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A second-order spin-wave analysis is given for the quantum Heisenberg antiferromagnet with anisot-
ropy on the one-dimensional linear chain, two-dimensional honeycomb lattice, and three-dimensional
simple-cubic and body-centered-cubic lattices. A similar analysis is given for the quantum XY model
with anisotropy on the one-dimensional linear chain, two-dimensional triangular and honeycomb lat-
tices, and three-dimensional simple-cubic, body-centered-cubic, and face-centered-cubic lattices. The
singular behavior at the isotropic point is discussed in detail. We find that the quantum spin reduction
of the isotropic Heisenberg antiferromagnet on a two-dimensional honeycomb lattice is much stronger

than that on a square lattice.

I. INTRODUCTION

For comparison with the results of our series expan-
sions about the Ising limit for the zero-temperature quan-
tum XXZ and XY models on a square lattice, we 12 re-
cently carried out a standard second-order spin-wave
analysis for the above models, and its predictions were
found to be in extremely good agreement with the results
of the series expansions. In this paper we apply the gen-
eral spin-wave results obtained in our previous papers®
to other lattices. We present spin-wave predictions for
the isotropic Heisenberg antiferromagnet on the two-
dimensional honeycomb lattice, and the isotropic fer-
romagnetic XY model on the two-dimensional triangular
and honeycomb lattice and three-dimensional face-
centered-cubic lattice.

Spin-wave theory can provide us with a rather accurate
picture of the low-lying states of quantum spin systems.
There exist several different versions of the spin-wave
theory. The standard spin-wave theory based on the
Holstein-Primakoff representation for the Heisenberg
model was proposed by Anderson,® and further extended
to second order by Kubo* and Oguchi.’ The singular be-
havior of the anisotropic model was discussed by
Stinchcombe.® This spin-wave theory was previously
thought to be unsatisfactory in the XY case,’” but recently
Gomez-Santos and Joannopoulos® have shown that, by a
different choice of the quantized spin axis, one can obtain
a good theoretical fit to the model. Another spin-wave
theory using a special spin-wave representation was origi-
nally proposed by Villain,” and further extended up to
second order by Nishimori and Miyake.!' But up to
second order, both traditional spin-wave theories give the
same ground-state energy for the Heisenberg antifer-
romagnet. Recently, a sublattice symmetric spin-wave
theory has been formulated by Takahashi,!! Hirsch,!? and
Tang!® where the total staggered magnetization is con-
strained to be zero, which yields excellent agreement with
Bethe ansatz results for the S =1 Heisenberg antiferro-

4

magnetic in one dimension. In addition to this,
Takahashi!* has also developed another modified spin-
wave theory by using the Dyson-Maleev transformation
instead of the Holstein-Primakoff transformation: it pre-
dicted the perpendicular susceptibility for the spin-1
Heisenberg antiferromagnet on a square lattice to be
X1=0.065 50, which is in excellent agreement with our
series expansion result! [y, =0.0659(10))].

Recently, the discovery of the remarkable magnetic
properties of high-T, superconductors has led to a reex-
amination of quantum spin systems mainly in two dimen-
sions (including the square lattice, triangular lattice,and
perhaps the honeycomb lattice, although the honeycomb
lattice has been less well studied). The standard first-
order spin-wave analysis of the triangular Heisenberg
quantum antiferromagnet with nearest-neighbor cou-
plings was given by Jolicoeur and Le Guillou,'® and then
extended for both nearest-neighbor and next-nearest-
neighbor interactions by Jolicoeur, Dagotto, Gagliano,
and Bacci.!® The standard spin-wave analysis of the
Heisenberg antiferromagnet on a square lattice with both
nearest-neighbor and next-nearest-neighbor couplings
was discussed by Chandra and Doucot,!” and Kubo and
Kishi.'®

In the present paper, we will not repeat the derivation
of our general second-order spin-wave results in detail,
but the notations here have the same meanings as in our
previous papers.’> The arrangement of the paper is as
follows: in Sec. II we give the spin-wave results for the
anisotropic Heisenberg antiferromagnet on a one-
dimensional linear chain, two-dimensional honeycomb
lattice, and three-dimensional simple-cubic and body-
centered-cubic lattices. In Sec. III we discuss the spin-
wave results for the XY model with anisotropy on a one-
dimensional linear chain, two-dimensional triangular and
honeycomb lattice, and three-dimensional simple-cubic,
body-centered-cubic, and face-centered-cubic lattices.
The XY model on a honeycomb lattice needs an analysis
based on two sublattices.
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II. SPIN-WAVE ANALYSIS
OF THE ANISOTROPIC
HEISENBERG ANTIFERROMAGNET

The Heisenberg antiferromagnet with anisotropy can
be described by the following Hamiltonian:

