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Josephson-type effect in resonant-tunneling heterostructures
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We consider resonant-tunneling penetration through double-well semiconductor heterostructures,
which may reveal some quantum-mechanical phenomena at the macroscopic level. The Josephson-type
eII'ects in these systems are investigated. We obtain simple expressions for the resonant current under a
constant and an alternating bias voltage. It is shown that ac oscillations in the resonant current appear-
ing in the case of a constant bias are exponentially damped. Nevertheless, a dc resonant current behaves
similarly to the Josephson supercurrent: it rapidly decreases with bias voltage, but it peaks at the points
corresponding to Shapiro steps when an alternating voltage is superimposed. Yet the heights of the
peaks show a different dependence on the bias voltage than in the case of a Josephson junction. The pos-
sibility of observing the Josephson-type e6'ect at room temperatures is discussed.

I. INTRODUCTION

The substantial improvement in epitaxial crystal
growth during the past years has given a powerful tool to
engineer semiconductor heterostructures of parallel lay-
ers. It is quite natural that the carriers in such systems
exhibit properties of a two-dimensional electron gas in
the plane parallel to the layers (y,z). However, along the
direction normal to the layers (x) the system looks like a
one-dimensional superlattice of potential barriers and
quantum wells, each of them confining only one or few
isolated quantum states.

The research in this field has mainly concentrated on
the problem of penetration through double-barrier poten-
tials (resonant-tunneling diode), Fig. 1. Such a process is
usually described by a multiple-scattering theory where
the incident free wave impinging on the system is trapped
in the quantum well between the barriers. The trapped
wave undergoes multiple reAections off the two barriers.
As a result, the total transmission probability peaks at
the certain energy (Eo), which corresponds to the quasis-
tationary state in the double-barrier potential (the analog
phenomenon in optics is the Fabry-Perot effect).

The resonance penetration through double-well bar-
riers has been extensively studied both theoretically and
experimentally. ' It has been observed in different experi-
ments and even at room-temperature regime. However,
a more interesting case of resonant tunneling, namely, the
penetration of carriers through double-well potential
structures with close levels (Fig. 2), has not received ade-
quate attention. In this case the carriers penetrating
through the system are accumulated in each of the wells
at the quasistationary levels E& (E2). Thus, inside the
wells the carriers would belong to the same quantum
state @,(x) [%2(x)], which is an eigenstate in the first
(second) quantum well when the couplings with the
neighboring well and the states E),ER at the left- and the
right-hand sides of the structure are neglected. [Note
that the motion of carriers is free in the plane parallel to
the layers, so that the wave functions are factorized:

%'(x,y, )z~ exp(ikey +ik, z)C&(x).] As a result, there
arises a resonant current across this system due to
coherent tunneling of carriers through the barrier
separating the wells. Such a phenomenon resembles the
Josephson effect in two superconductors connected by an
insulating barrier, where a dc supercurrent appears due
to coherent tunneling of the electron pairs through the
barrier. This current drops down when a potential
difference V is maintained across the barrier, and then an
ac supercurrent of frequency q V/A' Qows between the two
superconductors (q =2e is the charge of the electron
pair).

Although the resonant-tunneling heterostructures and
superconductors separated by a weak link are quite
different systems, their dynamics may nevertheless look
similar, since both of them are governed by a coherent
tunneling process. Hence, it is rather natural to look for
quantum coherence effects (for instance, of the Josephson
type) in the resonant-tunneling heterostructures. Note
that the coherence in the resonant-tunneling process is
implied by the existence of discrete (quasistationary) lev-
els E, 2 inside the wells, which makes it possible to find
such effects even at room temperatures. In particular,
this last possibility seems to be very attractive. It would
therefore be desirable to perform a detailed study of tun-
neling through double-well potential barriers. In this pa-
per we consider such an investigation. %"e use for our
method an (time-dependent) approach, which is most ap-
propriate for treating resonant-tunneling problems.
In this approach the resonance state is built up from
bound-state wave functions, rather than from free waves
propagating back and forth, as in the time-independent
multiple-scattering theory (thus avoiding the explicit
treatment of complicate multiple-refiection terms). The
approach is brieAy described in Sec. II, using the decay of
a quasistationary state to continuum as an example.

