electric Aeld components

E;(k, co) =E,„,;(k, co)

(
2 + 2k2)1/2

CO&
—COg

(2)

In contrast with the 2D plasmon, there is no effect of re-
tardation on the long wavelength 3D longitudinal
plasmon. '

II. LONGITUDINAL AND TRANSVERSE
CONDUCTIVITIES OF A SUPKRLATTICK

In this section, we combine Maxwell's equations with
linear response theory to derive the self-consistent equa-
tions for the induced electric fields and the associated
conductivity tensor. ' Then we specialize the results to
the case of a periodic array of 2D metallic sheets and find
explicit expressions for the longitudinal and transverse
conductivities within the random-phase approximation.
The associated collective modes are given by the poles of
these conductivities.

Maxwell's equations can be reduced to coupled equa-
tions for the components of the induced electric fields and
currents,

5E;(k,co)=
2 2 2 g(c k;k~ —co 5;J)5J (k, co),

co(co —c k )

where

(3)

goes over to ck
~~

as k
~~

0. ' ' As we have mentioned,
there is no transverse plasmon in a 2D metallic sheet. In
the opposite limit of small d, the collective modes go over
to those of a 3D metal

1/2
4~n&e

This can be equivalently expressed as an integral equation
for the component of the conductivity tensor by using (5)
and (6),

o,, (k, —p, co) =o';,'(k, —p, co)

+ g f o';„'(k, —q, co)
(2ir )

4~i(c q„q —co 5„)
X

co(co —c q )

Xo (q, —p, co) .

Equations (7) and (8) are the natural starting point for ap-
plication to specific systems, which are characterized by
our choice for o' . In general, we have (see for example,
Ref. 12)

&e eo;.(k, —p, co)= no(k —p)5; + . yJ J (k, —p, co),
me@ im

where no(k) is the Fourier transform of the electronic
charge density and yJ J ——g; is the Fourier transform oflJ

the current-current correlation function.
While longitudinal collective modes are specifically as-

sociated with charge density fluctuations, transverse col-
lective modes can arise in vacuum. These free photon
(co=ck) resonances are evident in (7) and (8). The trans-
verse modes we will be interested in are electromagnetic
(EM) waves which couple into the charge fiuctuations in
the metallic sheets.

We now turn to a periodic array of two-dimensional
(2D) metallic sheets (in the x-y plane), the separation dis-
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tance being d. In this metallic superlattice, the number
and current densities are restricted to the sheets, being
given by

no(r) =no g 5(z —ld),
(10)

J(r) = —eno g v, (r~~)5(z —ld) .
I

Here v&(r~t) is the velocity of an electron in the lth sheet
at some point r~~=(x, y). We also restrict ourselves to the
RPA, which corresponds to approximating o", . by the
conductivity tensor o.

;J of a nonInteracting electron gas.
For our superlattice described by (10), one can show

that (for ij =x,y)

cr;, (k, —p, co)=(2') 5(k~(
—

p~~)o. ;, (k(~, co)N Q 5
z

where 6, =n (2n/d) (n =0, +1,+2, . . . ) are the recipro-
cal lattice vectors of a 1D lattice and o, .(k~~, co) is the con-
ductivity tensor of a 2D free-electron gas. Since currents
can only Row in the x-y plane, one finds o.; vanishes
when either i or j involves the z component of the current
operator.

Taking the above features into account, (7) and (8) sim-
plify considerably for a superlattice. Using (11) and (7),
we have for i =x,y

(co —c k )5E, (kii, k„co)= g (c k;k„—co 5,„)o.„~(tie,co)—gE (ki~, k, +6, ) .
n, m =x,y G

(12)

We note that (12) gives two closed coupled equations for the in-plane components E„and E . In addition, the z com-
ponent of the electric field is

(iv' —c'k')E, (k„,k„cv)= c'k, g k„o'„ (k„,cv) —g E (k,~, k, +G, ) (13)

That is, the induced E, component is completely deter-
mined by the solutions E„and E» of (12). The results in
(12) and (13) form the basis for our further analysis of
EM modes in a superlattice.

The conductivity tensor of a homogeneous 2D electron
gas can be split into longitudinal and transverse com-
ponents and hence (ij =x,y)

(14)

where we have defined another function

1 1
' —'k'„— '(k, +6, )'

=R (k, +6,') .