H= 3 [S/S, +x(SiS, +S8IS;)],
(Im)

(2.1

where we have divided the lattice sites into two sublat-
J
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tices, denoted by / and m, respectively, and the sum over
(Im ) denotes a sum over all nearest-neighbor pairs. The
points x =0 and 1 correspond to the antiferromagnetic
Ising model and isotropic Heisenberg model, respectively.
The second-order spin-wave theory' gives the ground-
state energy E,, the mass gap m, the staggered magneti-
zation M, the parallel staggered susceptibility Xﬁ, the
uniform perpendicular susceptibility y,, and the stag-
gered perpendicular susceptibility 7 as follows:

zS 1 1—x?
Ey/N=="7|5—=Ci+ ¢ Cci+ = (C_,—Cy)? l ,
m=z(1—x)"%(S—-C_,/2),
M+=s—Lc_l—l—""—z(c_l—c,xc_rc_]) , (2.2)
2 45x?
XS=—1—(C_ —C_ )+L' C(C_;—C_))+ 1_xz[(C_ —C_ )+ (C_{—CNC_,+3C_5—4C_,)]
1= 228 3 1 42572 1 1 ) 3 1 -1 1NC -5 -3 s
- 1 _ C_,—C
X (1+x) 25x |’
Xi(x)=x,(—x),
I
where z is the coordination number of the lattice, and C, and
is defined by
2 L Sypr=a 2nl
C = SI=x2,2 0 =11, @3 N4 n
k
_ 1
the sum over k denotes a sum over the first Brillouin zone ~(mwn)" 12 {1 -8—+0 - as n— o (2.7)
of the sublattice /, and the structure factor y, is defined n h

by

Y= iZeik'P . 2.4)
Z%p
Note that if y, is complex (denote y, =|y, le'®%), that is,

YxFYE=Y —k, the phase factor e in the Hamil@gnian
1

can be absorbed by the transformation b, —bge  *, or
by the following Bogoliubov transformation:
a, =cosh8, a; —sinhf,e _ia"B}z ,
(2.5)

b,=—sinhf, e _iaka; +coshb, By, ,

instead of Eq. (2.9) in Ref. 1.

The results above are applicable to any bipartite lat-
tice. Now we discuss the application of the above results
to the one-dimensional linear chain, two-dimensional
honeycomb lattice, and three-dimensional simple-cubic
and body-centered-cubic lattice (a is the lattice spacing).

A. One-dimensional linear chain

The structure factor ¥, for the linear chain is

vr=coslk,a), —uw/(2a)<k,=<m/(2a), (2.6)

Using the same techniques applied in our calculation of
XXZ model,! one can find the asymptotic expansion near
2 .
x“=1of C,:

C,=—0.36338— - (1—x?)In(1—x?)
27
+0.282 12(1—x2)
3 =X Im(1—x2)+ - - -
1677(1 x)YIn(l—x°)+ s
c_lz—lln(l—xz)—o.117458
a
"L(l—xz)ln(l—xz)
47
+0.0615(1—x2)+ - -+ ,
2 1

=T——2)——2;1n(1—x2)—0.718+ Tt
ml—Xx

(2.8)
-3

C_5=-;;(1—x2)_2+i(1——x2)”1+"' .
w

The Heisenberg antiferromagnet on a one-dimensional
linear chain has no long-range order, and the spin-wave
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theory here gives a divergent occupation number per site
(n; ), so the spin-wave theory lacks intrinsic consistency.
But the ground-state energy in the isotropic case is
E,/N=—52—0.36338S —0.033011, which compares
fairly well with the exact solution!>? (E,/N = —0.4430
for S =1).

B. Two-dimensional honeycomb lattice

The two-dimensional honeycomb lattice is a bipartite
lattice, consisting of sublattice / and sublattice m. The
primitive lattice vectors of the / sublattice are

e;=a(3,V3/2),
(2.9)
e,=a(0,V3),

and the reciprocal-lattice vectors for the / sublattice are

e 1 ) 3k,a
Yi¥r——= |1+4cos +4 cos

Ccos

V3
2 e

\O

3—-2n

4r?
n/2n—2i

_ 372723 +4)]n!
,-§0,-§0 (1% Wn —2i — G + )02

_3V3

4n

2
F%Wm":)'b

1
1 an +0

1
n2

Therefore, one can deduce the asymptotic behavior near x 2=
C,=—0.2098417+0.363 114(1—x?)— g( 1—x2)3/240.22561(1 —x2)?