A general treatment of resonant tunneling through
double-well potentials is given in Sec. III. We obtain sim-
ple expressions for the resonant current across the struc-
ture under constant voltage bias. These expressions allow
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(large) well (Ltt ~ &n). We take the initial state 4c(x) as
the eigenstate of the Hamiltonian

Ho= —(1/2m)(d /dx )+ Uo(x)

FIG. 1. Resonant tunneling through a double-barrier poten-
tial. EI and Ez denote the energy levels at the left- and at the
right-hand sides of the structure.

with energy Eo, where the potential Uo(x) is obtained
from the original potential V(x) by replacing the second
well by a constant potential, Fig. 3(b). (Here and below
we have adopted units with A'= 1.) As soon as the distort-
ing potential V(x) —Uo(x) is switched on (at t =0), the
state ~C&o& is no longer an eigenstate of the total Hamil-
tonian

for a comparison of the dynamics of the resonant current
in semiconductor heterostructures with the Josephson su-
percurrent in superconductor systems. Although the cal-
culation does not address elastic and inelastic scattering
and Coulomb interaction, the analysis does establish
similarities and distinctions in the behavior of the two
systems.

There are many interesting Josephson-type effects,
which can be investigated in the resonant-tunneling het-
erostructures. We choose one, which is very important
for applications and can be realized in present-time ex-
periments, namely, the inhuence of alternating voltage
(microwave radiation) on the system. It is known that if
a Josephson junction maintained under a constant volt-
age V is irradiated with microwave radiation of frequency
q V/nfi, a dc supercurrent reappears across the junction.
(This eff'ect has many applications, and, in particular, it
has been used for the most precise measurements of the
ratio h/e. ) It is thus necessary to establish whether this
effect appears in the semiconductor heterostructures too.
This question is investigated in Sec. IV, where we study
the resonant tunneling through double-well potentials un-
der an oscillating external voltage. The last section is the
summary.

H = —(1/2m)(d /dx )+ V(x)

but rather is a wave packet spreading in time,

%0(x, t) =bc(t)e ' C&o(x)+ 1 bk(t)e " 4k(x)

(2.1)

V(x),i

0
ER

Xp X

where 4k ( x ) are the eigenfunctions of the Hamiltonian

Ho, which belongs to the continuum spectrum [without
loss of generality, we assumed that the potential Uc(x)
contains only one bound state]. Equation (2.1) is supple-
mented with the initial condition bc(0) = 1 and bk (0)=0.

The spreading of the wave packet is determined by the

II. TIME-DEPENDENT APPROACH
TO THE DECAY OF THE QUASI-STATIONARY STATE

Consider a standard tunneling problem of decay to
continuum through the barrier penetration, Fig. 3(a).
The initial state is prepared in the narrow well, while the
continuum is represented by dense states in the right

Uc(x), i

Vp

0

Xp X

E3 Ek
R U„(x),,

(c)

Vp

FIG. 2. Resonant tunneling through a double-well potential.
EL and E& denote the energy levels at the left- and at the right-
hand sides of the structure. The energy level Ej (E2) corre-
sponds to the bound state @& (N2) in the first (second) well
where the couplings with the neighboring well and the states
EI,E& are neglected.

Xp LR

FIG. 3. Potential V(x) and the auxiliary potentials Uo{x)
and U& (x) used in the time-dependent approach.
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probability amplitudes bo(t) and bk(t), which can be
found from the standard equations of time-dependent
perturbation theory. One can show that the exponential
and oscillatory components of the probability amplitudes
are defined by the poles of the total Green's function
G(E)=1/(E H—), and therefore their behavior does not
depend on the particular choice of the initial wave packet
[or on the particular decomposition of V into Uo and
(V —Uo)]. In a case of resonance states the oscillatory
and exponential components dominate in the probability
amplitudes bo(t), bk(t). Taking only these components
into consideration, the equations describing time behav-
ior of bo(t), bk(t) are simplified considerably. However,
the main simplification is achieved by reexpanding the
second term in Eq. (2.1) into the eigenfunctions y~z(x) of
the Hamiltonian

(Eg E—o)-Q~~ this term can be neglected.
The differential equation (2.2), describing the propaga-

tion of exponential and oscillatory components of the
wave packets in terms of probability amp1itudes, is the
central point of the time-dependent approach to tunnel-
ing. It can be shown that all other tunneling problems
can be reduced to equation of the same type, resem-
bling the %'eisskopf-Wigner equation for decay of quasis-
tationary states. The easiest way to solve such equations
is to perform the Laplace transform:

P(E)= f exp(iEt)g(t)dt .

