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Second-order spin-wave results for the quantum XXZ and XYmodels with anisotropy
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A second-order spin-wave analysis is given for the quantum Heisenberg antiferromagnet with anisot-
ropy on the one-dimensional linear chain, two-dimensional honeycomb lattice, and three-dimensional
simple-cubic and body-centered-cubic lattices. A similar analysis is given for the quantum XY model
with anisotropy on the one-dimensional linear chain, two-dimensional triangular and honeycomb lat-
tices, and three-dimensional simple-cubic, body-centered-cubic, and face-centered-cubic lattices. The
singular behavior at the isotropic point is discussed in detail. We find that the quantum spin reduction
of the isotropic Heisenberg antiferromagnet on a two-dimensional honeycomb lattice is much stronger
than that on a square lattice.

I. INTRQDUCTIQN

For comparison with the results of our series expan-
sions about the Ising limit for the zero-temperature quan-
tum XXZ and XY models on a square lattice, we ' re-
cently carried out a standard second-order spin-wave
analysis for the above models, and its predictions were
found to be in extremely good agreement with the results
of the series expansions. In this paper we apply the gen-
eral spin-wave results obtained in our previous papers'
to other lattices. We present spin-wave predictions for
the isotropic Heisenberg antiferromagnet on the two-
dimensional honeycomb lattice, and the isotropic fer-
romagnetic XY model on the two-dimensional triangular
and honeycomb lattice and three-dimensional face-
centered-cubic lattice.

Spin-wave theory can provide us with a rather accurate
picture of the low-lying states of quantum spin systems.
There exist several different versions of the spin-wave
theory. The standard spin-wave theory based on the
Holstein-Primakoff representation for the Heisenberg
model was proposed by Anderson, and further extended
to second order by Kubo and Oguchi. The singular be-
havior of the anisotropic model was discussed by
Stinchcombe. This spin-wave theory was previously
thought to be unsatisfactory in the XY case, but recently
Cxomez-Santos and Joannopoulos have shown that, by a
different choice of the quantized spin axis, one can obtain
a good theoretical fit to the model. Another spin-wave
theory using a special spin-wave representation was origi-
nally proposed by Villain, and further extended up to
second order by Nishimori and Miyake. ' But up to
second order, both traditional spin-wave theories give the
same ground-state energy for the Heisenberg antifer-
romagnet. Recently, a sublattice symmetric spin-wave
theory has been formulated by Takahashi, "Hirsch, ' and
Tang' where the total staggered magnetization is con-
strained to be zero, which yields excellent agreement with
Bethe ansatz results for the S =

—,
' Heisenberg antiferro-

magnetic in one dimension. In addition to this,
Takahashi' has also developed another modi6ed spin-
wave theory by using the Dyson-Maleev transformation
instead of the Holstein-Primakoff transformation: it pre-
dicted the perpendicular susceptibility for the spin- —,

Heisenberg antiferromagnet on a square lattice to be
g~=0.06550, which is in excellent agreement with our
series expansion result' [y~= 0.0659(10)].

Recently, the discovery of the remarkable magnetic
properties of high-T, superconductors has led to a reex-
amination of quantum spin systems mainly in two dimen-
sions (including the square lattice, triangular lattice, and
perhaps the honeycomb lattice, although the honeycomb
lattice has been less well studied). The standard first-
order spin-wave analysis of the triangular Heisenberg
quantum antiferromagnet with nearest-neighbor cou-
plings was given by Jolicoeur and Le Guillou, ' and then
extended for both nearest-neighbor and next-nearest-
neighbor interactions by Jolicoeur, Dagotto, Gagliano,
and Bacci.' The standard spin-wave analysis of the
Heisenberg antiferromagnet on a square lattice with both
nearest-neighbor and next-nearest-neighbor coupling s
was discussed by Chandra and Doucot, ' and Kubo and
Kishi. "

In the present paper, we will not repeat the derivation
of our general second-order spin-wave results in detail,
but the notations here have the same meanings as in our
previous papers. ' The arrangement of the paper is as
follows: in Sec. II we give the spin-wave results for the
anisotropic Heisenberg antiferromagnet on a one-
dimensional linear chain, two-dimensional honeycomb
lattice, and three-dimensional simple-cubic and body-
centered-cubic lattices. In Sec. III we discuss the spin-
wave results for the XY model with anisotropy on a one-
dimensional linear chain, two-dimensional triangular and
honeycomb lattice, and three-dimensional simple-cubic,
body-centered-cubic, and face-centered-cubic lattices.
The XY model on a honeycomb lattice needs an analysis
based on two sublattices.
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II. SPIN-%'AVE ANALYSIS
OF THE ANISOTROPIC