ﬂ(l_x2)3/2 4+ e,
T

‘/“
C_,=0.516 386—3—3(1—x2)1/2+o.5392(1—x2)~

2
_3V3 3v73

V3

as B — o0 .
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n,=27(2,0),
a
(2.10)
—2m(_1 1
b, a 3’v3 |

which correspond to the triangular lattice. The first Bril-
louin zone can be chosen as the rectangular region

_2m k<27l ™

< , —— <k, <—Z_ 2.11
3a <Kx 3a v3a Y7 V3aq ( )

Then the structure factor is

_ 1| ika ~ik a/2 V3
Yk_'; [e +2e cos {Tkya

] > (2.12)

and it follows that

y ’

[Tax [ 2/2dy(l+4coszy +4 cosx cosy)"

(2.13)

10f C,:

_IV3

2\5/2
—_— + PRI
200 1 TX) ’

(2.14)

C_3=——(1—x%712-0.5621——(1—x2)!2+ - - - |
4w

27

C_Sz_‘/_a(1_x2)*3/2+§_‘/__§_(1_x2)—1/2+ .
2w 47

The asymptotic behavior of the physical quantities is then given by
E,/N=—35%/2—0.314763S —0.016 5126 +(0.544 67S —0.140 63)(1—x?2)

+(—0.413 508 +0.40705)(1 —x2)32+4 -+ . |
m=(1—x2)""2[3§ —0.774 579 +1.2405(1 —x2)/2+ - -
M*tT=8—0.258193+(0.413 4967—0.150 1464 /S)(1—x2)1/24 - - . |

1,

(2.15)

X;=(0.13783/5 +0.035 5873 /5%)(1—x?)"'/2~0.179 74/S +0.018 8589 /S>+ - - - ,

X1=1-0.0605190/S +0.097462(1—x)!/2/S + - - -,

xP=[1+0.121038/S —0.19492(1—x)/2/S + - - - 1/(1—x).

C. Three-dimensional simple-cubic lattice

The structure factor y, for a simple-cubic lattice is

-

v« =3lcos(ak, )+cos(ak,)+cos(ak,)] , 2a

<kuok,So=, kIS

2a (2.16)
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It then follows that

2 oy | P & 2|
- =37
N%y" n|& |mjm
e
S P | T
T

and one can deduce the asymptotic behavior of C,,:

C,=—0.097158+0.126937(1—x?)+ ?:32 (1—x2?In(1—x?2)
T

+3.9624><10—3(1—x2)2+%(1—x2)31n(1—x2)+ e,
T

v _
C_,=0.156715+- 23(l—xz)ln(1—x2)~0.0453(1——x2)+ii(l—xz)zln(l—xz)—i-
4 167
s
c_3=—32 2 In(1—x2)—0.0159704+0.0236(1 —x2)+ - - - ,
T
_V3 2—1_3V3
c_5—7(1—x ) —Zrz—ln<1—x2)—o.2o7+~-~ .

The asymptotic behavior near x =1 of the physical quantities is

E,/N =—35?—0.291474S —0.007 079 76 +(0.380 810S —0.029 8394)(1 —x?)
+(0.098 7158 —0.045327)(1 —x )’ In(1—x?)+ - - -,

m =[6S —0.470 146 —0.394 860(1 —x?) In(1—x?)+ - - - [(1—x2)1/% |

M*=5—0.0783577+ | —0.065 810+ 2016707 (1—x2)In(1—x2)+ -+ -,
0.0219367 , 0.001065 66 0.014 3905 , 0.006268 22
S— | w2y e
Xi= S + 52 yln(l x*) S + 52 + ,
Xl:Tli_ 0.01055781 _ 0.005S48417(1_x2)1n(1_x2)+ o

X7=[1+0.0211561/S +0.0109683(1—x*)In(1—x%)/S+ -+ ]/(1—x) .

D. Three-dimensional body-centered-cubic lattice

The structure factor ¥, for a bcc lattice is

aky

2

ak,
2

ak,
2

o
pat

Yk =CO0S cos Ccos

T
L =T <k ky k<

Then,

3

- 32|13 1
0|~ ll o 0|3

2 2n—_~—6n 2n
£ =2

] as n— oo ,

and, therefore, one can deduce the asymptotic behavior of C,,:

kS

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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C,=—0.073 037 67+0.095 8370(1 —x2)+1—1—2( 1—x2)?In(1—x?)
T

+0.003 2057(1—x 2>+ 2—17(1—:;2)3 In(1—x2)+ - ,
T

C_,=0.1186364+ iz(l—xz)ln(l—x?)—o.osz 35(1——x2)+z3-;(1—x2)21n(1——x2)+ e
T T

C_y= —% In(1—x2)—0.019 298 85+0.0291(1 —x2)+ - -+ ,
m

Cos=—1(1—x)"1=Z In(1-x)—0.1738+ - - - .
3T T

The asymptotic behavior near x =1 of the physical quantities is

Eo/N=—452—0.292 1515 —0.005 3345+ (0.383 355 —0.022 739)(1—x2)
+(0.101325 —0.035141)(1—x2)?In(1 —x2)+ - - - ,

m =[8S —0.474 545—0.405285(1—x) In(1—x?)+ - - - J(1—x?)'/2,

M*=8—0.0593192—(0.050 6606 —0.009 71032 /S)(1—x2)In(1—x2)+ - - - ,

X;=(—0.012665/S +4.6252X 10~ */5?)In(1—x2)—0.008 6209 /S +2.7424X 1073 /S*+ - - - |

__L _0.0059898  0.0031663 ; o\ .2\ ...

T s S
x= %+°'°1;9796+0'006;3257(1—x2>1n(1—x2)+--- ]/(l—x).