Then Eq. (2.2), supplemented with the initial condition
bo(0) =1 and bg(0) =0, turns over the system of algebra-
ic equations

H~ = —(1/2m)(d /dx )+ U~(x), (E —Eo)bo —g QJ b~~ =i,
J

(2.5a)

where the potential Uz (x) is obtained from the potential
V(x) by replacing the narrow well by a constant poten-
tial, Fig. 3(c). Then, the time dependence of the wave
packet is given by the following effective Schrodinger
equation

i P(t) =H' P(t),
dt

where P(t) and the effective Hamiltonian are

b, (t)

bii (t)

ti(t)= b,'(t)

(E Ej )b',—Qjb, =o—, (2.5b)

where Qii(EJ )=Qjz. In the limit of very dense states in
the right well (continuum) one can replace the sum in Eq.
(2.6) by the integral, g~ ~fp~ (Ez )dpi, where p„(E~)
is the density of states in the right well. Then Eq. (2.6)
can be rewritten as

where the amplitudes bo(E), bz~(E) are, respectively, the
Laplace transform of the amplitudes bo(t), bg(t). Substi-
tuting b~~ from Eq. (2.5b) into Eq. (2.5a) we get

E —Eo —g . — bo(E) =i,

bo(E)= E —Eo b(E)+i[I (E)/2]—
Here 6 is the principal part of the integral, and

(2.7)

Eo

nRi ERi

QR 0

A"
R R

E2

QR 0 0

Here ~b)t(t)~ is the probability to find the system in the
large (right) well at the level Etta, Fig. 3(c) and
Q& —=Qz(EJ ) is the effective coupling between the level

Eo in the narrow and the level E}t, in the right well. For
Eg =Eo it is given by product '

~ ~ ~

R

p(xo)
Qii (Eo ) = 40(xo)yJ~ (xo ), (2.4)

where xo is some point inside the barrier (Qz is not sensi-
tive to the choice of xo), and

p (xo ) =+2m [ V(xo) —Eo] .

I"(E)=2rrQ~(E)p~(E) . (2 g)

The probability amplitude bo(t) to find the system in
the narrow well is the inverse Laplace transform of
bo(E), which is performed by closing the integration con-
tour'in the lower half plane of E and taking into account
the singularities of bo(E). For small Q~ the leading con-
tribution will arise from the complex pole
E =Eo+60 i(l o/2), —Eq. (2.7), where Ao=b(EO) and
I 0 I (Ep ), and therefore one gets the usual exponential
decay: ~bo(t)i = exp( —I ot).

As another illustration of the time-dependent ap-
proach, we consider the "reverse" decay problem (which
will be useful in subsequent discussions). This consists of
tunneling from the large (right) well to the narrow one
when all the levels in the large well are occupied, and the
narrow well is initially empty, Fig. 3(a). The solution is
equally given by Eq. (2.2), supplemented now with the in-
itial conditions bo(0)=0 and bg(0)=5.&. Hence, instead
of Eqs. (2.5) one obtains

If E)WE0, there is an additional correction term in Eq.
(2.4) proportional to the integral over the overlap of @0
and pj's, which is of order (Eg Eo )Qz / Vo. If—(E E)b —g Q~b =—0,

(E Eg)bk Qzbo=i5, .

(2.9a)

(2.9b)
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Therefore,

iQR(ER )
b()(E)=

(E —Eo+ iyo)(E E—R )
(2.10)

one finds

QR (ER ) —;R„') —R, ) —y, )R e 0 0 )
ER Ep+l QO

(2.1 1)

where yo= I o/2, and bo has been included in the
definition of Ep. Using the inverse Laplace transform and the correspondent probability

QR(ER )2 1
yot 2yotXo"(t)=~ho(t)~ = [I—2cos(EO —ER)t e '+e '] .(E' E) +—

(2.12)

To obtain the full probability of finding the system in the
narrow well one needs to sum over all states (I) in the
right well. Using g) —& JpR(ER)dER and Eq. (2.8) one
easily obtains

g XR"(t)=1—exp( —I 0t) .
I

I

structure. We assume that at t =0 all the levels E1 are
occupied up to the Fermi level EF, where EF »E1 2 »o.
Therefore one has to solve Eq. (3.1) for the initial condi-
tions b1(0)=5~) and b, (0)=b2(0)=bR(0)=0. Using the
Laplace transform, b(t) +b(E)—, one can rewrite Eqs.
(3.1) as

Therefore, in the limit t ~ ~ the initially empty level Ep
in the narrow well is occupied.