HEISENBERG ANTIFERROMAGNET

H = g [SI'S' +x (S("S"+SfS» )],
(Im }

(2.1)

where we have divided the lattice sites into two sublat-

The Heisenberg antiferromagnet with anisotropy can
be described by the following Hamiltonian:

tices, denoted by I and m, respectively, and the sum over
( lm ) denotes a sum over all nearest-neighbor pairs. The
points x =0 and 1 correspond to the antiferromagnetic
Ising model and isotropic Heisenberg model, respectively.
The second-order spin-wave theory' gives the ground-
state energy Eo, the mass gap m, the staggered magneti-
zation M, the parallel staggered susceptibility g~~, the
uniform perpendicular susceptibility gz, and the stag-
gered perpendicular susceptibility g~ as follows:

1 1—

m =z(1—x )' (S —C &/2),
2

1 —xM+=S —
—,'C i

—
2 (C i

—C, )(C 3
—C, ),

4Sx
(2.2)

C 3
—C ))+ C)(C 3

—C, )+ [(C 3
—C () +(C (

—C))(C )+3C 5
—4C 3)]II 2zS 4 S2 2

C i
—Ci1—

z (1+x) 2Sx

yf(x) =yg( —x),

C. =—&l(1—x'ykyk)"" —1]
2

k
(2.3)

where z is the coordination number of the lattice, and C„
is defined by

and

2 2/1 2 2' 2n

the sum over k denotes a sum over the first Brillouin zone
of the sub1attice l, and the structure factor yk is defined
by

1 ik.p
k

P

(2.4)

i 5'.Note that sf yk is complex (denote gk
=

~yk ~e ), that is,

yl, &yk =y k, the phase factor e in the Hamiltonian—i5I,can be absorbed by the transformation bk bke, or
by the following Bogoliubov transformation:

'~k
aj, =coshOk ak —sinh8ke "P

-(mn) i 1 — +0—1/2 1 1

Sn n2
as n~~ (2.7)

C& = —0.36338— (1—x ) ln(1 —x )
1

2m'

+0.282 12(1—x )

3 (1—x ) ln(1 —x )+2 2 2

16~

Using the same techniques applied in our calculation of
XXZ model, ' one can find the asymptotic expansion near
x2=1 of C„:

—i5k
bk = —sinhek e "ak+cosh8k Pk,

(2.5)
C

&

= ——ln(1 —x ) —0. 1174581

instead of Eq. (2.9) in Ref. 1.
The results above are applicable to any bipartite lat-

tice. Now we discuss the application of the above results
to the one-dimensional linear chain, two-dimensional
honeycomb lattice, and three-dimensional simple-cubic
and body-centered-cubic lattice (a is the lattice spacing).

A. One-dimensional linear chain

(1—x )ln(1 —x )
4m

+0.0615(1—x )+
2C—3=

m(1 —x )

1
ln(1 —x )—0.718+2'

C 5= (1—x) +—(1—x) +2 -2 1 2 -i
3m

(2.8)

yl, =cos(k„a), —~/(2a) & k„~~/(2a),
The structure factor yk for the linear chain is

(2.6)
The Heisenberg antiferromagnet on a one-dimensional
linear chain has no long-range order, and the spin-wave
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theory here gives a divergent occupation number per site
( n; ), so the spin-wave theory lacks intrinsic consistency.
But the ground-state energy in the isotropic case is
Eo/N = —S —0.363 38S —0.033011, which compares
fairly well with the exact solution' ' (Eo/N = —0.4430
for S =

—,').

B. Two-dimensional honeycomb lattice

h, = ( —,',0),
(2.10)

h2= I 1

3
' v'3

which correspond to the triangular lattice. The erst Bril-
louin zone can be chosen as the rectangular region

The two-dimensional honeycomb lattice is a bipartite
lattice, consisting of sublattice I and sublattice m. The
primitive lattice vectors of the I sublattice are

2' 2m
X

Then the structure factor is

( 7T&k (2.11)

e, =a ( —'„&3/2),

e2=a (0,&3),
(2.9)

ik a —ik„a/2
y =—e +2e " cosk

v'3
k a (2.12)

and the reciprocal-lattice vectors for the l sublattice are and it follows that

1 V'3
ykyk =—1+4cos k a +4 cos

3k a

2

V'3
cos ky a

m. /2g—(ykyk )"= f dx f dy (1+4cos y +4cosx cosy)"
4~'k

n /2n —2i 3 "[2(i+j}]!n!
OJ =0 (=i!) j!(n 2i —j—)![(i+j)!]2

3+3 1 1

4~n 4' n 2
as n~co .