(18)

5E;(k, ) =
co(co —c k )

X [o,(co —c kii )E (k, )+o,co2E,'(k, )], . .

where we have defined

E,"(k, )
—= —& E,"(1',~, k, +6, )

1

G

(16)

We first discuss longitudinal modes. Using the fact
that E,."(k,+6, ) =E,."(k, ), (16) and (17) lead to

where the in-plane unit vectors are defined as k;:—k;/k~~,
where k~~=Qk„+k . Similarly the in-plane electric
field can be split into longitudinal and transverse fields,
with

E=k; g kE—
J =X,y

(1S)

E =E; E=g(—5; —k—;k )E
J

One easily verifies that k .E =k .E' and k -E'=0. Using
Il

(14) and (1S) in (12), one can show that (i =x,y)

This function will play an important role in the subse-
quent analysis. One can solve (18) to give

I
I E,„,; ( kii, k„co)

E;(kii, k„co)= (20)

where the superlattice longitudinal dielectric function is
given by

(k~~~, k„co)= 1+ R (k—, )(co' —c'k2~~ )o', ( (21)

5E (k, )= — o.,co R (k, )E (k, ),
where the function R (k, ) has been defined in (19). One

The zeros of e& give the longitudinal modes of a superlat-
tice. The fact that R (k, ) =R (k, +6, ) means that the
solutions of (20) and (21) have this same symmetry and
thus we can restrict k, to be in the first Brillouin zone
(0~k, ~~/d) of the superlattice. Henceforth, we take
k =nm/L with n =0, 1, . . . , X —1 and L, =Ad. The re-
lation (20) holds for E;(k, ) as well as for E, (k, ) defined in.
(17).

We can discuss the transverse modes in the same way,
starting from (16), to obtain
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can rewrite (22) in the form

E,'„„;(k,)
E, k, (23)

where the superlattice transverse modes are given by the
zeros of

D (kll, k„co)=1+4?ricoR (k, )cr, (k

The preceding discussion has been concerned with the
in-plane electric field components. Inserting (14) into
(13), the z component of the electric field is given by

5E,(k, )= c k, kiiE~i(k, ),
co(co —c k )

(25,

p, k +G
G

(26)

where the reduced in-plane conductivity o.; can be
decomposed as in (14),

o;, =o.,k;k +o, (5; —k;k ) .

One finds after some calculation that

(27)

where the longitudinal in-plane component Ell is given by
1 ~

(20) and (21). Clearly the electric field component per-
pendicular to the metallic sheets is coupled into the longi-
tudinal charge Auctuations described by the zeros of e1 in
(21). By the same token, a mode involving a transverse
in-phase component E

ll
has no associated z component of

the electric field.
One may work directly in terms of the longitudinal and

transverse components of the superlattice conductivity
tensor, which is given by (8). If cr,j. is given by (14), one
can show that the solutions of (8) are of the form
(i,j =x,y)

o'; (k, —p, co)=(2m) 5(kii —pii)o; (kii, k„co)X

cr? (k)(,co)
o? (kii, k„co)=

E1 ll~
CO

o, (kii, co)0

o, (kii, k„co)—
D ll, „co

(28a)

(28b)

where e& and D are defined in (21) and (24), respectively.
Equation (28a) is the generalization of the well known ex-
pression for the longitudinal conductivity of a bulk 3D
metal (see Chap. 3 of Pines and Nozieres as well as Mar-
tin")

cr? (k, co) cr? (k, co)

e?(k, co)
(29)

to the case of a superlattice of 2D metallic sheets. Simi-
larly, (28b) is the superlattice version of the transverse
conductivity of a bulk homogeneous 3D metal

o, (k, co) =
o., (k, co)

CO C k

(30)

We note that it is customary to introduce a transverse
dielectric function defined in a manner analogous to e1 in
(27),

e, (k, co) —= 1+ o, (k, co) .
CO

(31)

Using this, (30) can be written in an equivalent form
which is sometimes used,

cr (co —c k )
o, (k, co) =

6) 6't C k

The free-electron conductivities o.
1 and o., for a 2D

metallic sheet can be easily worked out using (9) and the
results given in the Appendix of Harris and Griffin. '