III. RESONANT TUNNELING
THROUGH DOUBLE-WELL BARRIER

(E Eg )bLJ (—E) QJL b, (E—) =i 5/),
(E~ E, )b, (E—) —g Q~~ bL~ (E)—Q()b2(E) =0,

J

(E E,—)b, (E) y—Q,"b,'(E) Q,b, (E—) =0,
k

(3.2a)

(3.2b)

(3.2c)

Consider a double-well barrier shown schematically in
Fig. 2. Using the approach presented in the preceding
section we find that the system is described by Eq. (2.2)
with

q(t) =(bL(t), b) (t), bi(t), bR (t)),

(E ER )bR(E—) QRb2(E—)=0 . (3.2d)

Substituting bj from Eq. (3.2a) into Eq. (3.2b), and bR
from Eq. (3.2d) into Eq. (3.2c) and replacing the sums on
j and k by the integrals, we obtain

where the vector

1 n
bL(R) ( L(R)~ ' ' ' ~bL(R) )

IL QL(EL)E —E +i b (E)—Q b (E)=i
1 2 1 0 2

L
(3.3a)

represents the probability amplitudes of finding a carrier
at the left-hand (right-hand) side of the structure, and
b, (2)(t) is the probability amplitude to find it in the first
(second) narrow well at the energy level E)(z). Then Eq.
(2.2) can be written explicitly as

E E~+i —b2(E) —Q()b, (E)=0, (3.3b)

where

I L =2m QL(E, )pL(E, ), I R =2~Q (ER)p2(ER) 2(3.4)

i b1(t)=E1 b1 (t)+QLb, (t),. d
dt

i bi(t)=E, b, (t)+g QJLb1(t)+Qobq(t),
dt

. d b2(t)=E2bq(t)+g QRbR(t)+Qobi(t),
dt k

(3.1a)

(3.1b)

(3.1c)

are, respectively, the partial width of the levels E, and E2
due to tunneling to continuum, and the corresponding
tunneling energy shifts AL R were included in E1 and E2.

In order to calculate the total current in this structure,
one first needs to find the charge accumulated at the
right-hand side of the structure, Q(t). This can be easily
written as

i bR(t)=ERbR(t)+QRb2(t),
dt

(3.1d)

where Q~L —=QL (E1 ) is the coupling between the levels E1
and E„QR =QR(ER ) is the coupling between the levels
ER and E2, and Qp is the coupling between the levels E1
and E2.

We investigate the time development of the system,
which is initially localized at the left-hand s&de of the

I

Q(t)= g (E E)~bL(t)R~' . —
1, k

(3.5)

The factor m(E~ EL)/vr comes fr—om the integration
over the transverse electron momenta. Replacing sums
over l, k by the integrals and using bR (E)
=QRbz(E)/(E ER), which follo—ws from Eq. (3.2d),
one can rewrite Eq. (3.5) as

pR (ER )QR (ER )b2(E)b 2 (E')
(E )(E E)fdEdE'dE—LPL L F L (E ER )(E' E„)— — (3.6)
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It is useful to introduce the amplitudes b
& 2(E)

QL(EL) Qr(EL)
b)(E)=b)(E), , bp(E) =b,(E), , (3.7)

E —E E —E

It follows from Eq. (3.13) that the ac component of I(t)
disappears when t ~~, so that the stationary current I
across the structure is

which satisfy the equations

r,E E, +—i b)(E)—Qob2(E)=i, (3.8a)

qm (EF E)—I= Qo

02+e2+y2 . (3.14)

. ~RE E2+—i b2(E) —Qob, (E)=0 . (3.8b)

(Notice that b, and b2 describe the time dependence of
the electron initially localized in the first well. ) Substitut-
ing bz(E) from Eq. (3.7) into Eq. (3.6), one can make an
approximate integration over EL and ER by extending
the integration limits over the whole real axis and closing
the integration contour in the complex plane. Since the
poles EL [R~=E,E' are on different sides of the real axis
we get

(EF E)pl. (E—)p g (E)&L,(E)&g (E)
Q (t) = — dE dE'

77 (E' E)—
X b, (E)b,* (E')e "E' E" . -

(3.9)

The (resonant) current across the structure, I(t)
=dQ (t)/dt, is therefore

The resonant current I(t) has been calculated for the
initial conditions bj(0)=5~1 and b, ( 0)=bz( 0)
=b~(0)=0, which correspond to the carriers being ini-
tially localized on the levels Ej at the left-hand side of
the structure, Fig. 2. More realistic initial conditions,
however, would consider the case where the level E& in
the first narrow well is occupied too. Indeed, usually the
levels E&,E2 in the wells are not aligned. As a result the
carriers do not penetrate to the second well, but the level
E, in the narrow well will be occupied [see the reverse
decay problem, Eq. (2.12)]. By applying an additional
external bias voltage, one can align the levels E, and E2,
so that the resonant current I(t) appears across the struc-
ture. Now as about a calculation of Q(t), Eq. (3.5), and
I (t), Eq. (3.10), one needs to add the contribution for the
initial conditions, where the carriers start from the level
E, in the first well [b, (0)=1 and bj(0)=b2(0)
=b~ (0)=0). We finally obtain