Therefore, one can deduce the asymptotic behavior near x = 1 of C„:

(2.13)

C, =0.516386— (1—x ) +0.5392(1—x ) — (1—x ) +2 in 2 3 3 2 3/2
2m 4~

(1—x )
' —0.5621 — (1—x )' + .3&3

2~ 4~

C = (1—x) + (1—x) ' +.
2~ 4m

C

The asymptotic behavior of the physical quantities is then given by

Eo /N = —3S /2 —0.314 763S —0.016 5126+(0.544 67S —0. 140 63 )( 1 —x )

+( —0.413 50S+0.40705)(1—x ) +
m =(1—x }' [3S—0.774579+1.2405(1 —x )' + ],
M+ =S —0.258 193+(0.413 4967 —0. 150 1464/S)(1 —x )' +
pic =(0.137 83/S+0. 035 5873/S )(1—x )

'i —0. 17974/S+0. 0188589/S +

yj =
—,
' —0.0605190/S+0.097462(l —x)' /S+

yf=[ —,'+0. 121038/S —0. 19492(1—x)'i /S+ . ]/(1 —x).

Ci= —0.2098417+0.363114(1—x ) — (1—x )
i +0.22561(l —x ) — (1—x ) +

27K 20m

(2.14}

(2.15)

C. Three-dimensional simple-cubic lattice

The structure factor yk for a simple-cubic lattice is

yk =
—,
' [cos(ak„)+cos(ak» )+cos(ak, )], (k, k (

2a ' y 2a ' a
(2.16)
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It then follows that
r

~ ~Vk2n 3
—2n2 —2n

k

2n ~ 2m
X

~ rn =0

r

n

3 3 „—3/2 3 1

4 3/2 8n n2
as n —+~, (2.17)

and one can deduce the asymptotic behavior of C„:

Ci ———0.097158+0.126937(1—x )+ (1—x ) ln(1 —x )
16m

+3.9624X10 (1—x ) +
2 (1—x ) ln(1 —x )+-3 22 3 3 23 2

16m

C, =0.156715+ (1—x ) ln(1 —x ) —0.0453(l —x )+ (1—x ) ln(1 —x )+2 2

4m. 16~

3v'3
ln(1 —x )

—0.0159704+0.0236(1—x )+ .2 2

2772

C 5= (1—x ) — ln(1 —x ) —0.207+. . .3/3, , 33/3 2

2%2

(2.18)

The asymptotic behavior near x = 1 of the physical quantities is

Eo /X = —3S —0.291 474S —0.007 079 76+ (0.380 810S—0.029 8394 )( 1 —x )

+(0.098 715S —0.045327)(1 —x ) ln(l —x )+

I =[6S—0.470146—0.394860(1—x )ln(1 —x )+ . . ](1—x )'/

M =S—0.078 3577+ —0.065 810+ ' — (1—x ) ln(1 —x )++— 0.016 707 2

S

(2.19)

0.021 9367 0.001 065 66
1

2 0.014 3905 0.006 268 22

1
XJ

0.010 5781
S

0.005484 17
(1 2)1 (1 2)+

S

gj =[—,'+0.0211561/S+0.0109683(1—x ) ln(1 —x )/S+ . ]/(1 —x) .

D. Three-dimensional body-centered-cubic lattice

The structure factor yk for a bcc lattice is

ak
pk —cos

2

ak ak,
cos cos ——&k k k & —.

a x~ y~ z- a
(2.20)

Then,

3
2n

y~2n 2 6n-
n

-(~n ) 1 — +0—3/2 1

Sn n2
as n~~, (2.21)

and, therefore, one can deduce the asymptotic behavior of C„:



SECOND-ORDER SPIN-WAVE RESULTS FOR THE QUANTUM. . . 11 873

C, = —0.07303767+0.0958370(l —x )+ (1—x } ln(l —x )
4m

+0.0032057(1—x ) + (1—x ) ln(1 —x )+
4m

C, =0.1186364+ (1—x ) ln(1 —x )
—0.03235(1—x )+ (1—x ) ln(1 —x )+2 Z 2 3

m2 4m'

C 3= — ln(1 —x ) —0.01929885+0.0291(1—x )+2

(2.22)

C ~= (1—x } — ln(1 —x ) —0. 1738+4 2 ( 2 2—5 m2

The asymptotic behavior near x =1 of the physical quantities is

Eo/N= —4S —0.292 151S—0.0053345+(0.383 35S —0.022739)(1—x )

+(0.101 32S —0.035 141)(1—x ) ln(1 —x )+

m =[8S—0.474545 —0.405285(1 —x ) ln(1 —x )+ ](1—x )'~

M+ =S —0.0593192—(0.0506606 —0.00971032/S)(1 —x ) ln(1 —x )+

Xii=( 0.012665/S+4. 6252X10 /S)ln(1 x ) 0.0086209/S+2 ~ 7424X10 /S+ (2.23)

1
XJ. 16

0.005 9898
S

0.003 1663
(1 2)1 (1 2)

S

s 1+ 0.0119796+ 0.00633257
Xj. 8 S S (1—x) .