0 fid (fo k~~ k )

o
e'??o e' dp f (p+ 'k(~) —f (p —

—,'k~~)
o?(k~„co)=i i — p cos 9,

m co (2?r) Pkll
cosO

e'n, e2 dp f (p+ —,'k~~) —f (p —
—,'k~~)

p'sin'6
P? co m co (2?r)

co cos0

(33)

where f (p) is the Fermi distribution, p=(p, p~ ) and we
have taken k~~ to be along the x axis (p k~~ =pk~~ cos0). To
leading order in 1/~, these general expressions reduce to

I

limit. For example, Harris and Griffin' have shown that
the analogous 3D approximation in a film of finite thick-
ness can describe both the bulk and surface plasmon
modes, including retardation.

ie n0 kll
cr?(k~~, co) =o, (k~~, co) = +0 (34) III. SUPERI.ATTICE PI.ASMONS

WITH RETARDATION

For simplicity, we use this in our subsequent evaluation
of (21) and (24). It should be adequate for treating the
collective modes in a superlattice in the long wavelength

We now discuss the poles of the longitudinal conduc-
tivity given by (21). The (retarded) plasmon modes of a
superlattice are seen to be given by solutions of
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1+ R (k„,k„co)(co'—c'k'„)o ol(k, ~, ~ }=04@i

Using the long wavelength approximation for o.
l given in

(34), this reduces to

posite limit of small d. In this case, (38) reduces to

2kII
Fd(kii, k, )=-

d kII +k,
(43)

4mn„e co —c kII
(k, ,k„) .

m CO

(36)

Restricting ourselves to the region co & ckII below the free
photon line, one can carry out the reciprocal lattice vec-
tor sum in (19) explicitly

In this case (k~~d, k, d ((I}, the superlattice plasmon
spectrum (39) is given by (see also Ref. 8}

k
CO =CO~ (44)2+I 2

where the superlattice plasmon frequency is defined as

F,(k„,k, )8 (kii, k„co(

cking

)=-
2c kII

(37)
4'lTGg e 2

CO

m
(45)

where k~~=Qk~~ —(co/c) )0 and

sinh(k~~d)
Fd(kii, k, ) —=

cosh(k~~d )
—cos(k, d)

and n~=n /d is the effective bulk electronic density.
The k, =0 mode is a special case and is discussed in Sec.
V. For k, %0, the plasmon modes predicted by (44) have
an acoustic dispersion relation for sufticiently small
values of kII « k„namely

Inserting (37) into the dispersion relation (36) gives

277n oe
2

CO I

Q)g
co= kii(co) .

2

(39) One may easily solve (46a) to obtain (k, &0)

(46a)

This expression was apparently first written down by
Fetter. ' lt is equivalent to a zero of the function F in Eq.
(30) of Ref. 13. It is also reproduced by the general result
given in Eq. (23) of Ref. 5 in the limit of zero external
magnetic field (in the notation of Ref. 5, it is equivalent to
Sy~~ +@,/2n p=0). In the nonretarded limit (c~ ~ ), k~~

reduces to k~~ and (39) reproduces the well known super-
lattice plasmon dispersion relation spectrum (see, for ex-
ample, Refs. 1, 2, and 8).

In the limit of large d (i.e. , k~~d~ ~ ), we note that
Fd~1. In this case, (39) reduces to that of a single
sheet'4 "

s2
II

2

1+
c 2

Ct)gs=
k,

IV. TRANSVERSE KM MQDKS
IN A SUPERLATTICK

According to (24), the transverse modes in a superlat-
tice are given by the solutions of

This is illustrated in Fig. 1. For s &)c, these solutions ap-
proach m=ckII from below. For s «c, we have the
(nonretarded) result co=sk~~.

2~noe 2

kII
= AkII . (40) 1+ R (~„,k„~)~'o ', (k~~, ~)=04mi

One can show that A =u2~/ao, where ao =0.53 A is the
Bohr radius and U2+ is the 2D Fermi velocity. Since kII is
a function of co, the explicit solution of (40) for the 2D
plasmon including retardation is the solution of a quadra-
tic equation,

The same dispersion relation is reproduced by Eq. (23)
of Ref. 5 in the limit of zero external magnetic field
(in the notation of Ref. 5, it is equivalent to
Sy „—pc /2m' =0). Using (34), this reduces to [com-
pare with the longitudinal result in (36)]

—(W/c)'+[(W/c)'+ ~'kii]
2

1 A 1k'= ——
II

—
2 C2 2ao

There is clearly a crossover wave vector

2
U2F

c 2

(41)