III. SPIN-WAVE ANALYSIS OF THE ANISOTROPIC XY MODEL

The XY model with anisotropy can be described by the following Hamiltonian:

H=— 2 (S{S,, +xS}S}) ,
(Im)

11 873

(2.22)

(2.23)

(3.1)

where the sum over {Im ) denotes a sum over all nearest-neighbor pairs. The points x =0 and 1 correspond to the fer-
romagnetic Ising model and isotropic ferromagnetic XY model (F), respectively. For a bipartite lattice, the isotropic an-
tiferromagnetic XY model ( 4) is related to the ferromagnetic one by a simple spin rotation on one sublattice. Hence,
there exist the following relations between the isotropic ferromagnet (F), antiferromagnet (A4), and the model described

by Eq. (3.1):

Eyx =1)=Eyo(x =—1)=E§=E} ,

M, (x =1)=M_(x=—1)=MF=MA*5

Xxx(X =D)=)yx(x =—D=x5=x2",

Xwx =D=x5=x5, , x,(x=—D=xj=x5%,

Xa(x =D=XL=X5 , Xz(x=—D=x2%=xL%,

where the superscript S denotes the staggered magnetization and susceptibility.
The second-order spin-wave t:peory2 gives the ground-state energy E,, the mass gap m, the magnetization M,, and

the susceptibility Xy, X,y» X, as follows:

(3.2)
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EO_ ZS2 ZSCI z 1_X2 2 2 1 2
7—'——2_'*_ 2 _1—6' x2 (Cl_c_l) +2C1+7(C1—C3) y
C
m=|s-Z|c,-—2+txc ](1—x>1/2,
1 | 4—3x2 2
MX=S—%(C1+C_1)+—§§ . (cl—c_,)2+;;(cl—c3)(c3—zc1+c_,)
(3.3)
+217*% ¢ —c_xc_,—c
xz 1 -1 -3 1) ’
_ 1
Xxx—-gz‘g(cl+c_3—“zc_1)
L 11=x2 ¢ )3C,—C_,+C_3—3C_s)
32252 X2 1 -1 1 -1 -3 -5
4 4—x?
+—5(C;—C_ | +27—=—(C,—C_;(C_;—C))
x x
1—x? 1
+ = (c~3—cl)2+2(c_1—cl)(c_1—2c1)+?(c_1—40,+3c3)2
1
+2(C_1——C_3)(C1—2C~1)+;7(C1—C3)(—C_3+3C_1——7C1+5C3)
1 c_—C
= 1+
X = Z(1—x) 5% |
_1],_ 64
Xez™7 25x |’
where z is again the coordination number of the lattice, and C, is defined by
1
C,=—=l(1—xy,)"*—1], (3.4)
N5
the sum over k denotes a sum over the first Brillouin zone, and the structure factor
yk—_—iZe”‘"’ 3.5
%
is required to satisfy the condition
1
— =0. 3.6
N%?’k (3.6)

The results above are applicable to the ferromagnetic XY model on any lattice, or to the antiferromagnetic XY model
on any bipartite lattice following a simple spin rotation. Now we discuss the application of the above results to the
one-dimensional linear chain, two-dimensional triangular lattice, and three-dimensional simple-cubic, body-centered-
cubic, and face-centered-cubic lattices. For the two-dimensional honeycomb lattice, the simplest unit cell contains two
sites, so the spin-wave theory based on one sublattice in the form given above is invalid for it despite the fact that it is a
bipartite lattice. In Sec. III F, we develop a second-order spin-wave theory for the XY model on the honeycomb lattice,
based on a two-sublattice decomposition.