III. SPIN-WAVE ANALYSIS OF THK ANISOTROPIC XFMODEL

The XFmodel with anisotropy can be described by the following Hamiltonian:

H = —g (S("S"+xSfS~~),
(I )

(3.1)

where the sum over (lm) denotes a sum over all nearest-neighbor pairs. The points x =0 and 1 correspond to the fer-
romagnetic Ising model and isotropic ferromagnetic XP model (F), respectively. For a bipartite lattice, the isotropic an-
tiferromagnetic XF model (A) is related to the ferromagnetic one by a simple spin rotation on one sublattice. Hence,
there exist the following relations between the isotropic ferromagnet (F), antiferromagnet (A), and the model described
by Eq. (3.1):

Eo(x = I)=ED(x = —I)=ED =ED,

M„(x =1)=M„(x = —1)=M„=M„"s,

X..(x =1)=X..(x = —1)=X..=X.".',
Xyy(x =1)=XyA's=xyr, , X,y(x = 1)=XyAy =XyF's—
X,(x =1)=X.".=X.". X,(x = —1)=X.".'=X.".

(3.2)

where the superscript S denotes the staggered magnetization and susceptibility.
The second-order spin-wave theory gives the ground-state energy Eo, the mass gap m, the magnetization M, and

the susceptibility p+z p pyy p pzz as follows:
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zSCIEo z +
2 2

z
16

1 —x 2 2 1
(C, —C, ) +2C, + (C, —C~)

zm= zS ——C—
1 x

3 1+x
x

—1 (1—x)'

M„=S—
—,'(CI+C I)+ 1

32S
4—3x 2 2

(Ci —C I) + -(Ci —Cq)(Cq —2CI+C I)
x X

1 —x+2 2 (CI —C, )(C q
—C, )

(3.3)

1
(C, +C ~

—2C, )
SzS

+ 1

32zS2
1 —x 2

(CI —C, )(3C, —C, +C q
—3C ~)

x4, 4 —x'+ (C, —C, ) +2 (C, —C, )(C ~
—C, )

] 2

+ (C g
—CI) +2(C, —C, )(C,—2C, )+ (C, —4C, +3C~)

+2(C, —C ~)(C, —2C, )+ (C, —Cq)( —C ~+3C, —7C, +5Cq)1

x
1 1+

z(1 —x)
C I

—CI
2Sx

Ca C
2Sx

where z is again the coordination number of the lattice, and C„ is defined by

C„=—g[(1—xyk )" —1],=1
k

the sum over k denotes a sum over the first Brillouin zone, and the structure factor

1 e'" &

P

is required to satisfy the condition

1
g'Yk =0 .
k

(3.4)

(3.5)

(3.6)

The results above are applicable to the ferromagnetic XY model on any lattice, or to the antiferromagnetic XYmodel
on any bipartite lattice following a simple spin rotation. Now we discuss the application of the above results to the
one-dimensional linear chain, two-dimensional triangular lattice, and three-dimensional simple-cubic, body-centered-
cubic, and face-centered-cubic lattices. For the two-dimensional honeycomb lattice, the simplest unit cell contains two
sites, so the spin-wave theory based on one sublattice in the form given above is invalid for it despite the fact that it is a
bipartite lattice. In Sec. III F, we develop a second-order spin-wave theory for the XYmodel on the honeycomb lattice,
based on a two-sublattice decomposition.

A. Qne-dimensional linear chain

The structure factor of the linear chain is

yk =cos(k„a),

and it follows that

7T 7T——&k &—
a a

(3.7)
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2n
gy2n —2 2n

k n n
-(mn) ~

1 — +0—1/2 1 1

8n
as n —+~, (3.8)

and

1—gy "+'=0 n =0, 1,2, . .. .
k

(3.9)

From this, one can deduce the asymptotic behavior of C„as

C3=0.2004218 —0.225079(1 —x )
— — (1 —x ) ln(1 —x )

3
32M Zm.