(42)

kz=Q

such that for k~~ (k
~~,

the solution of (41) approaches the
free photon dispersion relation co=ck~~ (see Sec. VI of
Ref. 14 as well as Ref. 15). For k(~ ))k

~(,
the 2D plasmoll

goes over to the usual nonretarded expression in (1).
Since this does not seem to be given in the literature,

we briefly discuss the retarded solutions of (39) in the op-

k
I I

FIG. 1. Sketch of the superlattice longitudinal plasmon
dispersion relation for various values of k, . For small kII, the
k, &0 results are given by (46b). The k, =0 plasmon mode is
discussed in Sec. V.
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4mnpe 2

m
(48)

For K )0, one can carry out the sum in (19) explicitly
using the general formula (q real)

This dispersion relation is given by F'=0, where F' is
defined in Eq. (31) of Ref. 13. It is clear from (37) that
there are no real solutions of (48) in the region co &ck~~
since 8 &0. We thus restrict our attention to co & ck~~.

We first consider (48) in the limit of small separation
d ~Q. In this limit, only the G, =0 term contributes to
the sum in (19) and thus we are left with

1
z' 2 2 2 2 2d(co —c k~~

—c k, )
(49)

Putting this into (48) gives the usual transverse mode
dispersion relation of a 3D metal,

co =co +c (k +k ) (50)

where in this limit k, may be viewed as a continuous vari-
able.

In the opposite limit of a large separation distance
(d ~ ~ ), the G, sum can be transformed into a contour
integral which can be evaluated explicitly:

R ( kii, k„co)ck
ii

) =

where we have defined

1 ~ dS'z 1

C2 oo 2~ IC2 p2

l

2' (51)

K:(co/c) k
ii
)0—. — (52)

Inserting (51) into (48), we see that there are no real solu-
tions in the d ~~ limit. That is, there are no transverse
EM waves associated with a single 2D metallic sheet,
with the electric field in the plane of the sheet.

We note that for co ) ck~~, the function R (k, ) in
(19) has poles whenever K =k, +G, and hence (48) has
multiple solutions (see Fig. 2). However, since
R (k, ) =R (k, +G, ), we need only consider the lowest
solution in the first Brillouin zone.

1 1

id ~G G, +q
z

(53)

to give

1 SlIl (Kd )
cos(K'd ) —cos( k, d )

(54)

We now turn to a detailed discussion of the trans-
verse mode dispersion relation at both k, =0 and k,
=rrld, the boundaries of the first Brillouin zone (BZ)
of the superlat tice. For k, =0, (54) reduces to
R(kii k =O, n~&cking) (1/2Kc')cot —,'Kd. Ins«ting this
into (48), the transverse EM modes for k, =0 are given by
the lowest energy solution x =——,'Kd of

cotx =ax; a = C2 C2 ao—2
77nPe d U 2F

2 2 (55)

{k„,k, =0)=c' 2x +c2 (56)

For d ~0, we can approximate cotx =1/x and the solu-
tion of (55) is

1x = — oi' co=cog at k)~ =0,
a

(57)

which is equivalent to the result co =coz+c k~~ given in
(50). More generally, we see that the slope a decreases as
d increases, with the limiting solution given by x =sr/2
In particular, we conclude that for k~~ =0, the k, =O
transverse mode frequency is given by

The last expression for a follows from the result given
just below (40). Except in the limit of extremely large d,
we note that the slope a is always much larger than unity.
The graphical solution of (55) is shown in Fig. 2 (denoted
as A).

If we denote the solution of (55) as x * for a given value
of d, the k

~~

dependence of the k, =0 transverse mode is
then given by

QX
co(k~~=0, k, =0) ~ cos for d ~0,
co(k =0 k =0) ~ for d~oo .&C

z

(58)

2 x= ~Kd

kz=O
B: k, =vrld

FEG. 2. Graphical solution (schematic) for the transverse
mode so1utions for k, =0 [see (55)] and k, =~/d [see (59)].

This means that while the frequency increases with d, at
a sufticiently large value of d, it must start to decrease.
However the large d limit is singular in that there is no
transverse mode when d = Do. This is consistent with our
previous null result for a single 2D sheet.