A. One-dimensional linear chain

The structure factor of the linear chain is
yr=cos(k,a) , —% <kx§%, 3.7)

and it follows that
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[ P - —12 |1 1
N%yk =2 n (mn) 1 o +0 > as n—> o ,

and

1 2n+1— —
=0, =0,1,2,... .
N§Yk n

From this, one can deduce the asymptotic behavior of C,, as

3
C;=0.2004218—0.225079(1 —x%)— ——=—(1—x2%)*In(1—x?)
3 (1—x7) 321/217( x*)*1In
_ 35
+6.86947X 107 3(1—x2)*~ ——=—(1—x2)In(1—x2)+ - - - ,
U=x = hvs, (17x )l —x
_ 5
C,=—0.099684— Y2 (1—x2)In(1—x2)+0.065 21(1—x2)— Y2 (1 —x 22 In(1—x2)+ - - -
8 2567
C_,=— 1 In(1—x2)—0.063 922 — — (1—x2)In(1—x%)4+0.03485(1—x2)+...
Vor 16V 27
V2 V2
C_3=#2————2ln(l—xz)—0.935+... ,
m(1—x°) 87
8V2 _ 1 _
C s=——(1=x))"——=—(1—x)""+....
5= (1=x?) ‘/2#( x2)
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(3.8)

(3.9)

(3.10)

For the one-dimensional linear chain, as pointed out by Gomez-Santos et al.,® the spin-wave theory gives a divergent
occupation number per site (n;), and the theory lacks intrinsic consistency. But the ground-state energy
(Eq/N =—52—0.099 6845 —0.013 7421) compares fairly well with the exact solution?22 (E,/N = —0.318 for S = 1.

B. Two-dimensional triangular lattice

For the triangular lattice, we only find the asymptotic expansions near x = 1 because the triangular lattice is not a bi-

partite lattice. The structure factor of the triangular lattice is

\/§kya
2

k.a

2

T 2T
=T k| s 2T

av’3

cos(k,a)+2cos cos

=1
Yk 3

From this it follows that

1 n n U2 2072072k 2008 + 1)1(2k +2n —2j +2)!
NEY%‘ =3 3 32n+1 —; ] Wi —2k— rvj —j 17?
p =1 K=o [2(n —)+1]M2k + 1N —2k — 1! [(n —j+k +1)]

and
1 o 22 2i=2 =2 p )i 2(j +n—i) | |20 _
2 = . . .|, n=12,...,
N%"" EOEO 32(2n — 202N —2j)N(2j0 | JHn i I

the asymptotic behavior is

Gy, V3
N%y" Zy as n— o ,

2n

o)
n

therefore, one can deduce the asymptotic behavior of C,:

(3.11)

=12,...,

(3.12)
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C;=0.068 9479—0.151 808(1—x)+0.139 345(1 —x)?

B =) 40.102 61(1—xP = 83 (1— x4
57 357
C,=—0.0322577+0.13519(1—x)— —@( 1—x)*/2+40.158 77(1 —x)Z—ﬂ
3 157
i _
C_,=0.238 124—73—( 1 —x)1/2+0.5000(1—x)—2—;/ﬂ_—3( 1—x)32+...,

c_, =‘—:}( 1—x)"12-0.761 63+0.2124(1—x)+...,

v—

c_ =L+ 28120903+ ...,
3 37

and the asymptotic behavior of physical quantities:

Ey/N=—35%—0.096 7735 —0.004 6214 +(0.405 575 —0.034 186)(1—x)
+(—0.551335 +0.20076)(1—x)*"2+...,

m =[6S —0.56256+1.6540(1—x)'2+...(1—x)1/2,

M,=S —0.0514666—6.5848 X 107° /S +(0.137 83 —0.024 463 /S)(1—x)'/2+...,

0.011486 . 1.0536 ., 0.026461 . 7.0461
— + - 172 _ .
Xxx S Tl S 10952

cey

X,y =(1—x)71[1+40.022532/5 —0.045944(1—x)'2/S +...],

Xz =+—0.0084338/S5 +0.015483(1—x)/S +... .

C. Three-dimensional simple-cubic lattice

The structure factor of the simple-cubic lattice is

7r=L[cos(ak, )+ cos(ak,)+ cos(ak,)] , —% <kyky,k, < % ,
and it follows that
2
_1_ 2n=3—2n2—2n 2n < 2m n
N§Yk n m2=0 m m
3V3  _ip 3 1
~mn 1—5;4‘0 ) as n—

and
_1_ 2n+1_—
N

Therefore, one can deduce the asymptotic behavior of C,;:

ZHENG WEIHONG, J. OITMAA, AND C.J. HAMER

(1—x)"%+...,

I®

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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I