I(t)= IdE dE'i (EF E)—
4m

xb, (E)b,'(E )e" '- " (3.10)
qm (EF E)—

I(r)=

(3.11)

where
' 2 1/2

Here we used Eq. (3.4). Solving Eqs. (3.8) one obtains

iQo

(E E+ )(E E—)— &oXy, ', 1 —e ' ' cos2~t+ —sin2cot
+y CO

(3.15)

. yL yR
E+ =E—I y+ 0o+ e—i

2
(3.12)

(3.13)

H&«we used yl. =rL, I2, yg =rg/2, y=(yL, +yg )/2,
E=(E,+E~)/2, and F=(E, E2)/2. —

Consider first the symmetric case, yL =yR =y. Then
E+ =E iy+co, where —co=(QO+e )'~ . Substituting Eq.
(3.11) into Eq. (3.10) and performing integration over E
and E' by closing the integration contour into the upper
or the lower complex half plane we find

qm (EF E) Ao—
I(r)= y

co +y
2y'

X 1 —e ~' 1+ sin2cot+ sin ~t
CO CO

The transient component of the resonant current I(t)
does depend on the initial condition. As a result, Eq
(3.15) is different from Eq (3.13). Nevertheless, the sta-
tionary (dc) component of the resonant current
I=I(t —+~) is independent of initial conditions, and
therefore it is again given by Eq. (3.14).

In the general case yL&yR the expression for the reso-
nant current I(t) is more complicated than Eqs. (3.13)
and (3.15), which we obtained for the symmetric case.
However, the dc component I has a rather simple form.
It can be easily obtained from Eq. (3.10) if we take into
account that the poles of b2(E) [b2 (E')), Eq. (3.12),
are always below (above) the real axis, and therefore their
contributions to the current I(t) decrease exponentially
at t ~~. Hence, only the pole E =E' contributes to the
stationary current I. As a result, we get

(EF E)A rL ro~ dE—
dE(E —E)r,r, ~b, (E)~'= q,

2m' 2m' (E E+ )(E —E )(E ——E+ )(E —E' )
(3.16)
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If all the barriers have approximately the same width,
and therefore Qp-QL~+~, one finds from Eq. (3.4) that
Qp)) rL, I z, and Eq. (3.17) can be rewritten as

qm(E —E) r rI=
I L+I ~ l+

1
2z, —z, r, r,

(rL, +re)'
(3.18)

Using Eq. (3.12), one finally obtains

qm(EF E—) I Ll R noI= ~L+Iz, ILI~
Qo+ +4@

4 (r, +r, )'

(3.17)

IV. RESONANT TUNNELING
UNDER ALTERNATING BIAS

Let us consider resonant tunneling through the
double-well potential structure, Fig. 2, when an alternat-
ing voltage, V(t)= Vp+ V, coscopt is superimposed. In
this case we can replace

Ei p =+(up+ u i coscopt)

in Eq. (3.1), where up i =qVp, /2 and q is the electron
charge. [Without loss of generality we choose
E=(E,+E2)/2=0. ] It is useful to eliminate V(t) by
means of the canonical transformation of the amplitudes
b, 2(t):

Let us compare the resonant current I across the
double-well potential structure, Fig. 2, with the resonant
current ID~, Aowing through the double-barrier tunnel-
ing diode, Fig. 1. The latter is given by7'

=b', 2(t)

where g=u, /cop. Then Eqs. (3.1) can be rewritten as

(4.1)

qm(E~ Ep) I—L 1 t,

r, +I, ' (3.19)
i bj(t)=Ejbg(t)+Q~~g J„(g)e '" b', (t),

n

(4.2a)

where I L, I ~ are the partial widths of the quasistation-
ary level Eo due to tunneling to continuum through the
left or the right barriers, Eq. (3.4). Surprisingly, the same
current will Aow across the double-well potential struc-
ture, Eq. (3.18), if only the levels are aligned (E, =E2).
It looks like as the barrier in the middle has no influence
on the resonant current. However, when an additional
external voltage Vis applied (E, E2=qV), t—he resonant
current I drops down as —(Qp/q V), Eq. (3.18), whereas
ID& remains approximately the same (as far as the level
Ep is inside the Fermi sea of the occupied states Eg).