+6.86947X10 (1—x ) — (1—x ) ln(1 —x )+ .
512&2vr

C, = —0.099684— (1—x ) ln(1 —x )+0.06521(1—x ) — (1—x ) ln(l —x )+
v~2

2 2 15 2 22 2

8~ 256m

C = — — ln(l —x )
—0.063922 — — (1—x ) ln(1 —x )+0.03485(1—x )+.. . ,

1 2 3
~Zvr 16&2@.

(3.10)

2&2 &2C 3= — —ln(1 —x ) —0.935+.. . ,
m(1 —x )

C = (1—x )
— — (1— ) '+

3~ V2~

For the one-dimensional linear chain, as pointed out by Gomez-Santos et al. , the spin-wave theory gives a divergent
occupation number per site ( n; ), and the theory lacks intrinsic consistency. But the ground-state energy
(EOIN = —S —0.099 684S —0.013 7421) compares fairly well with the exact solution ' (Eo/N = —0.318 for S =

—,').

B. Two-dimensional triangular lattice

For the triangular lattice, we only find the asymptotic expansions near x = 1 because the triangular lattice is not a bi-
partite lattice. The structure factor of the triangular lattice is

1
yk =—cos(k„a )+2 cos

k a

2

&3k,a
cos (3.11)

From this it follows that

1 " 'i " 2i " " (2n+1)!(2k+2n —2'+2)!
n =1,2, . . . ,N„., „0 3 "+'[2(n j)+1]!(2k+1)—!(j 2k —1)!j![(n——j+k+ I)!]

and

n i /2 2i 2J —
2n(2n )!&!—

0 0 3 "(2n —2i)!(2i)!(i—2j)!(2j)!
2(j+n i) 2i-
j+n —i l

~
y n 1y2y ~ ~ ~

the asymptotic behavior is

—gyk — 1 — +01 „&3 1 1

2~n 2n
as n~oo, (3.12)

therefore, one can deduce the asymptotic behavior of C„:
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C3 =0.068 9479—0. 151 808(1—x)+0. 139 345(1—x)

5/2(1—x) +0.102 61(1—x) — (1—x) +... ,
5m 357T

C, = —0.0322577+0. 135 19(1—x) — (1—x) +0.158 77(1 —x) — (1—x) +... ,
3n 4&3 sn

3m 15m.

C, =0.238124— (1—x)'i +0.5000(l —x) — (1—x) +... ,
in 2&3

3'
(3.13)

C 3= (1—x) —0.76163+0.2124(1 —x)+.. . ,
-in

77

C = (1— ) + (1—x) ' —0903+ ... ,

and the asymptotic behavior of physical quantities:

Eo/X = —3$ —0.096 773S —0.004 6214+ (0.405 57S —0.034 186)(1—x)

+( —0.551 33S+0.20076)(1—x) +.. . ,

m = [6S—0.562 56+ l.6540(1 —x)' +.. . ](1—x)'~

M„=S —0.051 4666 —6.5848 X 10 /S + (0. 137 83—0.024 463/S)( 1 —x )
'i +... ,

0.011486 1.0536 in 0.026 461 7.0461
104$' S 1O'S'

(3.14)

=(1—x) '[ —,'+0.022532/S —0.045944(1 —x)' /S+. ..],

y„=—,
' —0.0084338/S+0. 015 483(1—x)/S+. .. .

C. Three-dimensional simple-cubic lattice

The structure factor of the simple-cubic lattice is

yk =
—,
' [cos(ak„)+ cos(ak )+ cos(ak, )],

and it follows that

——(k k k(—'IT 7T

a x~ y~ z-
a

(3.15)

2n ~ 2m
2n —3

—2n2 —2n

N rk n m
k ~ m=0

2
E1

and

3&3 —3n 3 1

4 3/2 gn 2

1 yy2n +1 0k
k

as n —+00 (3.16)

(3.17)

Therefore, one can deduce the asymptotic behavior of C„:
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C3=0.0645497 —0.0673613(1—x )+4.763 53X10 (1—x ) + (1—x ) ln(1 —x )
256m.

+1.64X10 (1—x ) + (1—x ) ln(1 —x )+
8192&2m.