3v6

256 s(1—x2’In(1—x?)
T

C,=0.064 5497—0.067 3613(1—x2)+4.763 53X 10~ 3(1—x2)2+

+16ax1073(1—x 2P+ 283 (e eyt
8192V 2rr
= 2 373 2y2 2
C;=—0.02526547+0.035 1565(1—x2)+ ——=—(1—x??In(1—x?)
32V 2w
+2.512><10—3(1—x2)2+—51—‘/_§2(1—x2)31n(1—x2>+... ,
512V2n
‘/_
C_y=0.1153607+ 38 (1 — x2)in(1 —x?)—0.038 836(1 —x2)+ 828 (1 x22n(1—x)+ ...
8m? 256w
3v3 9v3
3=~ =5 In(1—x?)—0.101 571 — ——=—(1—x}) In(1—x?)+...,
2T T g P70 tovae X=X
4v3 ~1_ 9V3
C_s=—=5U—x)'————=In(1-x2)+... ,
TV T T e T

and the asymptbtic behavior of the physical quantities is

Eo/N =—35%2—0.0757964S —0.003 5038+ (0. 105 4708 —0.002 2028)(1 —x2)
+(0.0349018 —0.008 5914)(1 —x2)*In(1—x2)+... (x~=*1),

m =[68 —0.211359—0.279208(1 —x2) In(1—x)+... ](1—x)'"? (x~1),

m =[65—0.0589264+0.172831(1+x)+...[(1—x)'"? (x~—1),

MX=S—O.0225238—§%— 0.0232674—% (1—=xHIn(1—x2)+... (x~=*1),

7.75579 , 4.6916 7.449 | 1.935
= |- In(1—x2)— +... (x~=%x1),

Xowx 10’8 10452 10°s  10°s?

Xy =(1—x)7" l+°'°“7188+0'00775579(1—x2)1n(1—x2)+... (x~1),

. 6 S S

xyy=%—0‘0028594—0'001,8778(1—x2)1n(1—x2)+... (x~—1),

Xzz=1—0.007 484 60/S +0.009 601 72(1—x)/S +... (x~1),

0.
Xz =+10.00748460/S —0.009 601 72(1+x)/S +... (x~—1).

D. Three-dimensional body-centered-cubic lattice

The structure factor of the bece lattice is

ak ak ak
¥ =cos Tx cos —z—y— cos 22 , —£<kx,ky5%, 2T kzi%;[,
and it follows that
o P
n
71727’%”:2#6" n ~(7'rn)_3/2[1——é3;-+0 — as n— oo ,
k n

and

1 2n+1
—>yi"T' =0, n=0,1,2,....
N5

The asymptotic behavior of the C,, is given by

11877

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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C3=0.048 434 50—0.050 578 82(1—x2)+0.003 644 61(1—x2)?
‘/ _
2 (1=x2P In(1—x2)+0.001 2683(1—x2P + 22 (1 — x 2 In(1—x D) +.. .
A= 40961
C,=—0.01900393+0.026 578 57(1—x2)+ ‘/ (1—x2?In(1—x?)
1T
+o.001983965(1—x2)2+~——17—2(1—x2)31n(1—x2)+ e,
128V 27 (3.23)
1/' = .
C_,=0.08731034+ 22 (1—x?)In(1—x2)—0.028 042(1—x)+ 22X 2 (1 x2RIn(1—x D)+ - - - |
21 641
.\/
C_3=—222 1n(1-x2)—0.087 102 62— 3’8‘/;2(1—x2>1n(1—x2)+o.05339(1—x2)+...,
T
‘/_
c_,=3 22 1—x2)“——3£221n(1—x2)—0.46869+...,
and the asymptotic behavior of the physical quantities is
Ey/N=—45%—0.076 01575 —0.002 635 12+(0.106 314S —0.001 711 76)(1 —x2)
+(0.035 82245 —0.006 672 54)(1 —x2)*In(1—x2)+... (x~=*1),
=[8S —0.214364—0.286 580(1—x ) In(1—x2)+... J(1—x)'"%?, (x~1),
m =[8S —0.0588612+0.173753(1+x)+... J(1—x)'"? (x~—1),
Mx———S—O.Ol70766—3'7—214— 0.017911—2078 (1=xH)In(1—=x2)+... (x~=*1),
Xxx =(—0.00447781/S +2.05081X10*/5?)In(1—x2)
—0.00438636/S +8.4389X 107 */S2+... (x~=*1), (3.24)
_ _1|1, 0.00664464 & 0.00447781 ., 2 _
Xpy=(1=x)"" |+ 5 + 3 (1—x)In(1—x>)+... | (x~1),
Y=L 0:00332232  0.00223890 \_ oy i ot gy
»16 S S
(3.25)

X2z =+—0.00421490/S +0.00542977(1—x)/S +... (x~1),

8

Xz =+1+0.00421490/5 —0.00542977(1+x)/S+ -+ (x~—1).

E. Three-dimensional face-centered-cubic lattice

For the fcc lattice, we only find the asymptotic expansions near x =1 because the fcc lattice is not a bipartite lattice.
The structure factor of the fcc lattice is

k.a k,a

2

k,a

k,a

k,a

k. a
+cos |— o

+
Ccos 2

1
Y= |cos cos cos cos

3

—2—”<k K< T <™ (3.26)
a a a

It follows that
37T 2000 +1)I[2(p +g +D]2(g +r +D][2(r +p +1)]!