Such strong fallofF of the resonant dc current I across
the double-well structure resembles the fallofF of the
Josephson dc supercurrent when a bias voltage V is ap-
plied. However, in the case of the Josephson junction,
there appear oscillations of frequency qV in the super-
current. Similar oscillations with frequency 2'—=qV, Eq.
(3.15), appear in the resonant tunneling current too, but
only for the transient component of I(t). Indeed, for
t &&y ', one obtains from Eq. (3.15),

qm (E~ E) 4Qp—
I(t)= y [1—cos(qVt)] . (3.20)

q
2 V2

Yet, these oscillations do disappear in the limit t~ ~,
Eq. (3.15), which is a result of the finite width (2y) of the
levels E& 2 due to coupling with continuum states of car-
riers reservoir.

The main manifestation of the oscillations in the case
of a Josephson junction is considered to be an appearance
of the dc component in the supercurrent, when the exter-
nal alternative voltage of the frequency qV/n is superim-
posed (Shapiro steps). " The question is whether a similar
efFect would exist in the resonant tunneling heterostruc-
tures too, in spite of the exponential damping of the oscil-
lations in the steady state current. This problem is inves-
tigated in the next section.

i b', (t)=Q Q'LQ J„(g)e '" bg(t)
J n

+Qpg J„(2$)e '" ' b2(t),
n'

(4.2b)

i b~(t)=g Q~g J„(g)e "b~(t)
dt

+Qpg J„(2$)e '" ' b', (t),
n'

(4.2c)

i b~(t)=E~b~(t)+Q~g J„(g)e '" b2(t) .
dt

(4.2d)

(E Ef )bLJ (E) Q~~—g J„(g)b i (—E — u)p=i5~t, (4.3a)

Eb', (E)—g QJL g J„(g)b (EL+ u)p

j n

—Qpg J„(2$)b2(E+up+up„)=0, (4.3b)

Eb 2 (E)—QQ~ g J„(g)bti (E —up„)

—Qpg J„(2$)b', (E —up —up„)=0, (4.3c)

(E Ett )b~(E) Q—~g J„(g)b2(E+—up„)=0 . (4.3d)

The charge Q(t), accumulated on the right well, can be
written as [cf. Eqs. (3.5) and (3.6)]:

Here we denoted uo„=uo+n~o. Time dependence of
the continuum states Eg and E~ has not been taken into
account in Eqs. (4.2), since all these states are finally
summed over, and, as a result, their time dependence has
no inAuence on the total resonant current.

Performing the Laplace transform [b(t)~b(E)] one
obtains
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p~ (E~ )Q~ (E~ )B2(E)B2 (E')
(4 4)

where

B2(E)=g J„(g)b2(E+uo„) . (4.5)

Correspondingly, the resonant current across the structure is I (t) =dQ (t)/dt
Substituting the amplitudes bz~, bz from Eqs. (4.3a) and (4.3d) into Eqs. (4.3b) and (4.3c), we find that the amplitudes

b', z(E) satisfy the system of finite difference equations:

(QJI ) J„(g)J„+„.(g) iQI J„(g)
Ebi(E) —g . bi(E —n'a)o) —Qog J„(2$)b 2(E +u 0+u 0„)=g

(Qii )'J„(g)J„+„(g)
b2(E+n'coo) Q—og J„(2g)b', (E —uo —uo„)=0 . (4.6b)

E —uo. —E~

(4.6a)

Eb 2 (E)—g
k, n, n'

Similarly to previous treatment, we replace the sums over the states Ej,Ez in Eqs. (4.6) by the corresponding integrals,
so that the zeroes in the energy denominators generate the energy widths. Assuming that the widths vary slowly with
the energy, one can sum over n and n' in the second terms of Eqs. (4.6a) and (4.6b) using g„J„(g)J„+„(g)=J„.(0). As
a result, Eqs. (4.6) can be rewritten as

~
IL i Ql J„(g),E+i b', (E)—Qog J„(2$)bz(E+2uo+ncoo)=g

n E+up„.—EL
(4.7a)

E +i b z(E)—Qog J„(2()b', (E —2uo nero—) =0,
n

(4.7b)

where I L z are given by Eq. (3.4).
Let us compare Eqs. (4.7) with a constant bias voltage

case analyzed in the previous section. Taking u, =0 (or
/=0) in Eqs. (4.7) we get

g Vp Ncop Qp. We retain only the terms n = —N in
Eqs. (4.7), since the others are of the order (Qo/coo) (as
can be easily shown by iteration). Then, substituting

rLE+i b', (E)—Qob2(E+2uo)=i E+up EL

(4.8a)