C, = —0.02526547+0. 035 1565(1—x )+ (1—x ) ln(1 —x )
32&2m-'

+2.512X10 (1—x ) +
2 (1 —x ) ln(l —x )+... ,512&'Z~'

3&3C 3= — — ln(1 —x ) —0. 101571—
&2m'

C 5= — (1—x )V'2 '

z (1—x ) ln(1 —x )+... ,
16 2~

9V3
z ln(1 —x )+.. . ,

4 2'~

and the asymptotic behavior of the physical quantities is

Eo/N = —3S —0.075 7964S —0.003 5038+(0.105 470S —0.0022028)(1 —x )

+(0.034901S—0.0085914)(l —x ) ln(1 —x )+.. . (x-+1)
m =[6S—0.211359—0.279208(1 —x ) ln(1 —x )+... ](1—x)' (x —1),
m = [6S—0.058 9264+0. 172 831(1+x)+.. . ](1—x)'~ (x ——1),

M =S —0.0225238 — — 0.0232674 — '
(1—x ) ln(1 —x )+.. . (x —+1),6.7558 3.5676

104S 10 S

775579 46916
1 2 7449+1935+

10 S 10 S 10 S 10 S

C, =0.1153607+ (1—x )ln(1 —x ) —0.038836(l —x )+ (1—x ) ln(1 —x )+.. . ,2

8m 256m

(3.18)

(3.19)

1 0.011 7188 0.007 755 79=1—x ' —+ (x —1),

=1
XJPg

0.005 8594
S

0.003 8778
S (1—x )ln(1 —x )+.. . (x ——1),

y„= 6
—0.00748460/S+0. 009 601 72(1 —x)/S+. .. (x —1),

y„=—,'+0.00748460/S —0.009 601 72(1+x)/S+. .. (x ——1) .

D. Three-dimensional body-centered-cubic lattice

The structure factor of the bcc lattice is

k
—Gos

ak„ ak
cos cos

2

ak, 7T——&k k~-
a y a

2& 2'
&k, &

7a a
(3.20)

and it follows that

2n
y~2n 2

—6n
k n

k

and

3

-(em�) 1 — +03 1

Sn n2
as n~~, (3.21)

1—gyk"+'=0, n =0, 1,2, . .. .
k

The asymptotic behavior of the C„ is given by

(3.22)
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C3=0.04843450 —0.050578 82(l —x )+0.003 64461(1—x )

+ (1—x ) ln(1 —x )+0.0012683(l —x ) + z (1—x ) ln(1 —x )+...
64m 4096%

C& = —0.01900393+0.02657857(1 —x )+ (1—x ) ln(1 —x )
1

8&a~'

+0.001983965(1—x ) + (1—x ) ln(1 —x )+
128&2m.

C, =0.08731034+ (1—x )ln(1 —x )
—0.028042(1 —x )+ (1—x ) ln(1 —x )+

v'2
2

2m.2 64m

2v'2 3v~2
C 3= — ln(1 —x ) —0.08710262 — (1—x ) ln(1 —x )+0.05339(1—x )+... ,7T' 8m.

C ~=
2 (1—x ) — ln(1 —x ) —0.46869+... ,

8v 2 2 ) 3v'2
3%2 2772

and the asymptotic behavior of the physical quantities is

Eo /N = —4S —0.076 0157S—0.002 635 12+(0.106 3 14S —0.001 711 76 )( 1 —x )

+(0.0358224S —0.00667254)(1 —x ) ln(1 —x )+.. . (x-+1)
m =[8S—0.214364—0.286580(1 —x )ln(1 —x )+.. . ](1—x)', (x —1),
m = [8S—0.058 8612+0.173 753(1+x)+.. . ](1—x)' (x ——1)

r

M =S—0.0170766— ' —0.017911— '
(1—x ) ln(1 —x )+... (x —+1),3.7914 2.078

10 S 10 S

y„,= ( —0.004 477 81/S +2.050 81 X 10 /S ) ln( 1 —x )

—0.00438636/S+8. 4389X10 /S +.. . (x —+1)

(3.23)

(3.24)

(1 )
) 1 + 0.00664464 + 0.00447781

(1 2)1 (1 2)+gyy
— X S S (x —1),

=1
Xyy 16

0.003 322 32
S

0.002 238 90
S (1—x ) ln(1 —x )+.. . (x ——1),

(3.25)y„=—,
' —0.004 214 90/S +0.005 429 77( 1 —x ) /S +... (x —1),

Z = ~+0.OO42149O/S —0.00542977(1+x )/S+ (x -—1) .