Lsypei= =1,2,3,... (327
N%"" p+q§=n~1(2p+1)!(2q+1)!(2r+1)![(p Fqg+DIPg+r+DPLr+p+10P > 1 07
and
—2n~—4n
izyi"= s 3724 2n)[2(p +q)]2![2(q +r)]2![2(r+p)2! n=123,.... -
N< pratr=n (2PN (p +gN]*[(g +rN]*[(r +p)]

The asymptotic behavior is
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3v73 3

—_— n. o - - l _—— + O , 3.29

N%?’k 4n3 /2372 an as n— (3.29)

and from this, one can deduce the asymptotic behavior near x =1 of C,,:

C;=0.03403383—0.073070 80(1—x)+0.051 3015(1 —x)?

+33 (%) In(1—x)+0.006 668(1 —x1*+ 173 (| syt in(1—x)+ - - |
" 32r 10247
_ V3 (1
C,=—0.014 680 04+0,044 045 02(1— 1—x)?In(1—x)
+0.007204(1—x 2+ 213 (1 e pn(1—x)+ -
1287
C_,=0.0734100+ 22 (1) In(1-x)+0.050 58(1 —x)+ 233 (1 —x P In(1—x) .. , (3.30)
472 64
Ca=— 3 (1-%)=0.29090— 2 (1— %) In(1—x )+ ...
27 167*
c_ =L u—n1-23 ju—x) +-
o 77'

The asymptotic behavior of the physical quantities near x =1 is then
E,/N=—652—0.088 080S —0.002 103 04+(0.264 27S —0.004 702)(1 —x)
+(0.197 435 —0.030930)(1—x)?In(1—x)+... ,
m =[12S —0.294 318 —0.7897(1—x) In(1—x)+...](1—x)1/%,

M, =S —0.0146825— 17492 _ |6 033905 29032225 |\ \1n(1—x)+... ,
10*s S
(3.31)
2.7421 , 1.07508 4.71344 | 4.86734

o In(1—x)— + + -,
X 103S 104s? 103S 10%s?

1 .\-1|1 , 0.0036704 , 0.0054842 = _
Xpy =(1—x) 12-*— S + S (1—x)In(1—x)+... |,
X,z=i—°'°°2°297+°'°°285°1(1—x)+....

12 S S

F. Two-dimensional honeycomb lattice

For the honeycomb lattice, the smallest unit cell contains two sites and hence a spin-wave theory must be based on
two sublattices. This can be developed as follows. For the following Hamiltonian,

H=— 3 (§/S;, +xS!S}, )+h2$" , (3.32)
(Im)

first, we introduce Holstein-Primakoff transformation for two sublattices 4 and B:

S;T=(18)12f(S)a, , S =(28)"%a}f,(S), Sf=S—ara,, IEA,

(3.33)
S, =02)2f,.(S)W,, , S, =02t f,.(S), S:=S—bXb, , mEBRB,
where f;(S)=>~1—a;*a; /(4S).
Second, we introduce Bloch-type operators a;, b, by the Fourier transformation
ak=x/2/N2e"""’a, , bk=\/2/N2e‘k""bm . (3.34)

Note that, for the honeycomb lattice, thesstructure factor v, =(1/2)3, e’P’k is complex, that is, ¥, FYE=7 _x
(denote v, =|y,le’ %). The phase factor e * in the Hamiltonian can be absorbed by a simple transformation:
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kS

5 o . . . . .
b, —»bkel k, and the Hamiltonian can be diagonalized by the following Bogoliubov transformation:

a, =(cosh,; a; +sinh6,; a* ; +coshb,; B, —sinh8,; B* ,)/V2,
bj =(cosh@,, a; +sinh@,, a* , —cosh@,; B +sinhb,, B*,)/V2 ,

where tanh(20,, )=|D, | /(1—|D,|), tanh(20,, )=|D, | /(1+|D,|), and | D, | =x|y,|[1—(h /28)] "1 /2.
By a similar method as in Ref. 2, we can get the same results for ground-state energy E /N, the mass gap m, the
magnetization M, , and the susceptibility ¥y, X,,, X, as Eq. (3.3) except that, here, C,, is defined by

L S 1 =xly 2+ (1 +xly, 2=2],

C, =
n Nk

(3.35)

(3.36)

the sum over k denotes a sum over the first Brillouin zone of sublattice 4. For the two-dimensional honeycomb lattice,

the asymptotic behavior near x2=1 of C, is

C,=0.1308252—0.139 842(1—x?)+0.022 928(1—x2)?