I', , E+u, + Neap

(4.9)
iQL J„,( )=bi 2(E)g E + (Ncoo/2)+ n'coo EL—

E+i b~(E) —Qob', (E —2uo)=0 .
L

(4.8b)

These equations coincide with Eqs. (3.3) for
bi z(E)=b', z(E+uo), and E, z=+uo. Consider
uo))Qo and coo))QO. Then, as follows from Eq. (3.18),
the dc resonant current for I for the constant bias voltage
is strongly suppressed -(Qo/uo) in comparison with the
case of aligned levels (VO=O). On the other hand, the
bias potential 2up is replaced by 2u p+n~p for the case of
an alternating voltage, Eqs. (4.7). Therefore, for the
values of Vp such that qVp —Neo-Qp, the contribution
from n = N terms in Eqs.—(4.7) will generate a dc reso-
nant current I =I& of the same order as in the case of
aligned levels.

Consider the resonant current I =I& in regions where
I

into Eqs. (4.7), we find that the amplitudes b, z(E) satisfy
Eqs. (3.8), where E, 2=(+qVO+¹oo)/2, and the cou-
pling Qo is replaced by ( —1) Jz(2$)Qo. The amplitude
B2(E), Eq. (4.5), can now be written as

B~(E)=iQ'r g ",b~ E+ncoo+
E+n'~p —EL

¹Op

(4.10)

Substituting Eq. (4.10) into Eq. (4.4) one can perform the
EL,E~ integrations just in the same way as it was done in
the preceding section. After the summation over n', one
finally obtains for the stationary component of the reso-
nant current I =I&,

Iv =
~ g J„(g)fdE(EF E)l I I ~ b~ E+—ncoo+2'. " 2

2

(4.11)

The last integration over E is done by closing the integration contour over the singularities of b2 [see Eq. (3.17)j. As-
suming again a weak energy dependence of the widths, we Anally obtain
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qmEp I LI R A()J~(q V( /coo)

I I, + I"~ 0+~2(q V, /coo)+ I'I I ~ /4+ (q VD N—a)0)'[ I I I'
g /( I I + I g )' j

(4.12)

1.4

1.2— (a)

1.0—

0.8—

0.6—

0.2—

Let us compare the resonant current Iv, Eq. (4.12),
with the Josephson supercurrent across the junction irra-
diated with an external frequency coo. Both currents, tak-
en as a function of the bias voltage Vo, peak at the same
points: q Vo =Xcuo, corresponding to tunneling with
emission (or absorption) on N photons. However, the
values of the currents at these points exhibit dift'erent N
dependences. For instance, if QOJ)v(qV, /coo) » I I z, the
resonant current I =I& shows no N dependence, whereas
the Josephson supercurrent is proportional to
J)v(qVI/cop). The N dependence of the resonant current
appears only in widths of the peaks, which are propor-
tional to J)v(q V, /coo) [see Eq. (4.12)j.

As an example of such behavior, the resonant current
I =I& is given in Fig. 4 as a function of the bias voltage
Vo, Eq. (4.12), for I ~ =4I I, qV, /coo=3, and
coo/Qo = 10. We consider two cases: (a)

0&& J)v(qV, /coo) » I I, so that the second term in the
denominator of Eq. (4.12) is neglected, and (b), where
I I /Qp =0.2. Also dimensionless quantities q Vp /coo and
I/Io have been used, where Io is the resonant current for
zero voltage, Vo = V, =0 in Eq. (4.12).

The insensitivity of the resonant current amplitude to
the number of emitted or absorbed photons N (for the
case of Qp » I I z ) is not so surprising. It can be under-
stood in the following way. We found in the preceding
section that for aligned levels in a double-well structure,
Fig. 2, the rniddle barrier does not play a role. As a re-
sult, the resonant current is the same as that Aowing
across the double-barrier diode, Fig. 1. On the other
hand, it has been shown earlier, ' that the presence of
phonons (phonon assisted tunneling) does not infiuence
the total resonant current across a double-barrier diode.
(The same could be expected for a photon case. ) There-
fore, in so far as the levels in the double-well structure are
e6'ectively aligned, i.e., E, —E2 =Nco~, the resonant
current will reach the same value as in the case of the
double-barrier diode.

The X dependence of the linewidths, Fig. 4, has also a
simple interpretation. Consider the limit Qo )&I I z.
Then, it is the coupling between the two wells that gives
the main contribution in the line broading. In the case of
photon assisted tunneling, the coupling is a product of
the amplitude of tunneling, Qo, and the amphtude of the
emission (or absorption) of N photons, J)v(qV, /coo) (cf.
the ionization amplitude in a strong electromagnetic
field" ). As a result, the resonant current has such a pecu-
liar X dependence in the resonances' width.