E. Three-dimensional face-centered-cubic lattice

For the fcc lattice, we only find the asymptotic expansions near x = 1 because the fcc lattice is not a bipartite lattice.
The structure factor of the fcc lattice is

k a
cosk 2

It follows that

k a
cos

ka k, a+cos cos
2

k, a+cos
2

k„a
cos

2'
k k + 2'

a x& y- a t
7T 7T——&k &—
a ' a

(3.26)

1 2„+~ 3 " '2 " (2n +1)![2(p+q+1)]![2(q+r+1)]![2(r+p+1)]!
Yk 72 = 1,2, 3

~+q+„=„,(2p +1)!(2q+1)!(2r+1)![(p+q+1)!][(q+r +1)!][(r +p+ 1)!]

and

1 2„3 "2 "(2n)![2(p +q)]![2(q +r)]![2(r+p)]!
Yk n = 1,2~3, . . . .,+,+,=. (2p)'. (2q).'(2r).'[(p+q)!]'[(q+ r)'l'[(r +p)']'

The asymptotic behavior is

(3.27)

(3.28)
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1 „3&3
1

3 + 1

N~ 4'" '" 4
as n~oo, (3.29)

and from this, one can deduce the asymptotic behavior near x = 1 of C„:

C3 =0.034033 83 —0.073 070 80(1—x)+0.051 3015(1—x)

+ (1—x) ln(l —x)+0.006668(1—x) +
2 (1—x) ln(1 —x)+3&3 3 117&3 4

32m2 1024+2

C, = —0.01468004+0.04404502(1 —x)+ (1—x) ln(1 —x)3&3
16m.

+0.007204(1 —x) + (1—x) ln(l —x)+27&3
128m

C =0.0734100+ (1—x) ln(1 —x)+0.05058(l —x)+ 2 (1—x) ln(1 —x)+... ,
3&3 45~3
4m 64m

(3.30)

C—3
3&3

ln(1 —x ) —0.29090— (1—x) ln(1 —x )+.. . ,
2m2 16&

(1—x) ' — ln(1 —x) +
8m

The asymptotic behavior of the physical quantities near x =1 is then

Eo /N = —6S —0.088 080S —0.002 10304+ (0.264 27S —0.004 702 )( 1 —x )

+(0.19743S—0.030930)(1—x) ln(1 —x)+... ,

m = [12S—0.294318—0.7897(1—x) ln(1 —x)+... ](I—x)'~

M =S —0.0146825 — ' —0.032905—1.7402 0.003 2225
(1—x) ln(1 —x)+.. . ,

104S S

2.7421 1.07508
I

4.713 44 4. 867 34
10 S 10 S 10 S 10 S

(3.31)

( ), 1 0.003 6704 0.0054842
(1 )1 (1 )+

12 S S
1

Xgg ]
0.0020297 + 0.002 8501

S S

F. Two-dimensional honeycomb lattice

For the honeycomb lattice, the smallest unit cell contains two sites and hence a spin-wave theory must be based on
two sublattices. This can be developed as follows. For the following Hamiltonian,

H = —g (S(S"+xSfS» )+h+S;",
(I ) E

first, we introduce Holstein-Primakoff transformation for two sublattices A and B:
SI+ =(1S)' fr(S)a&, S& =(2S)' ar*fI(S), Sp=S —ar~a&, I E 3,
S+=(2S)' f (S)b, S =(2S)'~ b*f (S), S"=S bb, m E—B,

where fI(S)=1—
a& aI/(4S).

Second, we introduce Bloch-type operators ak, bk by the Fourier transformation

ak =V2/N ge'"''al, bk =Q2/N ge'"
m

(3.32)

(3.33)

(3.34)

Note that, for the honeycomb lattice, the structure factor yk=(1/z)g e'~'" is complex, that is, ykAyk =y
i5k(denote yk=~yk~e ). The phase factor e in the Hamiltonian can be absorbed by a simple transformation:
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bk ~bke, and the Hamiltonian can be diagonalized by the following Bogoliubov transformation:

&I, =(coshO)k ak +sinh8)k a* k+cosh82k Pk
—sinh82k P* k )/&2,

bk =(cosh8, & ak+sinhO, k
a*

&
—cosh82k Pk+sinh02k P I, )/ 2,

(3.35)

~he« tanh(»)k ) = IDk I /(1 —IDk I ), tanh(2&2k ) = IDk I /(1+ IDk ), »d IDk I
=x

I yk I [1—(h»S) ] '/2.
By a similar method as in Ref. 2„we can get the same results for ground-state energy Eo/N, the mass gap m, the

magnetization M, and the susceptibility g, y, y„as Eq. (3.3) except that, here, C„ is defined by

C„=—y[(1—x
I y, I

)""+(1+x
I yk I

)""—2],=1 (3.36)

the sum over k denotes a sum over the first Brillouin zone of sublattice A. For the two-dimensional honeycomb lattice,
the asymptotic behavior near x = 1 of C„ is

C3 =0. 130 8252 —0. 139 842( 1 —x ) +0.022 92 g ( 1 —x )