3v’6 _1771V6

___1_25/2+_ 1_23 —v2)\7/2
prom x2) 0.03086(1—x2) 2250, ! x)172+ ,
C,=—0.05563093+0.107 7546(1—x?2)— ‘/_3 (1—x2)3/2+0.08524(1—x2)2—%(1—x2)5/2+-'-,
4V 2 160V 2
3v6 241/2 2 11v73 2)3
C_,;=0.3753874— ——(1— +0.35868(1—x2%)— = (1—x2)*2+... .
1 477( x*) (1—x*) 161/277( x*) , (3.37)
3‘/_6 2\—1/2 3\/3 24172
= (1— —1.05932— — +...,
C_3==—(1=x% 593 8‘/§7T(1x)
C_Szﬁ(1_x2)"3/2+m(1_x2)—1/2+ cee
T 87
so the asymptotic behavior of the physical quantities are
E,/N =—1.55?—0.083 4465 —0.007 679+ (0.161 635 —0.019 544 )(1—x?)
+(—0.1462S +0.083 64)(1—x2)3/2+ - -+ (x~=*1),
m =[3S —0.423239+1.2405(1—x)!2+ - - - [(1—x)'"? (x~1),
m =[38 —0.056396+0.23155(1+x)+ --- J(1—x)1"2 (x~—1),
M,=S5 —0.079939—0.001 3902 /S +(0.146 19—0.040 444 /S)(1—x>)'2+ - -+ (x~+1),
_ |0.048731 |, 9.1607 | ., _y,_ 0.077738 | 0.033239 ,
X = S + 10°s? (1—x°) S 2 + (x~=%1), (3.38)

Xy =(1—x)7[140.0718364/S —0.137832(1—x)'2/S + -+ ] (x~1),

X,y =1—0.0359182/5 +0.068916(1+x)"/2/S+ - -+ (x~—1),
Xz =1—0.031076/8 +0.051456(1—x)/S+ -+ (x~1),
Xz =4+0.031076/5 —0.051456(1+x)/S + -+ (x~—1).

IV, DISCUSSION

The general second-order spin-wave results for the
XXZ and XY models have been found for several different
lattices. Just as in the case of the Heisenberg antifer-
romagnet,'® the ground-state energy for the isotropic XY
model on a one-dimensional linear chain, and the three-
dimensional simple-cubic lattice and body-centered-cubic
lattice obtained here coincides with that of Nishimori
and Miyake,'® which is obtained from a special spin-wave
representation rather than the traditional Holstein-
Primakoff representation (a comparison of the ground-

f

state energy on these lattices obtained by spin-wave
theory and that obtained by other methods can be found
in Nishimori and Miyake.)!® For the S =1 isotropic XY
ferromagnet on a triangular lattice, the ground-state en-
ergy is Eq/N = —0.8030, which is consistent with the re-
sult E,/N = —0.7989(45) obtained by Fujiki and Betts?
using a finite-lattice method.

The XXZ Heisenberg antiferromagnet and XY model
have very similar characteristics. The isotropic Heisen-
berg antiferromagnet at x =1 possesses a rational SU(2)
symmetry for § =1 [or a rotational O(3) symmetry for in-
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teger S], which is broken when x <1 into a product of a
Z(2) symmetry in the z direction times a U(1) symmetry
in the x-y plane. The isotropic XY ferromagnet at x =1
possesses a rotational O(2) symmetry in the x-y spin
plane, which is broken when x <1 into a Z(2) symmetry
in the z direction times a U(1) symmetry in the x-y plane.
The isotropic XY ferromagnet at x =1 possesses a rota-
tional O(2) symmetry in the x-y spin plane, which is bro-
ken when x <1 into a Z(2) symmetry in the x direction.
The ground state of both isotropic models exhibits spon-
taneous symmetry breaking by the Goldstone mecha-
nism, so that, if the isotropic limit is approached from
the Ising side (x <1), there is long-range order in the z
direction for the XXZ model or in the x direction for the
XY model. The mass gap goes to zero in the isotropic
limit, corresponding to the appearance of a massless
Goldstone mode. Therefore, C, and the physical quanti-
ties have singularities at the isotropic point. For one-

11 881

and three-dimensional lattices (in fact, for any odd-
dimensional lattice), the singular terms have the form
(1—x2)™1In(1—x2) [or (1—x)™In(1—x) for the XY mod-
el on a nonbipartite lattice]. For even-dimensional lat-
tices, the singular terms of C, have the form (1—x2)™/2
[or (1—x)™’2 for the XY model on a nonbipartite lattice].
For the spin-1 isotropic Heisenberg antiferromagnet
(HAF) on a two-dimensional honeycomb lattice, the
quantum effect reduces the staggered magnetization M+
more than 50% from its classical value, which is much
stronger than that for the square-lattice HAF which is
M*=8—0.1966, and is almost as strong as that of the
triangular-lattice HAF which is!®> M =5 —0.216.
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