The other boundary of the first BZ corresponds to
k, =rrld, with charge fiuctuations in alternate sheets be-
ing out of phase. ' In this case, (54) reduces to
R (k~~, k, =rrld, ro) ck~~ ) = —(1/2Kc ) tan( —,'Kd). Insert-
ing this into (48), the k, =~/d transverse modes are seen
to be given by the solutions of
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(59)

V. THE k, =0 LONGITUDINAL PLASMON

We are now in a position to consider the k, =0 longitu-
dinal plasmon mode. The k, AO modes, discussed in Sec.
III, only occur in the region ~ & ck~~. In contrast, we find
there is a k, =0 solution of (36) in the region co) ck~~ as
well as co & ck~~. We recall' that the k, =0 plasmon corre-
sponds to all sheets in a superlattice oscillating in phase.

We first consider the region co&ck~~. In this case,
Fd(k~~, k, =O) in (38) reduces to coth —,'k~~d and then (39)
can be conveniently rewritten in the form

tanhx =
2

Ct)g

2 X,'
CO

x = —,'k)id . (60)

One easily sees that it only has a solution if co & cos [and
of course (39) and (60) are only valid for co & ck~~ ]. As co

decreases towards cos, the solution of (60) is given by

in place of (55). The graphical solution giving x =
—,'Kd is

also sketched in Fig. 2 (denoted as 8). The solutions
clearly lie in the range m /2 & x (m. as d varies.

Summarizing our results so far concerning the trans-
verse mode solutions of (48), we see from Fig. 2 that for a
given value of the separation distance d, we have a band
of frequencies of finite width 0 (K & 2m/d corresponding
to the X values of k, (0(k, (m. /d). As d becomes large,
this bandwidth clearly narrows to zero. This is expected
since the coupling between the layers is weakening as d
increases. In the limit of d ~~, the bandwidth vanishes.
In fact, as noted above this case reduces to an isolated 20
sheet described by (51), which does not sustain any trans-
verse EM modes (for a sheet of finite thickness, see Ref.
16). In the opposite limit, as d becomes smaller, the
bandwidth widens, rejecting the increased coupling of
the different superlattice layers. In Fig. 3, we sketch the
spectrum of the k, =0 transverse EM modes for various
values of the superlattice period d. At kI~ =0, these fre-
quencies can be shown to be degenerate with the k, =0
longitudinal plasmons (see Sec. V).

2
COg

tany = y; y=——,'Kd .
CO

(61)

A solution of (61) immediately shows that the only solu-
tions are in the region co ( co+ (and also co) ck~~ ). As with
(60), one sees that the mode intersects co=ck~~ (y =0) at
m =co~. As k

~~

decreases, the solution decreases in fre-
quency but with y increasing towards y =n/2

The solution at k~~=0 is especially simple. We note
that (36) becomes identical to (48) at k~~ =0, for any value
of k, [recall that Eq. (34) is exact at k~~ =0]. However,
the only solutions of (48) are in the region co& ck~~ and
moreover all solutions of (36) are in the region co (ck~~ for
k, &0. Thus it is only the k, =O longitudinal plasmon
which becomes degenerate with the k, =O transverse
mode at k~~

=0. This longitudinal frequency spectrum at
k

~~

=0 is bounded as in (58) and is shown in Fig. 3.
We have shown explicitly that at k~~ =0, the k, =0 lon-

gitudinal and transverse EM modes in a superlattice are
degenerate. A similar degeneracy at k=0 is well known
in a 3D bulk metal [see Eq. (2)]. Both results are expect-
ed, being a consequence of the fact that the transverse
and longitudinal response of any charged system must be
identical when the wavelength of the probe is much
1arger than any spatial inhomogeneity and other charac-
teristic lengths.

x ~0 or k
~~

~0. We conclude that for k, =0, the longitu-
dinal plasmon frequency intersects the co=ck~~ line at
co=cuz. This qualitatively different behavior of the k, =0
and k, AO solutions of (39) shown in Fig. 1 also occurs in
the nonretarded limit (c~ ~ or k

~~

=k
~~

). In the opposite
limit co)&cos, the solution of (60) clearly corresponds to
(mz /co) x = 1, which reduces to the 2D plasmon result in
(40).