( 1 2)5/2+() ()3() g6(1 2)3 ( 1 2)7/2+
80~ 4480~

C, = —0.05563093+0.1077546(l —x ) — — (1—x ) +0.08524(1 —x ( 1 2)5/2+
1603/2m

C i=0.3753874— (1—x )
/ +0.35868(1—x ) — — (1—x )

/ +.. . ,
2 1/2 2 3/2

4~ 163/2m

C = (1—x )
' —1.05932— (1—x )' +.. . ,8~2~

( 1 x2) —3/2+ ( 1 x 2) —1/2+v'6

8m

so the asymptotic behavior of the physical quantities are

E /X = —1.5S —0.083 446S —0.007 679+ (0. 161 63S —0.019 544)( 1 —x 2)

+( —0. 1462S+0.08364)(1—x ) + . . (x —+1),
m =[3S—0.423239+1.2405(1 —x)'/ + ](1—x)'/ (x —1),
m = [3$—0.056 396+0.231 55(1+x)+ . ](1—x)'/ (x ——1),
M =S—0.079939—0.0013902/S+(0. 14619—0.040444/S)(1 —x )'/ + . (x —+1),

0.048731 9.1607 2 i/2 0.077 738 0.033 239

(3.37)

(3.38)

=(1—x) '[—'+0.071 8364/S —0. 137 832(1 —x)'/ /S+ ] (x —1),

gyes 6 0 035 9182/S+0 068 916(1+x) / /S+ (x 1)

y„=—,
' —0.031076/S+0.051456(1—x)/S+ (x —1),

y„=—,'+0.031076/S —0.051456(1+x)/S+ (x ——1) .

IV. DISCUSSION

The general second-order spin-wave results for the
XXZ and XYmodels have been found for several difterent
lattices. Just as in the case of the Heisenberg antifer-
romagnet, ' the ground-state energy for the isotropic XY
model on a one-dimensional linear chain, and the three-
dimensional simple-cubic lattice and body-centered-cubic
lattice obtained here coincides with that of Nishimori
and Miyake, ' which is obtained from a special spin-wave
representation rather than the traditional Holstein-
Primakoff representation (a comparison of the ground-

state energy on these lattices obtained by spin-wave
theory and that obtained by other methods can be found
in Nishimori and Miyake. )' For the S =

—,
' isotropic XF

ferromagnet on a triangular lattice, the ground-state en-
ergy is Eo/X = —0.8030, which is consistent with the re-
sult Eo/X = —0.7989(45) obtained by Fujiki and Betts
using a finite-lattice method.

The XXZ Heisenberg antiferromagnet and XY model
have very similar characteristics. The isotropic Heisen-
berg antiferromagnet at x =1 possesses a rational SU(2)
symmetry for S =

—,
' [or a rotational O(3) symmetry for in-
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teger S], which is broken when x & 1 into a product of a
Z(2) symmetry in the z direction times a U(1) symmetry
in the x-y plane. The isotropic XY ferromagnet at x =1
possesses a rotational O(2) symmetry in the x-y spin
plane, which is broken when x & 1 into a Z(2) symmetry
in the z direction times a U(1) symmetry in the x-y plane.
The isotropic XY ferromagnet at x = 1 possesses a rota-
tional O(2) symmetry in the I-y spin plane, which is bro-
ken when x & 1 into a Z(2) symmetry in the x direction.
The ground state of both isotropic models exhibits spon-
taneous symmetry breaking by the Goldstone mecha-
nism, so that, if the isotropic limit is approached from
the Ising side (x & 1), there is long-range order in the z
direction for the XXZ model or in the x direction for the
XY model. The mass gap goes to zero in the isotropic
limit, corresponding to the appearance of a massless
Goldstone mode. Therefore, C„and the physical quanti-
ties have singularities at the isotropic point. For one-

and three-dimensional lattices (in fact, for any odd-
dimensional lattice), the singular terms have the form
(1—x ) ln(1 —x ) [or (1—x) ln(1 —x) for theXYmod-
el on a nonbipartite lattice]. For even-dimensional lat-
tices, the singular terms of C„have the form (1—x )

[or (1—x) ~ for the XYmodel on a nonbipartite lattice].
For the spin- —, isotropic Heisenberg antiferromagnet

(HAF) on a two-dimensional honeycomb lattice, the
quantum effect reduces the staggered magnetization M+
more than 50% from its classical value, which is much
stronger than that for the square-lattice HAF which is
M+ =S—0. 1966, and is almost as strong as that of the
triangular-lattice HAF which is' M+ =S —0.216.
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