0.0

1.2— (b)

1.0—

O
0.8—

0.6—

0.4—

0.2—

0.0
qVp/h~p

FIG. 4. Resonant current I across the double-well potential
structure as a function of the bias voltage Vp, when the alternat-
ing voltage VI coscopt is superimposed. Dimensionless units

q V&/Amo and I/I& are used, where Ip is the resonant current for
zero voltage (Vp = VI =0). The other parameters are I z =4I I,
qVi /Aci)p= 3 cop/Qp= 10, and (a) ApJ~(q V, /cop) )&I z and (b)
r', /no =0.2

V. SUMMARY

In this paper we studied the resonant current through
a double-well potential heterostructure of semiconductor
layers under a constant and an oscillating bias voltage.
In both cases simple analytical expressions for the reso-
nant current have been obtained. We found that a dc res-
onant current will appear at zero bias voltage (where the
levels in two wells are aligned), but it decreases very rap-
idly when the bias voltage is applied. Such a
phenomenon resembles the Josephson supercurrent in su-
perconductors separated by a weak link. The di6'erence,
however, is that the latter would exhibit oscillations with
a frequency proportional to the external voltage, whereas
the resonant current displays such oscillations only in its
transient component.

On a first sight, the absence of oscillations in a station-
ary component of the resonant current would limit an
analogy with the Josephson supercurrent, so that the
most important ac Josephson effects (for instance,
Shapiro steps) could not be revealed in semiconductors
heterostructures. We demonstrated that this is not the
case by analyzing the behavior of the resonant currents
under an oscillating voltage. It has been shown that a dc
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resonant current should reappear in the double-well het-
erostructure under a constant bias voltage Vo, when an
alternating voltage (microwave radiation) is superim-
posed. It is remarkable that both the Josephson and the
resonant currents display a dc component on the same
condition: qVo =NARD, where q is the charge of the tun-
neling carriers, and coo is the frequency of an external os-
cillating voltage. A difference between these currents ap-
pears in the N dependence of the Josephson and the reso-
nant current amplitudes. While the height of peaks of
the Josephson supercurrent is governed by the corre-
sponding Bessel function, the same quantity for the reso-
nant current is given by a more complicate expression,
which involves the quasistationary level widths. It is in-
teresting that in the case where the widths are much
smaller than the level splitting due to tunneling between
the wells, the height of peaks is independent of N. Only
the widths of the peaks display the N dependence.

One of the most attractive possibilities that can be real-
ized in semiconductors heterostructures is finding quan-
tum coherence effects at room temperatures. Indeed, the
coherence in such systems is achieved by the existence of
isolated quasistationary quantum levels between the bar-
riers. By a proper engineering of the semiconductor het-
erostructure one can make the potential barriers high
enough in order to diminish the thermal excitation of car-
riers above the barriers. This would guarantee the widths
of the quasistationary levels inside the wells to be small
enough, so that the desirable efFects (Josephson type)
could be observed at room temperatures. Note that the
usual resonant-tunneling current across the double-
barrier resonant diode has been already observed at
room-temperature regime.

We hope that this paper can stimulate further research
on resonant tunneling through double-well potential het-

erostructures, focusing on different effects, which were
not addressed here. For instance, we have not considered
elastic and inelastic scattering of the carriers, which
sometimes may modify the resonant current in an unex-
pected manner. However, the most important
phenomenon not addressed here is the Coulomb interac-
tion of the carriers accumulated in the same quantum
states between the wells. Since the double-well structure
represents a capacitor, the accumulated charges can
influence the alignment of the quantum levels (if the
capacity of the structure is small enough). As a result,
the resonant current (which is very sensitive to the levels
alignment) can display very interesting quantum coher-
ence effects on the macroscopic level, similar to those in
small Josephson junctions. We even suggest that the
study of the Coulomb interaction effects in the semicon-
ductor heterostructures can help us reach a better under-
standing of quantum coherence phenomena in small
Josephson junctions, for which contradictory theoretical
descriptions still exist.

We also did not discuss the infiuence of magnetic field
and a possible analogy with the Josephson effects in a
SQUID. Unfortunately, the experimental technique in
semiconductor heterostructures is not developed enough
for engineering appropriate samples where a phenomena
similar to Josephson efFects in a SQUID can be observed.
We believe, however, that this will be possible in the near
future, and the theoretical investigation of magnetic field
effects in double-well heterostructures will be very impor-
tant.
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