We next discuss the continuation of the k, =0 plasm. on
given by (60) into the region co & ck~~. In this region, the
solution of (36) involves the R function given in (54). The
dispersion relation (36) can be conveniently rewritten in
the form

/
II

/
f ckI

77c
d ~g)

/
/

/
/

/

k z
= 0 Tia~sve~se

modes

FIG. 3. Sketch of the k, =0 transverse EM mode spectrum as
a function of the superlattice spacing d. Initially the frequency
increases with d but for large enough values of d, it starts to de-
crease.

VI. CONCLUDING REMARKS

We have developed a general procedure for studying
the EM modes of layered electronic structures, based on
(7) and (8). We have illustrated our approach by working
out the modes in a simple superlattice described by (10).
In this case, (7) reduces to (12) and (13). The dispersion
relations for longitudinal and transverse EM modes were
found to be given by (35) and (47), respectively. These
are equivalent to the results obtained by different
methods in Refs. 5, 6, and 13.

In our detailed analysis of the dispersion relation of the
superlattice modes in Secs. III—V, we limited ourselves to
the long wavelength description of the metallic sheets, as
described by (34). It is straightforward to work out the
next order corrections using the results given by (A8) in
the Appendix for o 1,(k, co) for a 2D electron gas.

This work has been motivated by the metallic superlat-
tice structure exhibited by the high-T, superconductors.
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In fact, in the oxide superconductors, one is dealing with
superlattices with a unit cell of up to three closely spaced
metallic sheets (which may not have the same electronic
structure). One can easily extend our present analysis to
these more complicated structures (see Ref. 8). The case
of a single bilayer is of special interest. In this case, the

electronic density is described by

no(r) =no[5(z)+5(z —d)] (62)

instead of the periodic structure in (10). In place of (12),
we obtain (i =x,y)

5E, (kll, k, )=, g ( 'k, k„— '5;„) „(kll, )(1+ ' ' ]E (Ill,P, ) .
(

2 2k 2)
(63)

2~npe 2

co+= kll(1+e " ), (64)

where kll —= [kll
—(cv/c) ]'~ and for simplicity we again

have used (34) for o&(kll, co). These two modes are the
natural generalization of the nonretarded calculation
(kll kll ) and describe the high energy in-phase (co+ ) and
low energy out-of-phase (rv ) charge oscillations in the
two coupled sheets. ' ' For klld &&1, we And

It is straightforward to solve (63) for the longitudinal
plasmons in such a bilayer. After a certain amount of
algebra one Ands for ~ & ekll that there are two solutions

One can easily see that y,J. =O for i' Combining
(Al) with (14), one obtains (k, =k;/kll)

e no ~ 2" (k„'yo„+k2yo, ), (A3)

e np
2 ~ 2" (k,'yo, +k2g„), (A4)

These results lead directly to (33). We note that the con-
tinuity equation implies that

2

(A5)

27Tn pe d
II

k

2mnpe d
1+

7T

(65)

where g„„ is the 20 free-electron density response func-
tion (Lindhard function).

The expressions in (33) can be evaluated analytically up
to terms of order k

ll
at T =0 and we obtain

( 3 =M/v2Fkll )

The velocity approaches c as d becomes very large (i.e.,
when d & aoc /v 2F ).

2le np 1—
Pl CO

A&1,
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APPENDIX

For completeness as well as future work, we give an ex-

panded discussion of (33) quoted in the text. In a 2D
electron gas, (9) reduces to (i,j =x,y)

le np
;J(kll) , =—5; + . y (&, , ),

m c0 ico
(Al)

where the 20 free-electron current-current response
function is
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o.i(kll, co) = '
2le np iAA2 1+, , 3&1,

m co
L

(A6)

o, (kll, co) =

2le np 22+(1—A2), , 2 &1,
Pl 6)

(A7)
2le np iA—(1—2 ) 3 &1.

neo

o I(kll, co) =

o, (kll, co)=

le np
~ 2

+ + 0 ~ ~

Pl CO 4

0
~ 2

1+— + 0 ~ ~I6) 4

(A8)

In the long wavelength limit 3 )&1, the lowest order
corrections to (34) are easily found:

f (P+ —~ll)

p-k
ll

fPl

Finally we note that combining (A5) with (A6) gives the
20 I.indhard function' '

(A2)
y„„(kll,co) =%(cF) 1—

A —1
A &1, (A9)

in the long wavelength limit (kll «k2F). The spin degen-

eracy factor has been included.
where %(EF )=I /vr is the density of states at the Fermi
surface.
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